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Motivation

It is difficult to build natural GUTs within perturbative Type II that are
phenomenologically viable.

◊       and             cannot be realised.

◊            GUTs forbid a perturbative top Yukawa. Perturbative 
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F-theory provides a non-perturbative description of Type IIB and it
should be possible to build a            GUT with naturally large top
Yukawa.
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Aim of the talk: Discuss the flavour structure in the vicinity of E8

[Palti ’12]

U(1)

[Beasley, Heckman, Vafa ’08] 
[Donagi Wijnholt ’08]



SU(5) GUTs in F-theory

Very robust (holomorphic)

Non-holomorphic
Localisation

SU(5)

10M, 5̄M, 5U, 5̄D ! Q, U, E, D, L, HU , HD

)
SU(5) ! SU(3)⇥ SU(2)⇥ U(1)

YU : 10M ⇥ 10M ⇥ 5U ! Q⇥ U ⇥HU

YD/L : 10M ⇥ 5̄M ⇥ 5̄D !
⇢

YD : Q⇥D ⇥HD

YL : E ⇥ L⇥HD

Many other issues: moduli stabilisation,
SUSY breaking, proton decay, etc.

Gauge group:

Breaking to SM:

Matter content:

Yukawa couplings:

[Talks on monday: Mayrhofer, Kapfer, 
Reuter, Oehlmann, Till]



7-brane gauge theory
Essentially the same as the gauge theory for a stack of D7-branes

Field content: Gauge field     + Adjoint complex scalar 
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Gauge group: singularity at 
Yukawa point

430 Type II compactifications: e�ective action

Figure 12.2 Schematic Yukawa coupling among three chiral fields C7i7j living at D7-brane
intersections. Each dimension represent one complex coordinate zi, i = 1, 2, 3.

and leptons often reside at D7i-D7j intersections, and the relevant Yukawa couplings
arise from the first term in W7. Using (12.40), (12.30) the supergravity formula
(12.73) gives for the physical Yukawa coupling for three intersecting D7-branes,

Yinter =
(S + S⇥)1/4

[ (T1 + T ⇥
1 )(T2 + T ⇥

2 )(T3 + T ⇥
3 ) ]

1/4
, (12.76)

for the flux-less case. Incidentally, this coupling is a geometric mean of the gauge
couplings of the three intersecting D7-branes. For the other two terms in (12.74), the
physical Yukawa couplings are (Ti + T ⇥

i )
�1/2, and hence equal the corresponding

gauge coupling constants; this is expected, as these terms are related to gauge
interactions by an enhanced N = 2 SUSY preserved by the fields involved.
For other toroidal orientifolds, the Yukawa coupling superpotentials are directly

inherited from the above, by simply truncating the fields to those surviving the
orbifold projection, as described in section 11.3.2. In particular, this truncation
applied to (12.75) leads to the superpotential (11.46), (11.50) for local systems of
D3/D7-branes at C3/ZN abelian orbifold singularities, since it involves only fields
localized at the singularity. There are also generalizations of these expressions for
D3-brane systems at toric singularities, with some terms in the D3-brane superpo-
tentials in (11.72) for the conifold and (11.77) for the dP1 theory. We will not need
to delve further into their description.

12.5.3 Type IIA orientifolds: Yukawas from disk worldsheet instantons

In the context of type IIA orientifolds, Yukawa couplings between fields living at D6-
brane intersections arise from worldsheet instantons, in a way somewhat analogous
to the Yukawa couplings in heterotic orbifolds described in section 9.3.2. These
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Yukawa couplings
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Physical Yukawas when canonical 
kinetic terms. Depend on the metric 
and fluxes (hypercharge).

Holomorphic Yukawas are independent 
of the metric and fluxes. 
Rank-one problem.

Yij = m⇤

Z

S

det(~ H , ~ i
M , ~ j

M )

W = m�

�

S
Tr(F ⇤ �) ⇥ �im�

�

S
Tr(A ⇤A ⇤ �)

Kij
⇢ =

Z

S
Tr (

~
 

i
⇢
† · ~ j

⇢ ) dvolS



In order to define a specific local model we have to give the structure In order to define a specific local model we have to give the structure 

Beyond rank one [Cecotti et al ’09] 
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Extra contributions to Yukawas
Full rank

Additional effects are needed to solve the rank-one problem
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E3-branes generate a np superpotential for D3-branes and for D7s 
with induced D3 charge (i.e.                     )

Small number (perturbation theory)
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What we are looking for

CKM =

0

@
0.97 0.23 0.004
0.23 0.97 0.04
0.008 0.04 0.99

1

A

◊ Hierarchical structure 
of masses

◊ Different Yukawas for 
D-quarks and leptons

◊ Almost diagonal CKM



What we are doing
Take      gauge theory on                             Ultra-local model for an      stack.

Add deformation to go beyond rank one

Specify        in              ,

Focus on the most promising model at the holomorphic level.

Specify fluxes to generate chirality and GUT breaking.

Compute physical Yukawa couplings and CKM matrix.

E8 SGUT = C2 E8

h�i SU(5)? E8 ! SU(5)GUT ⇥ SU(5)?

S(U(4)⇥ U(1))?

S(U(3)⇥ U(2))?

S(U(2)⇥ U(2)⇥ U(1))?

h�i

(
Reconstructible T-branes

Monodromy 
Z4, Z3 ⇥ Z2, Z2 ⇥ Z2
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Holomorphic Yukawas

h�i =

0
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CCCCA
2+2+1 model

Z2 ⇥ Z2

E8 ! SU(5)GUT ⇥ S(U(2)⇥ U(2)⇥ U(1))?

248 ! (10,2,1)3,�2 � (5̄,2,1)1,�4 � (5,1,1)�6,4 � (5̄,1,1)�4,6 � . . .

10M 5U5̄M 5̄D

YU : 10M ⇥ 10M ⇥ 5U

YD/L : 10M ⇥ 5̄M ⇥ 5̄D
are allowed by gauge invariance (underlying     )

This specifies completely the matter curves and holomorphic Yukawas

(Relatively simple algebraic problem)

Most promising model:

E8
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Holomorphic Yukawas
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Hierarchical structure (not true for every model)

Do not depend on fluxes (              )

    controls the separation between the two Yukawa points (CKM)

YD = YL





Physical Yukawas
Introduce fluxes to generate chirality and break the GUT group (hypercharge)

Non-primitive fluxes from T-branes (D-term)

Most general constant primitive fluxes (                        )

Hypercharge flux (             ):

Solve for the fluctuations around this background (including the D-term)

Compute the kinetic terms for the MSSM fields

Compute the physical Yukawa couplings

(Very complicated system of coupled PDEs)
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Physical Yukawas
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The gammas are the normalisation factors. Depend on intersection angles 
and fluxes (not a simple dependence)

For reasonable values of the parameters, it is possible to (not generic):
- Obtain a large top Yukawa coupling
- Have different       and      at unification scale (hypercharge flux)
- Match measured Yukawas for 2nd and 3rd generations (RGEs)

CKM element:
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 controls the distance between 
Yukawa points

      and          very close to each otherYU YD/L

YD YL



Conclusions
◊ We have performed a partial classification of ultra-local models at the 

point of      in F-theory           GUTs

◊ It seems possible (though not generic) to get a satisfactory flavour 
structure from     in F-theory: 
◊ Large top Yukawa
◊ Hierarchy of masses
◊ Different       and      
◊ Almost diagonal CKM

E8 SU(5)

E8

YD YL

◊ Go to next order in the epsilon analysis. Better control over the lightest 
generation (Cabibbo angle)

◊ From ultra-local to local. Better control over the normalisation factors. 
Curvature of          , more constraints, etc.SGUT

Outlook



Thank you!



Yukawas and masses at unification scale


