Galactic Cosmic Ray Propagation with PICARD

Ralf Kissmann

Innsbruck University

Hamburg University /DESY

12-01-2015

Different Fields Highest energy cosmic rays • Heliospheric physics Equivalent c.m. energy Vsn [GeV] 103 Highest energy CRs RHIC (p-p) Tevatron (p-p) LHC (p-p) [m² s⁻¹ sr¹ eV^{1.5} HERA (r-p) HiBes-MIA 103 HiBes I △ HiRes II O AGASA/Akeno Auger 2009 E^{2.5} J(E) 10 ATIC PROTON BUNIOR scaled flux KASCADE (QGSJET 01 KASCADE (SIBYLL 2.1) KASCADE-Grande 2005 10 Tibet ASo (SIBYLL 2.1) 10¹ 1013 1014 1015 1016 101 1018 Energy [eV/particle] (Matthiae (2010))

- Heliospheric physics
- Highest energy CRs
- Galactic CRs

Galactic Cosmic Rays

- $E < 10^7 \, \mathrm{GeV?}$
- Sources of CRs?
- Transport of CRs?
- Electrons & Positrons
- Dark Matter...

Galactic CR Distribution

Observing (Galactic) Cosmic Rays

AMS-2

Observation techniques

- Lower energies
 - $\rightarrow\,$ direct detection
- Higher energies
 - Low flux

The cosmic ray spectrum

Observing (Galactic) Cosmic Rays

Pierre Auger Observatory

Observation techniques

- Lower energies
 - $\rightarrow\,$ direct detection
- Higher energies
 - Low flux
 - $\rightarrow\,$ from air-showers

CR Composition

Available Data

- Energy dependence
- Composition
- Secondary to primary ratios

CR Composition

Available Data

- Energy dependence
- Composition
- Secondary to primary ratios

But

- Arrival directions
- Flux at low energies
 - $\leftrightarrow \ \text{solar modulation}$
- Flux at Earth typical?

CR Composition

Available Data

- Energy dependence
- Composition
- Secondary to primary ratios

But

- Arrival directions
- Flux at low energies
 - $\leftrightarrow \ \text{solar modulation}$
- Flux at Earth typical?

Here

Propagation of CRs

Propagation: Sources of Cosmic Rays

CR Source Candidates

Supernova remnants

SNR Cas A

(image by Spitzer)

Propagation: Sources of Cosmic Rays

CR Source Candidates

- Supernova remnants
- Pulsars (PWNs)
- Colliding wind binaries

• . . .

Crab Pulsar

(image by Chandra)

SNR Cas A

Cassiopeia A Supernova Remnant NASA / JPLCatech / 0. Krause (Steward Observatory) ssc2005-14:

Hubble Space Telescope • ACS Chandra X-Ray Observatory

(image by Spitzer)

Propagation: Sources of Cosmic Rays

CR Source Candidates

- Supernova remnants
- Pulsars (PWNs)
- Colliding wind binaries

• . . .

Crab Pulsar

(image by Chandra)

SNR Cas A

(image by Spitzer)

Motivation

- Theoretical arguments
- Gamma-ray emission

Propagation: Interaction with Gas

Energy Losses

- Ionisation losses
- Coulomb losses
- Bremsstrahlung

Propagation: Interaction with Gas

Energy Losses

- Ionisation losses
- Coulomb losses
- Bremsstrahlung

Bremsstrahlung Losses

Spallation Reaction

Inelastic reactions

- Spallation of particles
- Creation of secondaries
- Creation of pions

Energy Losses

- Gyration
- \rightarrow synchrotron losses
- $\rightarrow\,$ synchrotron radiation

Interaction with Mag. Field

• Energy losses

Propagation

Interactions

Energy Losses

- Gyration
- \rightarrow synchrotron losses
- \rightarrow synchrotron radiation

Interaction with Mag. Field

- Energy losses
- Field parallel motion
- Scattering

Energy Losses

- Gyration
- \rightarrow synchrotron losses
- $\rightarrow\,$ synchrotron radiation

Interaction with Mag. Field

- Energy losses
- Field parallel motion
- Scattering

Resulting CR Motion

- $\bullet \ \ Scattering \rightarrow diffusion$
- $\bullet \ \ {\sf Gas} \ \ {\sf motion} \ \rightarrow \ {\sf convection}$

Energy Losses

- Gyration
- ightarrow synchrotron losses
- \rightarrow synchrotron radiation

Interaction with Mag. Field

- Energy losses
- Field parallel motion
- Scattering

Resulting CR Motion

- $\bullet \ \ Scattering \rightarrow diffusion$
- $\bullet \ \ {\sf Gas} \ \ {\sf motion} \ \rightarrow \ {\sf convection}$

Energy losses

- Bremsstrahlung (gas)
- Synchrotron losses (magnetic field)
- Inverse Compton losses (radiation)

Energy losses

- Bremsstrahlung (gas)
- Synchrotron losses (magnetic field)
- Inverse Compton losses (radiation)
- \rightarrow Emission of radiation

Energy losses

- Bremsstrahlung (gas)
- Synchrotron losses (magnetic field)
- Inverse Compton losses (radiation)
- \rightarrow Emission of radiation

Additional Channel

Pion production

•
$$\pi^0 \rightarrow \gamma + \gamma$$

Energy losses

- Bremsstrahlung (gas)
- Synchrotron losses (magnetic field)
- Inverse Compton losses (radiation)
- \rightarrow Emission of radiation

Additional Channel

Pion production

•
$$\pi^0 \rightarrow \gamma + \gamma$$

Alternative messenger

gamma-rays

Observation techniques

Fermi GRST

• Lower energies \rightarrow direct

Energy losses

- Bremsstrahlung (gas)
- Synchrotron losses (magnetic field)
- Inverse Compton losses (radiation)
- \rightarrow Emission of radiation

Additional Channel

- Pion production
- $\pi^0 \rightarrow \gamma + \gamma$

Alternative messenger

gamma-rays

Energy losses

- Bremsstrahlung (gas)
- Synchrotron losses (magnetic field)
- Inverse Compton losses (radiation)
- \rightarrow Emission of radiation

Additional Channel

- Pion production
- $\pi^0 \rightarrow \gamma + \gamma$

Alternative messenger

gamma-rays

Observation techniques

- $\bullet \ \ \mathsf{Lower} \ \mathsf{energies} \to \mathsf{direct}$
- Higher energies \rightarrow IACT technique

H.E.S.S. Telescopes

Observations of the Gamma Ray Sky

Available Data

- Energy dependence
- Time variation
- Directional information
 - Individual sources
 - Diffuse radiation

Observations of the Gamma Ray Sky

Available Data

- Energy dependence
- Time variation
- Directional information
 - Individual sources
 - Diffuse radiation

Connection to CRs

- Production mechanisms
- Galactic CR distribution
- Convolution with gas, ...

Transport Equation

 $\frac{\partial \psi_i}{\partial t}$

Transport Equation

 $\frac{\partial \psi_i}{\partial t} = q(\mathbf{r},p)$

Individual Terms

CR sources

Transport Equation

$$\frac{\partial \psi_i}{\partial t} = q(\mathbf{r},p) \!+\! \nabla \!\cdot \! \mathcal{D} \nabla \psi_i$$

Individual Terms

- CR sources
- Spatial diffusion

Transport Equation

$$\frac{\partial \psi_i}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot \mathcal{D} \nabla \psi_i + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi_i$$

Individual Terms

- CR sources
- Spatial diffusion
- Diffusive reacceleration

Transport Equation

$$\frac{\partial \psi_i}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot \mathcal{D} \nabla \psi_i + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi_i - \nabla \cdot \mathbf{v} \psi_i$$

Individual Terms

- CR sources
- Spatial diffusion
- Diffusive reacceleration
- Spatial convection

Transport Equation

$$\frac{\partial \psi_i}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot \mathcal{D} \nabla \psi_i + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi_i - \nabla \cdot \mathbf{v} \psi_i - \frac{\partial}{\partial p} \left\{ \dot{p} \psi_i - \frac{p}{3} (\nabla \cdot \mathbf{v}) \psi_i \right\}$$

Individual Terms

- CR sources
- Spatial diffusion
- Diffusive reacceleration
- Spatial convection
- (Adiabatic) energy changes

Transport Equation

$$\frac{\partial \psi_i}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot \mathcal{D} \nabla \psi_i + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi_i - \nabla \cdot \mathbf{v} \psi_i - \frac{\partial}{\partial p} \left\{ \dot{p} \psi_i - \frac{p}{3} (\nabla \cdot \mathbf{v}) \psi_i \right\} - \frac{1}{\tau_f} \psi_i - \frac{1}{\tau_r} \psi_i$$

Individual Terms

- CR sources
- Spatial diffusion
- Diffusive reacceleration
- Spatial convection
- (Adiabatic) energy changes
- Catastrophic losses

Transport Equation

$$\frac{\partial \psi_i}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot \mathcal{D} \nabla \psi_i + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi_i - \nabla \cdot \mathbf{v} \psi_i - \frac{\partial}{\partial p} \left\{ \dot{p} \psi_i - \frac{p}{3} (\nabla \cdot \mathbf{v}) \psi_i \right\} - \frac{1}{\tau_f} \psi_i - \frac{1}{\tau_r} \psi_i$$

Individual Terms

- CR sources
- Spatial diffusion
- Diffusive reacceleration
- Spatial convection
- (Adiabatic) energy changes
- Catastrophic losses
- Inter-species reactions

Transport Equation

$$\frac{\partial \psi_i}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot \mathcal{D} \nabla \psi_i + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi_i - \nabla \cdot \mathbf{v} \psi_i - \frac{\partial}{\partial p} \left\{ \dot{p} \psi_i - \frac{p}{3} (\nabla \cdot \mathbf{v}) \psi_i \right\} - \frac{1}{\tau_f} \psi_i - \frac{1}{\tau_r} \psi_i$$

Individual Terms

- CR sources
- Spatial diffusion
- Diffusive reacceleration
- Spatial convection
- (Adiabatic) energy changes
- Catastrophic losses
- Inter-species reactions

Result

```
\bullet~{\rm CR}{\mbox{-}distribution}~\psi_i
```


Transport Equation

$$\frac{\partial \psi_i}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot \mathcal{D} \nabla \psi_i + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi_i - \nabla \cdot \mathbf{v} \psi_i - \frac{\partial}{\partial p} \left\{ \dot{p} \psi_i - \frac{p}{3} (\nabla \cdot \mathbf{v}) \psi_i \right\} - \frac{1}{\tau_f} \psi_i - \frac{1}{\tau_r} \psi_i$$

Individual Terms

- CR sources
- Spatial diffusion
- Diffusive reacceleration
- Spatial convection
- (Adiabatic) energy changes
- Catastrophic losses
- Inter-species reactions

Result

- CR-distribution ψ_i
- $\rightarrow\,$ input for computing $\gamma\text{-rays}$

Transport Equation

$$\frac{\partial \psi_i}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot \mathcal{D} \nabla \psi_i + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi_i - \nabla \cdot \mathbf{v} \psi_i - \frac{\partial}{\partial p} \left\{ \dot{p} \psi_i - \frac{p}{3} (\nabla \cdot \mathbf{v}) \psi_i \right\} - \frac{1}{\tau_f} \psi_i - \frac{1}{\tau_r} \psi_i$$

Individual Terms

- CR sources
- Spatial diffusion
- Diffusive reacceleration
- Spatial convection
- (Adiabatic) energy changes
- Catastrophic losses
- Inter-species reactions

Result

- CR-distribution ψ_i
- $\rightarrow\,$ input for computing $\gamma\text{-rays}$

Solution

- Simplifications \rightarrow analytical
- General case \rightarrow numerical

Transport Equation

$$\frac{\partial \psi_i}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot \mathcal{D} \nabla \psi_i + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi_i - \nabla \cdot \mathbf{v} \psi_i - \frac{\partial}{\partial p} \left\{ \dot{p} \psi_i - \frac{p}{3} (\nabla \cdot \mathbf{v}) \psi_i \right\} - \frac{1}{\tau_f} \psi_i - \frac{1}{\tau_r} \psi_i$$

Individual Terms

- CR sources
- Spatial diffusion
- Diffusive reacceleration
- Spatial convection
- (Adiabatic) energy changes
- Catastrophic losses
- Inter-species reactions

Result

- CR-distribution ψ_i
- $\rightarrow\,$ input for computing $\gamma\text{-rays}$

Solution

- Simplifications \rightarrow analytical
- General case \rightarrow numerical

Transport Processes

- Convection
- Diffusion
- Diffusive reacceleration

Transport Processes

- Convection
- Diffusion
- Diffusive reacceleration

Galaxy Model

- Matter distribution
- ISRF
- Magnetic field

Numerical Galaxy Model

Transport Processes

- Convection
- Diffusion
- Diffusive reacceleration

Galaxy Model

- Matter distribution
- ISRF
- Magnetic field

Interaction with ISM

- Spallation cross sections
- Energy loss processes
- Nuclear network

Numerical Galaxy Model

Transport Processes

- Convection
- Diffusion
- Diffusive reacceleration

Galaxy Model

- Matter distribution
- ISRF
- Magnetic field

Interaction with ISM

- Spallation cross sections
- Energy loss processes
- Nuclear network
- \leftrightarrow Galaxy model

Numerical Galaxy Model

Transport Processes

- Convection
- Diffusion
- Diffusive reacceleration

Galaxy Model

- Matter distribution
- ISRF
- Magnetic field

Interaction with ISM

- Spallation cross sections
- Energy loss processes
- Nuclear network
- $\leftrightarrow \ \mathsf{Galaxy} \ \mathsf{model}$

- Secondary CRs
- Gamma rays

Transport Processes

- Convection
- Diffusion
- Diffusive reacceleration

Galaxy Model

- Matter distribution
- ISRF
- Magnetic field

Interaction with ISM

- Spallation cross sections
- Energy loss processes
- Nuclear network
- $\leftrightarrow \ \mathsf{Galaxy} \ \mathsf{model}$

Secondaries

- Secondary CRs
- Gamma rays

Solution Process

CR source distribution

Transport Processes

- Convection
- Diffusion
- Diffusive reacceleration

Galaxy Model

- Matter distribution
- ISRF
- Magnetic field

Interaction with ISM

- Spallation cross sections
- Energy loss processes
- Nuclear network
- $\leftrightarrow \ \mathsf{Galaxy} \ \mathsf{model}$

Secondaries

- Secondary CRs
- Gamma rays

Solution Process CR source distribution \downarrow Transport solver

Transport Processes

- Convection
- Diffusion
- Diffusive reacceleration

CR Distribution

Secondaries

- Secondary CRs
- Gamma rays

Transport Processes

- Convection
- Diffusion
- Diffusive reacceleration

Gamma-Ray Emission

Secondaries

- Secondary CRs
- Gamma rays

Major Codes

- semi-analytical:
 - Usine

Transport in ISM

Major Codes

- semi-analytical:
 - Usine
- fully numerical
 - Dragon

Transport in ISM

Major Codes

- semi-analytical:
 - USINE
- fully numerical
 - DRAGON
 - Galprop

Transport in ISM

Major Codes

- semi-analytical:
 - Usine
- fully numerical
 - DRAGON
 - Galprop
 - PICARD (this talk)

Transport in ISM

Major Codes

- semi-analytical:
 - USINE
- fully numerical
 - DRAGON
 - Galprop
 - PICARD (this talk)

Other Approaches

- Büsching et al.
- Effenberger et al.
- Hanasz et al. (PIERNIK)

Transport in ISM

(by Heinz & Sunyaev (2002))

Major Codes

- semi-analytical:
 - Usine
- fully numerical
 - DRAGON
 - GALPROP
 - PICARD (this talk)

Other Approaches

- Büsching et al.
- Effenberger et al.
- Hanasz et al. (PIERNIK)

Transport in ISM

(by Heinz & Sunyaev (2002))

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot (\mathcal{D} \nabla \psi - \mathbf{v} \psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p} \psi - \frac{p}{3} (\nabla \cdot \mathbf{v}) \psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

Physics Issues

• Physics as parameters

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot (\mathcal{D} \nabla \psi - \mathbf{v} \psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p} \psi - \frac{p}{3} (\nabla \cdot \mathbf{v}) \psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

Physics Issues

• Physics as parameters

Transport Parameters

- \bullet Source distribution $q(\mathbf{r},p)$
- Diffusion tensor ${\cal D}$
- Momentum diffusion D_{pp}
- ${\ensuremath{\, \bullet \,}}$ Spatial convection ${\ensuremath{\, v}}$
- $\bullet~{\rm Energy}~{\rm losses}~\dot{p}$
- Spallation τ_f

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot (\mathcal{D} \nabla \psi - \mathbf{v} \psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p} \psi - \frac{p}{3} (\nabla \cdot \mathbf{v}) \psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

Physics Issues

- Physics as parameters
- Constant in time
- Constant in space
- \rightarrow Parameter tuning

Transport Parameters

- Source distribution $q(\mathbf{r},p)$
- Diffusion tensor ${\cal D}$
- Momentum diffusion D_{pp}
- ${\ensuremath{\, \bullet \,}}$ Spatial convection ${\ensuremath{\, v}}$
- Energy losses \dot{p}
- Spallation τ_f

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot (\mathcal{D} \nabla \psi - \mathbf{v} \psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p} \psi - \frac{p}{3} (\nabla \cdot \mathbf{v}) \psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

Physics Issues

- Physics as parameters
- Constant in time
- Constant in space
- \rightarrow Parameter tuning

Simplified Parameters

- Diffusion, halo height
- Galaxy model
- Convection

Transport Parameters

- Source distribution $q(\mathbf{r},p)$
- Diffusion tensor ${\cal D}$
- Momentum diffusion D_{pp}
- Spatial convection v
- Energy losses \dot{p}
- Spallation τ_f

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r},p) + \nabla \cdot (\mathcal{D}\nabla\psi - \mathbf{v}\psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p}\psi - \frac{p}{3} (\nabla \cdot \mathbf{v})\psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

Physics Issues

- Physics as parameters
- Constant in time
- Constant in space
- \rightarrow Parameter tuning

Technical Issues

- Solver
- Local structure ↔ spatial resolution
- Consistency

Simplified Parameters

- Diffusion, halo height
- Galaxy model
- Convection

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot (\mathcal{D} \nabla \psi - \mathbf{v} \psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p} \psi - \frac{p}{3} (\nabla \cdot \mathbf{v}) \psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

Physics Issues

- Physics as parameters
- Constant in time
- Constant in space
- \rightarrow Parameter tuning

Technical Issues

- Solver
- Local structure \leftrightarrow spatial resolution
- Consistency

Simplified Parameters

- Diffusion, halo height
- Galaxy model
- Convection

Diffusion in Galprop

- Isotropic
- No spatial variation

CRs Inside the Heliosphere MAGNETIC COSMIC TYSSES (From Ulysses website)

Diffusion in Galprop

- Isotropic
- No spatial variation
- Alternatives:
 - DRAGON, PICARD
 - Effenberger et al.

CRs Inside the Heliosphere

Diffusion in Galprop

- Isotropic
- No spatial variation
- Alternatives:
 - DRAGON, PICARD
 - Effenberger et al.

Boundary conditions?

- Diffusion \leftrightarrow advection
- Energy dependence
- Free streaming outside?

The Galaxy

(artist sketch by NASA)

Diffusion in Galprop

- Isotropic
- No spatial variation
- Alternatives:
 - DRAGON, PICARD
 - Effenberger et al.

Boundary conditions?

- Diffusion \leftrightarrow advection
- Energy dependence
- Free streaming outside?
- Galprop:
 - Restricted to box
 - $\psi = 0$ at boundary

(artist sketch by NASA)

Numerical models

Issues

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot (\mathcal{D} \nabla \psi - \mathbf{v} \psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p} \psi - \frac{p}{3} (\nabla \cdot \mathbf{v}) \psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

Numerical models

Issues

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot (\mathcal{D} \nabla \psi - \mathbf{v} \psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p} \psi - \frac{p}{3} (\nabla \cdot \mathbf{v}) \psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

Type of Equation

• Diffusion-advection equation

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot (\mathcal{D} \nabla \psi - \mathbf{v} \psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p} \psi - \frac{p}{3} (\nabla \cdot \mathbf{v}) \psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

Type of Equation

• Diffusion-advection equation

Abbreviation

$$\frac{\partial \psi}{\partial t} = s(\mathbf{r}, p) + \nabla \cdot (\mathcal{D} \nabla \psi - \mathbf{v} \psi) + \frac{\psi}{\tau}$$

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot (\mathcal{D} \nabla \psi - \mathbf{v} \psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p} \psi - \frac{p}{3} (\nabla \cdot \mathbf{v}) \psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

Type of Equation

• Diffusion-advection equation

Abbreviation

$$\frac{\partial \psi}{\partial t} = s(\mathbf{r}, p) + \nabla \cdot (\mathcal{D} \nabla \psi - \mathbf{v} \psi) + \frac{\psi}{\tau}$$

Possible Solutions

- Time-dependent
- Steady state

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot (\mathcal{D} \nabla \psi - \mathbf{v} \psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p} \psi - \frac{p}{3} (\nabla \cdot \mathbf{v}) \psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

Type of Equation

• Diffusion-advection equation

Abbreviation

$$\frac{\partial \psi}{\partial t} = s(\mathbf{r}, p) + \nabla \cdot (\mathcal{D} \nabla \psi - \mathbf{v} \psi) + \frac{\psi}{\tau}$$

Possible Solutions

- Time-dependent
- Steady state

Standard Approach

- Time integration
 - Solve multiple time steps
 - Characteristic time-scales
 - Convergence to steady state

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot (\mathcal{D} \nabla \psi - \mathbf{v} \psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p} \psi - \frac{p}{3} (\nabla \cdot \mathbf{v}) \psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

Type of Equation

• Diffusion-advection equation

Abbreviation

$$\frac{\partial \psi}{\partial t} = s(\mathbf{r}, p) + \nabla \cdot (\mathcal{D}\nabla \psi - \mathbf{v}\psi) + \frac{\psi}{\tau}$$

Possible Solutions

- Time-dependent
- Steady state

Standard Approach

- Time integration
 - Solve multiple time steps
 - Characteristic time-scales
 - Convergence to steady state

\rightarrow Time-integration solver

Possible Solvers

- \bullet SDEs / Monte Carlo
 - (Pseudo-) particles

Possible Solvers

- \bullet SDEs / Monte Carlo
 - (Pseudo-) particles
- Grid-based

Possible Solvers

- SDEs / Monte Carlo
 - (Pseudo-) particles
- Grid-based
 - Explicit

Explicit schemes

$$\frac{\partial \psi}{\partial t} = f(\psi) \rightarrow \frac{\psi^{n+1} - \psi^n}{\Delta t} = f(\psi^n)$$

- Easy to solve
- Time step restriction

Possible Solvers

- SDEs / Monte Carlo
 - (Pseudo-) particles
- Grid-based
 - Explicit
 - Implicit

Explicit schemes $\frac{\partial \psi}{\partial t} = f(\psi) \rightarrow \frac{\psi^{n+1} - \psi^n}{\Delta t} = f(\psi^n)$

- Easy to solve
- Time step restriction

Implicit schemes $\frac{\partial \psi}{\partial t} = f(\psi) \rightarrow \frac{\psi^{n+1} - \psi^n}{\Delta t} = f(\psi^{n+1})$

- Coupled matrix equation
- Larger time step

Possible Solvers

- SDEs / Monte Carlo
 - (Pseudo-) particles
- Grid-based
 - Explicit
 - Implicit

Solution Approach

- Start with empty Galaxy
- Integrate until convergence

Explicit schemes $\frac{\partial \psi}{\partial t} = f(\psi) \rightarrow \frac{\psi^{n+1} - \psi^n}{\Delta t} = f(\psi^n)$ • Easy to solve • Time step restriction

Implicit schemes $\frac{\partial \psi}{\partial t} = f(\psi) \rightarrow \frac{\psi^{n+1} - \psi^n}{\Delta t} = f(\psi^{n+1})$

- Coupled matrix equation
- Larger time step

Possible Solvers

- SDEs / Monte Carlo
 - (Pseudo-) particles
- Grid-based
 - Explicit
 - Implicit

Solution Approach

- Start with empty Galaxy
- Integrate until convergence

Problem

- Characteristic timescales
- Convergence timescales

Explicit schemes

$$\frac{\partial \psi}{\partial t} = f(\psi) \to \frac{\psi^{n+1} - \psi^n}{\Delta t} = f(\psi^n)$$

- Easy to solve
- Time step restriction

Implicit schemes $\frac{\partial \psi}{\partial t} = f(\psi) \rightarrow \frac{\psi^{n+1} - \psi^n}{\Delta t} = f(\psi^{n+1})$

- Coupled matrix equation
- Larger time step

Possible Solvers

- SDEs / Monte Carlo
 - (Pseudo-) particles
- Grid-based
 - Explicit
 - Implicit

Solution Approach

- Start with empty Galaxy
- Integrate until convergence

Problem

- Characteristic timescales
- Convergence timescales

Possible Solvers

- SDEs / Monte Carlo
 - (Pseudo-) particles
- Grid-based
 - Explicit
 - Implicit

Solution Approach

- Start with empty Galaxy
- Integrate until convergence

Problem

- Characteristic timescales
- Convergence timescales

Characteristic time: ${\sim}50$ yrs

Numerical Implementation

- Crank-Nicolson discretisation
- Time-integration
- Dimensional splitting
- Decreasing timesteps

Numerical Implementation

- Crank-Nicolson discretisation
- Time-integration
- Dimensional splitting
- Decreasing timesteps

Problems

• Check for convergence?

Numerical Implementation

- Crank-Nicolson discretisation
- Time-integration
- Dimensional splitting
- Decreasing timesteps

Problems

- Check for convergence?
- Timestep control

Numerical Implementation

- Crank-Nicolson discretisation
- Time-integration
- Dimensional splitting
- Decreasing timesteps

Problems

- Check for convergence?
- Timestep control
- Problem dependent?

Numerical Implementation

- Crank-Nicolson discretisation
- Time-integration
- Dimensional splitting
- Decreasing timesteps

Problems

- Check for convergence?
- Timestep control
- Problem dependent?
- Nuclear reaction network

Numerical Implementation

- Crank-Nicolson discretisation
- Time-integration
- Dimensional splitting
- Decreasing timesteps

Problems

- Check for convergence?
- Timestep control
- Problem dependent?
- Nuclear reaction network

ightarrow Let's do better

Cosmic Particle Transport: THE NEXT GENERATION

Contents lists available at ScienceOlem

Astroparticle Physics journal homopope: www.elsevier.com/locate/astropart

PICARD: A novel code for the Galactic Cosmic Ray propagation problem Countral Countral

R. Kissmann

ABSTRACT

Attick Many: Roowed 10 leptember 2011 Reviewd in reviewd hern 10 Jamaay Aeropod 3 Irbenary 2014 Analable online 15 February 2014

In this manuscript we present a new appreach for the numerical solution of the Galaxie Countie Ray propagation problem. We introduce a net find using advanced outer paysary numerical algorithms while mating the ground complexity of other multibleted solution. In this payer we present the underlying numerical scheme in complexity of when validableted solution. In this payer we present the underlying numerical scheme in complexity of other schemes and solution. In this payer we present the underlying the validableted in the sample aroung advance provides and the present one by solution is applicable to Galaxie.

© 2014 Ebevier B.V. All sights reserved.

Ж

Keywordt: Canada Kays Method e namerical Officion

1. Introduction

The Galactic Cosmic Bay propagation problem, i.e., the question how Cosmic Rays are transported from their sources to arbitrary incations in the Galaxy, becomes ever more relevant with recent advances in observational techniques. Such observations yield the flux of primary Cosmic Rays (see, e.g., 0.12.2.3) or doo of secwebed in Cosmic Ray transport. The transport of Galactic Cosmic Rays is a diffusion-loss prob-

 $\frac{\partial \phi}{\partial t} = \nabla \cdot \left(\mathcal{D} \nabla \phi \right) + \nabla \cdot \left(\bar{s} \phi \right) = \frac{\partial}{\partial t} \left(p^2 \Omega_{pp} \frac{\partial}{\partial t} \frac{\phi}{p^2} \right)$ $+ \frac{\partial}{\partial \omega} \left(\hat{\mathbf{y}} \boldsymbol{\psi} - \frac{p}{s} (\nabla \cdot \hat{\mathbf{u}}) \boldsymbol{\psi} \right) = s(\vec{\mathbf{y}}, p, c) - \frac{1}{s} \boldsymbol{\psi}$

losses by fragmentation and subloactive decay for the current This partial differential equation has been solved using dif-

With the increasing precision of Galactic Countic Ray such numerical codes like Uses (see [11]) that use codes aim at finding the best values for the variables

A Different Approach

• Solve steady state problem

Simplified Transport Equation

$$\frac{\partial \psi}{\partial t} = s(\mathbf{r}, p) + \nabla \cdot (\mathcal{D} \nabla \psi - \mathbf{v} \psi) + \frac{\psi}{\tau}$$

A Different Approach

Solve steady state problem

Simplified Transport Equation

$$0 = s(\mathbf{r}, p) + \nabla \cdot (\mathcal{D}\nabla\psi - \mathbf{v}\psi) + \frac{\psi}{\tau}$$

A Different Approach

• Solve steady state problem

Simplified Transport Equation

$$0 = s(\mathbf{r}, p) + \nabla \cdot (\mathcal{D}\nabla\psi - \mathbf{v}\psi) + \frac{\psi}{\tau}$$

Descretisation in 1D

$$\nabla D \nabla \psi = D_{xx} \frac{\partial^2 \psi}{\partial x^2}$$

$$\simeq D_{xx} \frac{\psi_{i+1,j} - 2\psi_{i,j} + \psi_{i-1,j}}{\Delta x^2}$$

Difficulty

Discretisation

A Different Approach

Solve steady state problem

Simplified Transport Equation

$$0 = s(\mathbf{r}, p) + \nabla \cdot (\mathcal{D}\nabla\psi - \mathbf{v}\psi) + \frac{\psi}{\tau}$$

Descretisation in 1D

$$\nabla D \nabla \psi = D_{xx} \frac{\partial^2 \psi}{\partial x^2}$$

$$\simeq D_{xx} \frac{\psi_{i+1,j} - 2\psi_{i,j} + \psi_{i-1,j}}{\Delta x^2}$$

$$\rightarrow a_i \psi_{i-1} - b_i \psi_i + c_i \psi_{i+1} = -s_i \quad \forall i$$

Difficulty

- Discretisation
 - $\rightarrow~$ Coupled matrix equation

A Different Approach

Solve steady state problem

Simplified Transport Equation

 $0 = s(\mathbf{r}, p) + \nabla \cdot (\mathcal{D}\nabla\psi - \mathbf{v}\psi) + \frac{\psi}{\tau}$

Difficulty

- Discretisation
 - $\rightarrow\,$ Coupled matrix equation
 - \rightarrow Band-diagonal matrix

Descretisation in 1D

$$\nabla D \nabla \psi = D_{xx} \frac{\partial^2 \psi}{\partial x^2}$$

$$\simeq D_{xx} \frac{\psi_{i+1,j} - 2\psi_{i,j} + \psi_{i-1,j}}{\Delta x^2}$$

$$\rightarrow a_i \psi_{i-1} - b_i \psi_i + c_i \psi_{i+1} = -s_i \quad \forall i$$

Descretisation in 2D

$$\nabla D \nabla \psi = D_{xx} \frac{\partial^2 \psi}{\partial x^2} + D_{yy} \frac{\partial^2 \psi}{\partial y^2}$$

$$\simeq D_{xx} \frac{\psi_{i+1,j} - 2\psi_{i,j} + \psi_{i-1,j}}{\Delta x^2}$$

$$+ D_{yy} \frac{\psi_{i,j+1} - 2\psi_{i,j} + \psi_{i,j+1}}{\Delta y^2}$$

A Different Approach

Solve steady state problem

Simplified Transport Equation

 $0 = s(\mathbf{r}, p) + \nabla \cdot (\mathcal{D}\nabla\psi - \mathbf{v}\psi) + \frac{\psi}{\tau}$

Difficulty

- Discretisation
 - $\rightarrow~$ Coupled matrix equation
 - ightarrow Band-diagonal matrix
- Iterative solver
 - Multigrid
 - BICGStab

Descretisation in 1D

$$\nabla D \nabla \psi = D_{xx} \frac{\partial^2 \psi}{\partial x^2}$$

$$\simeq D_{xx} \frac{\psi_{i+1,j} - 2\psi_{i,j} + \psi_{i-1,j}}{\Delta x^2}$$

$$\rightarrow a_i \psi_{i-1} - b_i \psi_i + c_i \psi_{i+1} = -s_i \quad \forall i$$

Descretisation in 2D

$$\nabla D \nabla \psi = D_{xx} \frac{\partial^2 \psi}{\partial x^2} + D_{yy} \frac{\partial^2 \psi}{\partial y^2}$$

$$\simeq D_{xx} \frac{\psi_{i+1,j} - 2\psi_{i,j} + \psi_{i-1,j}}{\Delta x^2}$$

$$+ D_{yy} \frac{\psi_{i,j+1} - 2\psi_{i,j} + \psi_{i,j+1}}{\Delta y^2}$$

A Different Approach

• Solve steady state problem

Simplified Transport Equation

$$0 = s(\mathbf{r}, p) + \nabla \cdot (\mathcal{D}\nabla\psi - \mathbf{v}\psi) + \frac{\psi}{\tau}$$

Difficulty

- Discretisation
 - $\rightarrow~$ Coupled matrix equation
 - ightarrow Band-diagonal matrix
- Iterative solver
 - Multigrid
 - BICGStab

A Different Approach

• Solve steady state problem

Simplified Transport Equation

$$0 = s(\mathbf{r}, p) + \nabla \cdot (\mathcal{D}\nabla\psi - \mathbf{v}\psi) + \frac{\psi}{\tau}$$

Difficulty

- Discretisation
 - $\rightarrow~$ Coupled matrix equation
 - ightarrow Band-diagonal matrix
- Iterative solver
 - Multigrid
 - BICGStab

Multigrid Implementation

- Red-black Gauss-Seidel
- Alternating plane
 Gauss-Seidel

Features of Picard

Solver

- Steady-state solution
- Explicit time integrator
- MPI-parallel
- $\rightarrow\,$ High resolution
 - Improved nuclear network
 - Speed

Features of PICARD

Solver

- Steady-state solution
- Explicit time integrator
- MPI-parallel
- \rightarrow High resolution
 - Improved nuclear network
 - Speed

Example Resolution

- Standard GALPROP
 - 2D (1 kpc \times 100 pc)
- Picard
 - 3D (up to ${\sim}75~{
 m pc}^3)$

Example Simulation Results

Features of PICARD

Solver

- Steady-state solution
- Explicit time integrator
- MPI-parallel
- $\rightarrow\,$ High resolution
 - Improved nuclear network
 - Speed

Physics

- 3D source distributions
- Anisotropic diffusion

• tbd...

Example Simulation Results

Features of PICARD

Solver

- Steady-state solution
- Explicit time integrator
- MPI-parallel
- \rightarrow High resolution
 - Improved nuclear network
 - Speed

Physics

- 3D source distributions
- Anisotropic diffusion
- tbd...

Example Simulation Results

Example results: Milkyway as spiral galaxy

Spiral Arm Cosmic Ray Sources

CR Source Candidates

- Supernova remnants
- Pulars / PWNs
- CWBs

Spiral Arm Cosmic Ray Sources

CR Source Candidates

- Supernova remnants
- Pulars / PWNs
- CWBs
- $\rightarrow\,$ young objects

Spiral Arm Cosmic Ray Sources

CR Source Candidates

- Supernova remnants
- Pulars / PWNs
- CWBs
- $\rightarrow\,$ young objects
- $\rightarrow\,$ star formation regions

Spiral Arm Cosmic Ray Sources

CR Source Candidates

- Supernova remnants
- Pulars / PWNs
- CWBs
- \rightarrow young objects
- ightarrow star formation regions

Source Distribution

- Spiral galaxy
- $\rightarrow \text{ Spiral arms}$
- ightarrow Galactic bar

Spiral Galaxy NGC1232

Spiral Arm Cosmic Ray Sources

CR Source Candidates

- Supernova remnants
- Pulars / PWNs
- CWBs
- \rightarrow young objects
- ightarrow star formation regions

Source Distribution

- Spiral galaxy
- \rightarrow Spiral arms
- ightarrow Galactic bar
 - Tracers of spiral structure
- \rightarrow Variety of models

Spiral Galaxy NGC1232

Model setup

- Spiral arm source dist.
- Standard propagation parameters
- Full nuclear network

Model setup

- Spiral arm source dist.
- Standard propagation parameters
- Full nuclear network

Results

- Different source distributions
- $ightarrow 1\,\text{TeV}$ electrons

Model setup

- Spiral arm source dist.
- Standard propagation parameters
- Full nuclear network

Results

- Different source distributions
- $ightarrow 1\,\text{TeV}$ electrons

Model setup

- Spiral arm source dist.
- Standard propagation parameters
- Full nuclear network

Results

- Different source distributions
- $ightarrow 1\,\text{TeV}$ electrons

Steiman Four Arm Model

Model setup

- Spiral arm source dist.
- Standard propagation parameters
- Full nuclear network

Results

- Different source distributions
- $ightarrow 1\,\text{TeV}$ electrons

Model setup

- Spiral arm source dist.
- Standard propagation parameters
- Full nuclear network

Results

- Different source distributions
- $ightarrow \, 1 \, \text{TeV}$ electrons
 - $\bullet \ \ \mathsf{Differences} \leftrightarrow \mathsf{normalisation}$
- $\leftrightarrow \text{ Vicinity of Earth}$

Model setup

- Spiral arm source dist.
- Standard propagation parameters
- Full nuclear network

- Different source distributions
- $ightarrow 1\,\text{TeV}$ electrons
 - $\bullet \ \ \mathsf{Differences} \leftrightarrow \mathsf{normalisation}$
- $\leftrightarrow \text{ Vicinity of Earth}$

Model setup

- Spiral arm source dist.
- Standard propagation parameters
- Full nuclear network

- Different source distributions
- $ightarrow 1\,\text{TeV}$ electrons
 - $\bullet \ \ \mathsf{Differences} \leftrightarrow \mathsf{normalisation}$
- $\leftrightarrow \text{ Vicinity of Earth}$

Model setup

- Spiral arm source dist.
- Standard propagation parameters
- Full nuclear network

- Different source distributions
- $ightarrow \, 1 \, \text{TeV}$ electrons
 - $\bullet \ \ \mathsf{Differences} \leftrightarrow \mathsf{normalisation}$
- $\leftrightarrow \text{ Vicinity of Earth}$

Model setup

- Spiral arm source dist.
- Standard propagation parameters
- Full nuclear network

- Different source distributions
- $ightarrow \, 1 \, \text{TeV}$ electrons
 - $\bullet \ \ \mathsf{Differences} \leftrightarrow \mathsf{normalisation}$
- $\leftrightarrow \text{ Vicinity of Earth}$

Application

Application

Distinction

- Primary cosmic rays
 - nucleosynthesis
 - accelerated at sources

Distinction

- Primary cosmic rays
 - nucleosynthesis
 - accelerated at sources
- Secondary cosmic rays
 - spallation
 - $\bullet \ \ \text{sources} = \text{primaries}$

Application

Distinction

- Primary cosmic rays
 - nucleosynthesis
 - accelerated at sources
- Secondary cosmic rays
 - spallation
 - $\bullet \ \ \text{sources} = \text{primaries}$

Additional Constraint

- Secondary / Primary ratios
- \rightarrow Distance to sources

Distinction

- Primary cosmic rays
 - nucleosynthesis
 - accelerated at sources
- Secondary cosmic rays
 - spallation
 - $\bullet \ \ \text{sources} = \text{primaries}$

Additional Constraint

- Secondary / Primary ratios
- \rightarrow Distance to sources
- \rightarrow Increase with distance
- $\rightarrow~B/C$ ratio

Distinction

- Primary cosmic rays
 - nucleosynthesis
 - accelerated at sources
- Secondary cosmic rays
 - spallation
 - $\bullet \ \ \text{sources} = \text{primaries}$

Additional Constraint

- Secondary / Primary ratios
- \rightarrow Distance to sources
- \rightarrow Increase with distance
- $\rightarrow~B/C$ ratio

Distribution of Carbon

Distinction

- Primary cosmic rays
 - nucleosynthesis
 - accelerated at sources
- Secondary cosmic rays
 - spallation
 - $\bullet \ \ \text{sources} = \text{primaries}$

Additional Constraint

- Secondary / Primary ratios
- \rightarrow Distance to sources
- \rightarrow Increase with distance
- $\rightarrow~B/C$ ratio

Distribution of Boron

Discrepancy

- No good fit for spirals $\chi^2_{dof} = 4.56 \leftrightarrow \chi^2_{dof} = 1.04$
- But: propagation tuned to non-spirals
- BC depends on position

Discrepancy

- No good fit for spirals $\chi^2_{dof} = 4.56 \leftrightarrow \chi^2_{dof} = 1.04$
- But: propagation tuned to non-spirals
- BC depends on position

Alternative Parameters

Adapt to spiral arms

Discrepancy

- No good fit for spirals $\chi^2_{dof} = 4.56 \leftrightarrow \chi^2_{dof} = 1.04$
- But: propagation tuned to non-spirals
- BC depends on position

Alternative Parameters

Adapt to spiral arms

•
$$\chi^2_{dof} = 0.9$$

Discrepancy

- No good fit for spirals $\chi^2_{dof} = 4.56 \leftrightarrow \chi^2_{dof} = 1.04$
- But: propagation tuned to non-spirals
- BC depends on position

Alternative Parameters

- Adapt to spiral arms
- $\chi^2_{dof} = 0.9$

Conclusion

• Fit possible

Axially Symmetric Model

Discrepancy

- No good fit for spirals $\chi^2_{dof} = 4.56 \leftrightarrow \chi^2_{dof} = 1.04$
- But: propagation tuned to non-spirals
- BC depends on position

Alternative Parameters

- Adapt to spiral arms
- $\chi^2_{dof} = 0.9$

Conclusion

• Fit possible

Modified Four-Arm Model

Discrepancy

- No good fit for spirals $\chi^2_{dof} = 4.56 \leftrightarrow \chi^2_{dof} = 1.04$
- But: propagation tuned to non-spirals
- BC depends on position

Alternative Parameters

- Adapt to spiral arms
- $\chi^2_{dof} = 0.9$

Modified Four-Arm Model

Conclusion

- Fit possible
- Flux variation

Picard

Need additional constraints

- Gamma-ray all-sky emission
- Example: 100 GeV

Preliminary Results

• Increase of IC emission

Global Constraint

- Gamma-ray all-sky emission
- Example: 100 GeV

Outlook: Gamma-rays with PICARD

Preliminary Results

- Increase of IC emission
- Major differences

Global Constraint

- Gamma-ray all-sky emission
- Example: 100 GeV

Picard

Outlook: Gamma-rays with PICARD

Preliminary Results

- Increase of IC emission
- Major differences
- Relevant constraint

Global Constraint

- Gamma-ray all-sky emission
- Example: 100 GeV

Picard

Conclusion

The PICARD Solver

- Introduced in 2014
- More detailed propagation models

Conclusion

Conclusion

Application of PICARD

- CR data at Earth \checkmark
- Alternative propagation models √
- Gamma-ray emission (\checkmark)

The PICARD Solver

- Introduced in 2014
- More detailed propagation models

Conclusion