Natural inflation and moduli stabilization in heterotic orbifolds

Fabian Ruehle

Deutsches Elektronensynchrotron DESY Hamburg

> Bad Honnef 2015 03/18/2015

Based on [work in progress with Clemens Wieck]

Motivation - Large field models

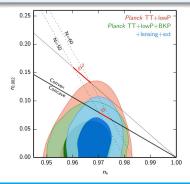
Necessity of large field models

- Field range $\Delta \varphi \approx 20\sqrt{r} \quad \rightsquigarrow \quad r \gtrsim 0.002 \Rightarrow \Delta \varphi > M_{\text{Pl}}$
- Joint Planck/BICEP analysis favors $r \approx 0.05$

$$\Rightarrow \Delta arphi pprox 5 M_{\mathsf{Pl}}$$
 at 1.8σ

$$\Rightarrow H \sim M_{
m GUT}^2 \sim 10^{-4} \dots 10^{-5}$$

Better results expected soon



Motivation - Large field models

Necessity of large field models

- Field range $\Delta \varphi \approx 20\sqrt{r} \quad \rightsquigarrow \quad r \gtrsim 0.002 \Rightarrow \Delta \varphi > M_{\rm Pl}$
- Joint Planck/BICEP analysis favors $r \approx 0.05$
 - $\Rightarrow \Delta arphi pprox 5 M_{
 m Pl}$ at 1.8σ
 - $\Rightarrow H \sim M_{GUT}^2 \sim 10^{-4} \dots 10^{-5}$
- Better results expected soon

Challenges for string theory

- Large field models problematic to realize in string theory Reason: Inflaton candidates (moduli) live in compact space ⇒ field range bounded and sub-Planckian
- Need moduli stabilization at high scale ($\gtrsim H$)
 - to work in single field inflation
 - to avoid Polonyi problem/not spoil BBN

Introduction

Large field inflation in string theory

Axion monodromy inflation

- Initially proposed by [Silverstein,Westphal,McAllister]
- Mechanism:
 - Start with periodic inflaton
 - Scalar potential slightly breaks periodicity
- Many string theoretic realizations [Palti,Weigand; Marchesano,Shiu,

Uranga; Blumenhagen, Plauschinn; Hebecker, Kraus, Witkowski; ...]

Large field inflation in string theory

Axion monodromy inflation

- Initially proposed by [Silverstein,Westphal,McAllister]
- Mechanism:
 - Start with periodic inflaton
 - Scalar potential slightly breaks periodicity
- Many string theoretic realizations [Palti,Weigand; Marchesano,Shiu,

Uranga; Blumenhagen, Plauschinn; Hebecker, Kraus, Witkowski; ...]

Aligned axion inflation

- Initially proposed by [Kim,Nilles,Peloso]
- Mechanism:
 - Two axions with almost aligned axion decay constant
 - Slight misalignment gives almost-flat direction with effective trans-Planckian decay constant
- Many string theoretic realizations [Kappl,Krippendorf,Nilles;Long, McAllister,McGuirk;Ali,Haque,Jejjala;Tye,Wong;Ben-Dayan,Pedro,Westphal;...]

Trans-Planckian field range

This week two papers on arXiv

Trans-Planckian field range

This week two papers on arXiv

- Claim that gravitational instantons
 - change primordial power spectrum in axion monodromy inflation
 - jeopardize trans-Planckian field range in KNP

Trans-Planckian field range

This week two papers on arXiv

- Claim that gravitational instantons
 - change primordial power spectrum in axion monodromy inflation
 - jeopardize trans-Planckian field range in KNP
- Arguments based on weak gravity conjecture/ E-brane instantons in type II

Trans-Planckian field range

This week two papers on arXiv

- Claim that gravitational instantons
 - change primordial power spectrum in axion monodromy inflation
 - jeopardize trans-Planckian field range in KNP
- Arguments based on weak gravity conjecture/ E-brane instantons in type II
- Corresponding effect in heterotic?
 - Euclidean NS5 branes wrapping orbifolds?
 - relations to orbifold curvature singularities?
 - effects calculable in this setup?
 - worthwhile/interesting to study
- Results too recent to say more...

Introduction

KNP inflation + moduli stabilization

Ingredients

1 Need several axions

590

Introduction

KNP inflation + moduli stabilization

Ingredients

- Need several axions
 - \Rightarrow From imaginary part of geometric moduli (Kähler, CS)

Introduction

KNP inflation + moduli stabilization

Ingredients

- 1 Need several axions
 - \Rightarrow From imaginary part of geometric moduli (Kähler, CS)
- 2 Need different non-perturbative effects

Introduction

KNP inflation + moduli stabilization

Ingredients

- 1 Need several axions
 - \Rightarrow From imaginary part of geometric moduli (Kähler, CS)

2 Need different non-perturbative effects

- \Rightarrow Available from
 - Worldsheet instantons
 - Gaugino condensation

Introduction

KNP inflation + moduli stabilization

Ingredients

- 1 Need several axions
 - \Rightarrow From imaginary part of geometric moduli (Kähler, CS)

2 Need different non-perturbative effects

- \Rightarrow Available from
 - Worldsheet instantons
 - Gaugino condensation
- **3** Need near alignment

Introduction

KNP inflation + moduli stabilization

Ingredients

- 1 Need several axions
 - \Rightarrow From imaginary part of geometric moduli (Kähler, CS)

2 Need different non-perturbative effects

- \Rightarrow Available from
 - Worldsheet instantons
 - Gaugino condensation
- **3** Need near alignment
 - \Rightarrow Both effects related:
 - Both governed by modular forms (Dedekind eta function)
 - Near alignment from fixed modular weights of Kähler and superpotential

500

Inflation and moduli stabilization in heterotic orbifolds

Orbifold data

•
$$\theta: (z_1, z_2, z_3) \mapsto (e^{2\pi i v_1} z_1, e^{2\pi i v_2} z_2, e^{2\pi i v_3} z_3)$$

Orbifold data

- $\theta: (z_1, z_2, z_3) \mapsto (e^{2\pi i v_1} z_1, e^{2\pi i v_2} z_2, e^{2\pi i v_3} z_3)$
- Untwisted sector θ^0 + twisted sectors $\theta^1, \ldots, \theta^{N-1}$

Orbifold data

- $\theta: (z_1, z_2, z_3) \mapsto (e^{2\pi i v_1} z_1, e^{2\pi i v_2} z_2, e^{2\pi i v_3} z_3)$
- Untwisted sector θ^0 + twisted sectors $\theta^1, \ldots, \theta^{N-1}$
- Moduli: Dilaton $S = s + i\sigma$, Kähler $T_i = t_i + i\tau_i$, (CS U_i)

Orbifold data

- $\theta: (z_1, z_2, z_3) \mapsto (e^{2\pi i v_1} z_1, e^{2\pi i v_2} z_2, e^{2\pi i v_3} z_3)$
- Untwisted sector θ^0 + twisted sectors $\theta^1,\ldots,\theta^{N-1}$
- Moduli: Dilaton $S = s + i\sigma$, Kähler $T_i = t_i + i\tau_i$, (CS U_i)

Advantages of orbifolds

■ Exact CFT description ⇒ Calculability

Orbifold data

- $\theta: (z_1, z_2, z_3) \mapsto (e^{2\pi i v_1} z_1, e^{2\pi i v_2} z_2, e^{2\pi i v_3} z_3)$
- Untwisted sector θ^0 + twisted sectors $\theta^1,\ldots,\theta^{N-1}$
- Moduli: Dilaton $S = s + i\sigma$, Kähler $T_i = t_i + i\tau_i$, (CS U_i)

Advantages of orbifolds

- Exact CFT description ⇒ Calculability
- Known to yield good particle pheno

 $[{\it Blaszczyk}, {\it Buchmuller}, {\it Hamaguchi}, {\it Kim}, {\it Kyae}, {\it Lebedev}, {\it Nilles}, {\it Raby},$

Ramos-Sanchez, Ratz, FR, Trapletti, Vaudrevange, ...]

Modular transformation

- Target space inherits modular symmetry
- Kähler parameters T_i transform under SL(2,ℤ): $T \rightarrow \frac{aT-ib}{icT+d}$, ad - bc = 1

うくで

- Target space inherits modular symmetry
- Kähler parameters T_i transform under SL(2, \mathbb{Z}): $T \rightarrow \frac{aT-ib}{icT+d}$, ad - bc = 1
- Kähler moduli Kähler potential: $K_{mod} = -\sum_{i} \ln(T_i + \overline{T}_i)$

•
$$K_{\text{mod}} \rightarrow K_{\text{mod}} + \sum_i \ln |ic_i T_i + d_i|^2$$

- Target space inherits modular symmetry
- Kähler parameters T_i transform under SL(2, \mathbb{Z}): $T \rightarrow \frac{aT-ib}{icT+d}$, ad - bc = 1
- Kähler moduli Kähler potential: $K_{mod} = -\sum_{i} \ln(T_i + \overline{T}_i)$

•
$$K_{\text{mod}} \rightarrow K_{\text{mod}} + \sum_{i} \ln |ic_i T_i + d_i|^2$$

- Target space inherits modular symmetry
- Kähler parameters T_i transform under SL(2, \mathbb{Z}): $T \rightarrow \frac{aT-ib}{icT+d}$, ad - bc = 1
- Kähler moduli Kähler potential: $K_{mod} = -\sum_{i} \ln(T_i + \overline{T}_i)$

•
$$K_{\text{mod}} \rightarrow K_{\text{mod}} + \sum_{i} \ln |ic_i T_i + d_i|^2$$

•
$$G = K + \ln |W|^2$$
 has to be invariant

•
$$W = W(\Phi_i)$$
 has to have modular weight -1

Modular transformation

- Target space inherits modular symmetry
- Kähler parameters T_i transform under SL(2, \mathbb{Z}): $T \rightarrow \frac{aT-ib}{icT+d}$, ad - bc = 1
- Kähler moduli Kähler potential: $K_{mod} = -\sum_{i} \ln(T_i + \overline{T}_i)$

•
$$K_{\text{mod}} \rightarrow K_{\text{mod}} + \sum_{i} \ln |ic_i T_i + d_i|^2$$

•
$$G = K + \ln |W|^2$$
 has to be invariant

•
$$W = W(\Phi_i)$$
 has to have modular weight -1

Dedekind η -function

•
$$\eta(T) = e^{-\frac{\pi T}{12}} \prod_{r=1}^{\infty} \left(1 - e^{-2\pi rT}\right) \approx e^{-\frac{\pi T}{12}}$$
 for big T

•
$$\eta(T) \rightarrow (icT + d)^{\frac{1}{2}} \eta(T)$$
 (up to phase)

•
$$W \supset y_{\alpha_1,\ldots,\alpha_k}(T) \Phi_{\alpha_1}\ldots\Phi_{\alpha_k}$$

•
$$W \supset y_{\alpha_1,\ldots,\alpha_k}(T) \Phi_{\alpha_1}\ldots\Phi_{\alpha_k}$$

•
$$\Phi_{\alpha} \rightarrow \prod_{i} (ic_{i}T_{i} + d_{i})^{m_{\alpha}^{i}}$$

•
$$W \supset y_{\alpha_1,\ldots,\alpha_k}(T) \Phi_{\alpha_1}\ldots\Phi_{\alpha_k}$$

•
$$\Phi_{\alpha} \rightarrow \prod_{i} (ic_{i}T_{i} + d_{i})^{m_{\alpha}^{i}}$$

 Modular weights m_i depend on: orbifold twist v, twisted sector k, oscillator number N

•
$$W \supset y_{\alpha_1,\ldots,\alpha_k}(T) \Phi_{\alpha_1}\ldots\Phi_{\alpha_k}$$

•
$$\Phi_{\alpha} \rightarrow \prod_{i} (ic_{i}T_{i} + d_{i})^{m_{\alpha}^{i}}$$

 Modular weights m_i depend on: orbifold twist v, twisted sector k, oscillator number N

• W has to have modular weight
$$-1 \Rightarrow y$$
 has $-1 - \sum_i m_{lpha}$

Modular transformation

•
$$W \supset y_{\alpha_1,\ldots,\alpha_k}(T) \Phi_{\alpha_1}\ldots\Phi_{\alpha_k}$$

•
$$\Phi_{\alpha} \rightarrow \prod_{i} (ic_{i}T_{i} + d_{i})^{m_{\alpha}^{i}}$$

 Modular weights m_i depend on: orbifold twist v, twisted sector k, oscillator number N

• W has to have modular weight
$$-1 \Rightarrow y$$
 has $-1 - \sum_i m_lpha$

Superpotential from WS instantons

•
$$W \supset A(\Phi_{\alpha}) \exp\left(-\frac{\pi}{12}\sum_{i}\left[-2(1+\sum_{\alpha}m_{\alpha}^{i})T_{i}\right]\right)$$

violular symmetry

Modular transformation

•
$$W \supset y_{\alpha_1,\ldots,\alpha_k}(T) \Phi_{\alpha_1}\ldots\Phi_{\alpha_k}$$

•
$$\Phi_{\alpha} \rightarrow \prod_{i} (ic_{i}T_{i} + d_{i})^{m_{\alpha}^{i}}$$

 Modular weights m_i depend on: orbifold twist v, twisted sector k, oscillator number N

• W has to have modular weight
$$-1 \Rightarrow y$$
 has $-1 - \sum_i m_lpha$

Superpotential from WS instantons

• $W \supset A(\Phi_{\alpha}) \exp\left(-\frac{\pi}{12}\sum_{i}\left[-2(1+\sum_{\alpha}m_{\alpha}^{i})T_{i}\right]\right)$

More complicated modular forms possible [Hamidi, Vafa; Lauer, Mas, Nilles]

N	lotivation	Introduction	Inflation and moduli stabilization in heterotic orbifolds	Conclusion
Gaugino condensation				
	Gaugino	o condensatic	n	
	• At tree level: $f = S$			

Gaugino condensation

Gaugino condensation

• At tree level: f = S

One-loop correction: [Dixon,Kaplunovsky,Louis]

$$f(S, T) = S + rac{1}{8\pi^2} \sum_i (c_i b_i^{\mathcal{N}=2}) \ln[\eta(T_i)^2]$$

Gaugino condensation

Gaugino condensation

- At tree level: f = S
- One-loop correction: [Dixon,Kaplunovsky,Louis]

$$f(S,T) = S + rac{1}{8\pi^2} \sum_i (c_i b_i^{\mathcal{N}=2}) \ln[\eta(T_i)^2]$$

- Only $\mathcal{N} = 2$ subsectors contribute
- Only T_i that belong to torus without fixed points; just fixed planes enter
- ▶ For these, c_i = N_i/N where N is orbifold order and N_i is the twist order that leaves ith torus invariant
- $b_i^{\mathcal{N}=2}$ is the β -function of the corresponding $\mathcal{N}=2$ subsector

Gaugino condensation

Gaugino condensation

• At tree level: f = S

One-loop correction: [Dixon,Kaplunovsky,Louis]

$$f(S, T) = S + rac{1}{8\pi^2} \sum_i (c_i b_i^{\mathcal{N}=2}) \ln[\eta(T_i)^2]$$

- Only $\mathcal{N} = 2$ subsectors contribute
- Only T_i that belong to torus without fixed points; just fixed planes enter
- ▶ For these, c_i = N_i/N where N is orbifold order and N_i is the twist order that leaves ith torus invariant
- ▶ $b_i^{\mathcal{N}=2}$ is the β -function of the corresponding $\mathcal{N}=2$ subsector

Superpotential from gaugino condensation

•
$$W \supset B e^{\frac{-24\pi^2}{\beta}f(S,T)}$$

= $B(\Phi_{\alpha}) \exp\left(\frac{-24\pi^2}{\beta}S\right) \exp\left(-\frac{\pi}{12}\sum_{i}\tilde{c}_{i}b_{i}^{\mathcal{N}=2}\right)$

Motivation	Introduction	Inflation and moduli stabilization in heterotic orbifolds	Conclusion
Superpo	tential		

$$W \supset A(\Phi) \ e^{-(n_1T_1+n_2T_2)} + B(\Phi) \ e^{\frac{-24\pi^2}{\beta}S} \ e^{-(\beta_1T_1+\beta_2T_2)}$$

Motivation	Introduction	Inflation and moduli stabilization in heterotic orbifolds	Conclusion
Superpot	tential		

$$W \supset A(\Phi) \ e^{-(n_1T_1+n_2T_2)} + B(\Phi) \ e^{\frac{-24\pi^2}{\beta}S} \ e^{-(\beta_1T_1+\beta_2T_2)}$$

Typical values of n_i

 To cancel FI terms, generate masses, decouple exotics and break extra GGs, some Φ get a vev

Motivation	Introduction	Inflation and moduli stabilization in heterotic orbifolds	Conclusion
Superpo	tential		

$$W \supset A(\Phi) \ e^{-(n_1T_1+n_2T_2)} + B(\Phi) \ e^{\frac{-24\pi^2}{\beta}S} \ e^{-(\beta_1T_1+\beta_2T_2)}$$

Typical values of n_i

- To cancel FI terms, generate masses, decouple exotics and break extra GGs, some Φ get a vev
- These Φ enter in $A(\Phi), B(\Phi)$ w/ string scale VEVs $\langle \Phi \rangle \sim 0.1$

Motivation	Introduction	Inflation and moduli stabilization in heterotic orbifolds	Conclusion
Superpo	tential		

$$W \supset A(\Phi) \ e^{-(n_1T_1+n_2T_2)} + B(\Phi) \ e^{\frac{-24\pi^2}{\beta}S} \ e^{-(\beta_1T_1+\beta_2T_2)}$$

Typical values of n_i

- To cancel FI terms, generate masses, decouple exotics and break extra GGs, some Φ get a vev
- These Φ enter in $A(\Phi), B(\Phi)$ w/ string scale VEVs $\langle \Phi \rangle \sim 0.1$
- To not spoil F-flatness some fields need small VEVs

$$W \supset A(\Phi) \ e^{-(n_1T_1+n_2T_2)} + B(\Phi) \ e^{\frac{-24\pi^2}{\beta}S} \ e^{-(\beta_1T_1+\beta_2T_2)}$$

Typical values of n_i

- To cancel FI terms, generate masses, decouple exotics and break extra GGs, some Φ get a vev
- These Φ enter in $A(\Phi), B(\Phi)$ w/ string scale VEVs $\langle \Phi \rangle \sim 0.1$
- To not spoil F-flatness some fields need small VEVs

•
$$n_i = -2\pi/12(1 + \sum_{\alpha=1}^{L} m_{\alpha}^i)$$
, so $n_i \sim L\pi/12 |Z_i|/2$

$$W \supset A(\Phi) \ e^{-(n_1T_1+n_2T_2)} + B(\Phi) \ e^{\frac{-24\pi^2}{\beta}S} \ e^{-(\beta_1T_1+\beta_2T_2)}$$

Typical values of n_i

- To cancel FI terms, generate masses, decouple exotics and break extra GGs, some Φ get a vev
- These Φ enter in $A(\Phi), B(\Phi)$ w/ string scale VEVs $\langle \Phi \rangle \sim 0.1$
- To not spoil F-flatness some fields need small VEVs

$$n_i = -2\pi/12(1 + \sum_{\alpha=1}^{L} m_{\alpha}^i)$$
, so $n_i \sim L\pi/12 |Z_i|/2$

Typical values of β_i

- Depend on particle content, typically $\sim -2\pi/12$
- Calculated using orbifolder [Nilles,Ramos-Sanchez,Vaudrevange,Wingerter]

$$W \supset A(\Phi) \ e^{-(n_1T_1+n_2T_2)} + B(\Phi) \ e^{\frac{-24\pi^2}{\beta}S} \ e^{-(\beta_1T_1+\beta_2T_2)}$$

$$W \supset A(\Phi) \ e^{-(n_1T_1+n_2T_2)} + B(\Phi) \ e^{\frac{-24\pi^2}{\beta}S} \ e^{-(\beta_1T_1+\beta_2T_2)}$$

Moduli stabilization with WS Instanton + GC

Full-fledged analysis very tricky [Parameswaran, Ramos-Sanchez, Zavala]

$$W \supset A(\Phi) \ e^{-(n_1T_1+n_2T_2)} + B(\Phi) \ e^{\frac{-24\pi^2}{\beta}S} \ e^{-(\beta_1T_1+\beta_2T_2)}$$

Moduli stabilization with WS Instanton + GC

- Full-fledged analysis very tricky [Parameswaran,Ramos-Sanchez,Zavala]
- Alignment assumed in [Ali,Haque,Jejjala] generically present in orbifolds

Motivation

$$W \supset A(\Phi) \ e^{-(n_1T_1+n_2T_2)} + B(\Phi) \ e^{\frac{-24\pi^2}{\beta}S} \ e^{-(\beta_1T_1+\beta_2T_2)}$$

Moduli stabilization with WS Instanton + GC

- Full-fledged analysis very tricky [Parameswaran,Ramos-Sanchez,Zavala]
- Alignment assumed in [Ali,Haque,Jejjala] generically present in orbifolds
- Possible avenues:

Introduction

If S stabilized at $\mathcal{O}(1)$ then T_i stabilized at $\mathcal{O}(1)$ [de Carlos,Casas,Munoz;Lust,Munoz;Font,Ibanez,Lust,Quevedo] Racetrack for S from multiple GC or from anom. U(1) Racetrack for T_i from GC and WS instanton or...

Motivation

$$W \supset A(\Phi) \ e^{-(n_1T_1+n_2T_2)} + B(\Phi) \ e^{\frac{-24\pi^2}{\beta}S} \ e^{-(\beta_1T_1+\beta_2T_2)}$$

Moduli stabilization with WS Instanton + GC

- Full-fledged analysis very tricky [Parameswaran, Ramos-Sanchez, Zavala]
- Alignment assumed in [Ali, Haque, Jejjala] generically present in orbifolds
- Possible avenues:

Introduction

If S stabilized at $\mathcal{O}(1)$ then T_i stabilized at $\mathcal{O}(1)$ 1 [de Carlos, Casas, Munoz; Lust, Munoz; Font, Ibanez, Lust, Quevedo] Racetrack for S from multiple GC or from anom. U(1)Racetrack for T_i from GC and WS instanton or...

2 Use one GC that acts as KKLT for S and together with WS instantons as racetrack for T_i [Dundee, Raby, Westphal] Or...

Motivation

$$W \supset A(\Phi) \ e^{-(n_1T_1+n_2T_2)} + B(\Phi) \ e^{\frac{-24\pi^2}{\beta}S} \ e^{-(\beta_1T_1+\beta_2T_2)}$$

Moduli stabilization with WS Instanton + GC

- Full-fledged analysis very tricky [Parameswaran,Ramos-Sanchez,Zavala]
- Alignment assumed in [Ali,Haque,Jejjala] generically present in orbifolds
- Possible avenues:

Introduction

- If S stabilized at O(1) then T_i stabilized at O(1)[de Carlos,Casas,Munoz;Lust,Munoz;Font,Ibanez,Lust,Quevedo] Racetrack for S from multiple GC or from anom. U(1) Racetrack for T_i from GC and WS instanton or...
- 2 Use one GC that acts as KKLT for S and together with WS instantons as racetrack for T_i [Dundee,Raby,Westphal] or...
- Use F-term stabilizer fields and FI-terms to stabilize S and T_i [Wieck,Winkler;Kapp],Nilles,Winkler]

Fabian Ruehle (DESY)

Motivation

Natural inflation in heterotic orbifolds

Alignment & moduli stabilization using GC+instantons

Challenges

•
$$W \supset e^{\frac{-24\pi^2}{\beta}S} e^{-(\beta_1 T_1 + \beta_2 T_2)}$$

One of the racetrack terms for T_i from GC term

Alignment & moduli stabilization using GC+instantons

Challenges

$$W \supset e^{\frac{-24\pi^2}{\beta}S} e^{-(\beta_1 T_1 + \beta_2 T_2)}$$

One of the racetrack terms for T_i from GC term

- GC term highly suppressed:
 - for realistic $S \sim 2 \Rightarrow e^{-\frac{48\pi^2}{\beta}}$
 - ▶ smallish $\langle S \rangle \simeq 1.5$ and/or largish gauge groups (SU(6), SO(10), E₆) preferred

Alignment & moduli stabilization using GC+instantons

Challenges

$$W \supset e^{\frac{-24\pi^2}{\beta}S} e^{-(\beta_1 T_1 + \beta_2 T_2)}$$

One of the racetrack terms for T_i from GC term

- GC term highly suppressed:
 - for realistic $S \sim 2 \Rightarrow e^{-\frac{48\pi^2}{\beta}}$
 - ▶ smallish $\langle S \rangle \simeq 1.5$ and/or largish gauge groups (SU(6), SO(10), E₆) preferred
- Thus [de Carlos, Casas, Munoz] and [Dundee, Raby, Westphal] problematic

Introduction

Alignment & moduli stabilization using GC+instantons

Challenges

$$W \supset e^{\frac{-24\pi^2}{\beta}S} e^{-(\beta_1 T_1 + \beta_2 T_2)}$$

One of the racetrack terms for T_i from GC term

- GC term highly suppressed:
 - for realistic $S \sim 2 \Rightarrow e^{-\frac{48\pi^2}{\beta}}$
 - ▶ smallish $\langle S \rangle \simeq 1.5$ and/or largish gauge groups (SU(6), SO(10), E₆) preferred

Thus [de Carlos, Casas, Munoz] and [Dundee, Raby, Westphal] problematic

•
$$W \supset \chi_1[C \ e^{-\frac{24\pi^2}{\beta}S} \ e^{-(\beta_1T_1+\beta_2T_2)} - B_1(\langle \chi \rangle)]$$

+ $\chi_2[A_2(\langle \chi \rangle)e^{-S} - B_2(\langle \chi \rangle)]$

- \blacktriangleright Need $\langle \chi_1 \rangle \neq 0$ since it corresponds to mesonic mass term
- has to be around Hubble scale to avoid BBN problems
- Get high-scale SUSY breaking $\sim \langle \chi_1 \rangle B_1(\langle \chi \rangle)$

Moduli stabilization with two WS Instantons

 $W \supset \chi_1[A_1(\langle \chi \rangle)e^{-S} - B_1(\langle \chi \rangle)] + \chi_2[A_2(\langle \Phi \rangle)e^{-\pi/12(2T_1 + 2T_2)} - B_2(\langle \chi \rangle)]$

+
$$\chi_3[A_3(\langle \Phi \rangle)e^{-\pi/12(6T_1+4T_2)} - B_3(\langle \chi \rangle)]$$

FI-Terms force VEVs ~ 0.1 to untw. χ_i and tw. Φ_i fields

χ1,2,3	S	T_1	T_2	A_1	A2	A ₃	B ₁	<i>B</i> ₂	B ₃
0	1.8	1.05	1.25	$7 \cdot 10^{-4}$	$2 \cdot 10^{-3}$	$1 \cdot 10^{-4}$	$2 \cdot 10^{-4}$	$1 \cdot 10^{-4}$	$2 \cdot 10^{-5}$

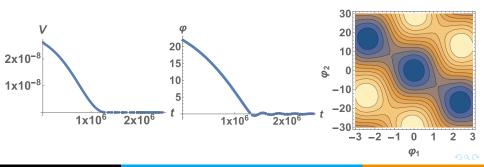
Moduli stabilization with two WS Instantons

$$W \supset \chi_1[A_1(\langle \chi \rangle)e^{-S} - B_1(\langle \chi \rangle)] + \chi_2[A_2(\langle \Phi \rangle)e^{-\pi/12(2T_1 + 2T_2)} - B_2(\langle \chi \rangle)]$$

+
$$\chi_3[A_3(\langle \Phi \rangle)e^{-\pi/12(6T_1+4T_2)} - B_3(\langle \chi \rangle)]$$

FI-Terms force VEVs ~ 0.1 to untw. χ_i and tw. Φ_i fields

χ1,2,3	S	T_1	T_2	A_1	A ₂	A ₃	B ₁	<i>B</i> ₂	B ₃
0	1.8	1.05	1.25	$7 \cdot 10^{-4}$	$2 \cdot 10^{-3}$	$1 \cdot 10^{-4}$	$2 \cdot 10^{-4}$	$1 \cdot 10^{-4}$	$2 \cdot 10^{-5}$



Moduli stabilization and inflation

 Experimental results suggest large field inflation at large Hubble scale

Moduli stabilization and inflation

- Experimental results suggest large field inflation at large Hubble scale
- Ingredients
 - Several different non-perturbative terms in superpotential
 - ▶ Near alignment → small hierarchy between decay constants

Moduli stabilization and inflation

- Experimental results suggest large field inflation at large Hubble scale
- Ingredients
 - Several different non-perturbative terms in superpotential
 - ▶ Near alignment → small hierarchy between decay constants

Realization in heterotic orbifolds

 Several axions present (partner of geometric moduli) w/ shift symmetry from SL(2,Z)

Moduli stabilization and inflation

- Experimental results suggest large field inflation at large Hubble scale
- Ingredients
 - Several different non-perturbative terms in superpotential
 - ▶ Near alignment → small hierarchy between decay constants

Realization in heterotic orbifolds

- Several axions present (partner of geometric moduli) w/ shift symmetry from SL(2,Z)
- Naturally enter w/ same function in non-perturbative terms
 - in instantonic couplings to ensure modular covariance of W
 - in gaugino condensation from 1-loop correction to f

Moduli stabilization and inflation

- Experimental results suggest large field inflation at large Hubble scale
- Ingredients
 - Several different non-perturbative terms in superpotential
 - ▶ Near alignment → small hierarchy between decay constants

Realization in heterotic orbifolds

- Several axions present (partner of geometric moduli) w/ shift symmetry from SL(2,Z)
- Naturally enter w/ same function in non-perturbative terms
 - in instantonic couplings to ensure modular covariance of W
 - in gaugino condensation from 1-loop correction to f
- Stabilization
 - for GC+WS instantons tension
 - for 2 WS instantons easier

Motivation Introduction Inflation and moduli stabilization in heterotic orbifolds Conclusion
Conclusion

Thank you for your attention!

Natural inflation in heterotic orbifolds