From torsion to discrete symmetries From Pati-Salam to the Standard Model

Paul-Konstantin Oehlmann

Bethe Center for Theoretical Physics, Universität Bonn

Based on arXiv:1408.4808 with: D. Klevers, D. Mayorga, H. Piragua and J. Reuter arXiv:1503.02068 with: M. Cvetic, D Klevers, D. Mayorga, J. Reuter

XXVII Workshop Beyond the Standard Model 2015, Bad Honnef March 16th 2015

Geometric engineering in F-theory

Choose a Fiber:

- Codimension 1 singularities: non-Abelian factors
- Freely acting Mordell-Weil group: Abelian factors

[Morrison, Park '12; Cvetic, Piragua, Grassi, Klevers, Song; Braun, Grimm, Keitel; '13]

- Mordell-Weil torsion: Quotient groups [Mayrover, Morrison, Palti, Till, Weigand'14]
- Discrete \mathbb{Z}_n symmetries: n-sections

[Braun, Morrison, Mayrhover, Palti, Oskar, Weigand; Anderson, Garcia-Etxebarria, Grimm, Keitel '14]

- Codimension 2 singularities: Charged matter
- Coddiemsnion 3 singularities: Yukawa points
- **Choose a Base space** *B_n*: Supports divisors for *D*7 branes
- Onstruct the fluxes: Generate chirality, moduli stabilization...

The Network

Highest Polyhedra:

Observe: F_{16}, F_{15}, F_{13} All feature MW Torsion: Quotient group factors Restricted representations

\$

Mirror-Dual?

Higgsing

Lowest Polyhedra

Observe: F_1, F_2, F_4 All are Genus-One fibers Multi-sections Discrete group factors

The Network

Standard Model

F₁₁ SM gauge group SM Charge Pattern

\uparrow

Unified Fibers

- *F*₁₃ Pati-Salam Group PS Charge Patter
- *F*₁₆ Trinification Group Trinification Charge Patter

- The Higgs Network in 6D
- 4D compactifications and Fluxes
- The standard Model embedded into Pati-Salam
- Onclusion

The G_4 -flux toolbox

- **()** Fix fibration geometry $F_i \rightarrow Y_4 \rightarrow B_3$
- **2** Construct Basis of vertical cohomology $H_V^{2,2}(Y) \ni D_A \cdot D_B$ With $D_A \in H^{1,1}(Y)$ Find inequivalent basis: rank(n) $n = (D \cap D_B, D \cap D_B)$

Find inequivalent basis: rank(η) $\eta = (D_A \cdot D_B, D_{A'} \cdot D_{B'})$

- **2** Expand G_4 -flux along a basis (integral?) [Braun, Watari; Bizet, Klemm, Lopes'14] Flux quantization: $G_4 + \frac{c_2(Y)}{2} \in H^4(Y, \mathbb{Z})$
- Calculate Chiralities of matter curve C_R with repr. R $\chi(\mathbf{R}) = \int_{C_R} G_4$
- **Oly D3 tadpoles cancelation**: $\frac{\chi(Y)}{24} = n_{D3} + \int G_4 \wedge G_4$ Only solutions with $n_{D3} \in \mathbb{N}^+$ allowed, guarantee flux quantization
- Consistency Checks: Cancellation of all anomalies

Construct the Standard model Fibration

Construct the fibration

Construct Fibration $F_{11} \rightarrow Y_4 \rightarrow \mathbb{P}^3$) $K_B^{-1} = -4H_B$ $S_7 = n_7H_B$ $S_9 = n_9H_B$ Two integer (n_7, n_9) fibration All base divisors muss be *effective* \hookrightarrow defines the allowed region of Y_4

Hypersurface and matter curves

Construct the Y_4 as a cubic hypersurface with s_i sections in \mathcal{S}_7 and \mathcal{S}_9 of the \mathbb{P}^3

$$p_{F_{11}} = s_1 e_1^2 e_2^2 e_3 e_4^4 u^3 + s_2 e_1 e_2^2 e_3^2 e_4^2 u^2 v + s_3 e_2^2 e_3^2 u v^2 + s_5 e_1^2 e_2 e_4^3 u^2 w + s_6 e_1 e_2 e_3 e_4 u v w + s_9 e_1 v w^2$$

Supports the Standard Model gauge group

 $SU(3)_C \times SU(2)_L \times U(1)_Y$

and exact MSSM matter charges.

Construct the Standard model Fibration

Construct the fibration

Construct Fibration $F_{11} \rightarrow Y_4 \rightarrow \mathbb{P}^3$) $K_B^{-1} = -4H_B$ $S_7 = n_7H_B$ $S_9 = n_9H_B$ Two integer (n_7, n_9) fibration All base divisors muss be *effective* \hookrightarrow defines the allowed region of Y_4

3 fluxes

No unbroken gauge group \rightarrow Family structure with flux solution

$$a_{flux}^{1} = -\frac{\#_{families} (3n_{7} + n_{9} - 36)}{n_{9} (n_{7} - 8) (4 + n_{7} - n_{9}) (n_{7} + n_{9} - 12)}$$
$$a_{flux}^{2} = \frac{6\#_{families}}{(4 + n_{7} - n_{9}) n_{9}}$$

Minimal number of Families where n_{D3} can be canceled?

Construct the Standard model Fibration

n7\ n9	1	2	3	4	5	6	7
7	-	(27; 16)	-	-			
6	-	(12;81)	(21;42)	-	-		
5	-	-	(12;57)	(30;8)	-	(3;46)	
4	(42; 4)	-	(30; 32)	-	-	-	-
3	-	(21; 72)	-	-	-	(15;30)	
2	(45; 16)	(24; 79)	(21;66)	(24;44)	(3;64)		
1	-	-	-	-			
0	-	-	(12; 112)				
-1	(36;91)	(33; 74)					
-2	-						

Construct the fibration

Construct Fibration $F_{11} \rightarrow Y_4 \rightarrow \mathbb{P}^3$) $K_B^{-1} = -4H_B$ $S_7 = n_7H_B$ $S_9 = n_9H_B$ Two integer (n_7, n_9) fibration All base divisors muss be *effective* \hookrightarrow defines the allowed region of Y_4

Three family flux solution

For $(n_7, n_9) = (5, 6)$ there is a three chiral family solution

Qi	\bar{u}_i	\bar{d}_i	Li	ē _i	H_u, H_d
$(3,2)_{1/6}$	$(\overline{3},1)_{-2/3}$	$(\overline{3},1)_{1/3}$	$(1,2)_{-1/2}$	$(1,1)_1$	$(1,2)_{\pm 1/2}$

With superpotential realized as codim 3 singularities

$$\mathcal{W} \subset Y_{i,j}^{u} Q_{i} \overline{u}_{j} H_{u} + Y_{i,j}^{d} Q_{i} \overline{d}_{j} H_{d} + Y_{i,j}^{L} \overline{e}_{i} \overline{L}_{j} H_{d}$$
$$\lambda_{i,j,k}^{(0)} Q_{i} \overline{d}_{j} L_{k} + \lambda_{i,j,k}^{(1)} \overline{e}_{i} L_{j} L_{k} + \lambda_{i,j,k}^{(2)} \overline{u}_{i} \overline{d}_{j} \overline{d}_{k} + \mu H_{u} H_{d}$$

Construct the Pati-Salam Fibration

Hypersurface and matter curves

Construct the Y_4 as a cubic hypersurface with s_i sections in \mathcal{S}_7 and \mathcal{S}_9 of the \mathbb{P}^3

$$p_{F_{13}} = s_1 e_1^2 e_2^2 e_3 e_5^4 u^3 + s_2 e_1 e_2^2 e_3^2 e_4^2 e_5^2 u^2 v + s_3 e_2^2 e_3^3 e_4^4 u v^2 + s_6 e_1 e_2 e_3 e_4 e_5 u v w + s_9 e_1 v w^2$$

Supports the Pati-Salam unification group

$$SU(4)_{\times}SU(2) \times SU(2)/\mathbb{Z}_2$$

and their exact matter charges

Construct the Pati-Salam Fibration

Construct the fibration

Construct Fibration $F_{13} \rightarrow Y_4 \rightarrow \mathbb{P}^3$) $\mathcal{K}_B^{-1} = -4\mathcal{H}_B \quad \mathcal{S}_7 = n_7\mathcal{H}_B$ $\mathcal{S}_9 = n_9\mathcal{H}_B$ Two integer (n_7, n_9) fibration All base divisors muss be *effective* \hookrightarrow defines the allowed region of Y_4

3 Family locations

Generic one parameter flux solution

$$a_{flux} = \frac{4\#_{families}}{n_9 \left(n_9 - n_7 - 4\right) \left(12 - n_7 - n_9\right)}.$$

Minimal number of Families where n_{D3} can be canceled?

n7\ n9	1	2	3	4	5	6	7
10	(13;204)						
9	-	(11; 140)					
8	(33;94)	(10; 119)	(9;90)				
7	-	(9; 100)	(6;77)	(14;48)			
6	(15; 108)	(8;86)	(21; 52)	(12;46)	(5;44)		
5	(6; 106)	(35;44)	-	(30; 16)	-	(3;44)	
4	(7; 102)	(6;75)	(15; 50)	(8;42)	(15;30)	(6;41)	(7; 42)
3	(6; 106)	(35;44)	-	(30; 16)	-	(3;44)	
2	(15; 108)	(8;86)	(21; 52)	(12;46)	(5;44)		
1	-	(9; 100)	(6;77)	(14;48)			
0	(33;94)	(10; 119)	(9;90)				
-1	-	(11; 140)					
-2	(13; 204)						

Construct the fibration

Construct Fibration $F_{13} \rightarrow Y_4 \rightarrow \mathbb{P}^3$) $\mathcal{K}_B^{-1} = -4H_B \quad \mathcal{S}_7 = n_7H_B$ $\mathcal{S}_9 = n_9H_B$ Two integer (n_7, n_9) fibration All base divisors muss be *effective* \hookrightarrow defines the allowed region of Y_4

Three family flux solution

	For ((n_7, n_9)) =	(5.6`) there	is a	three	family	flux	solution
--	-------	--------------	-----	-------	---------	------	-------	--------	------	----------

(1) 3)			5
Name	Representation		SM decomposition
SM Matter	$3 imes (4, 2, 1)_M$	\rightarrow	$Q_i: (3, 2)_{\frac{1}{6}}, L_i: (1, 2)_{-\frac{1}{2}}$
SM Matter	$3 imes (\overline{4}, 1, 2)_M$	\rightarrow	$\overline{d}:(\overline{3},1)_{\frac{1}{3}}, \ \overline{u}:(\overline{3},1)_{-\frac{2}{3}}, \ \overline{e}:(1,1)_{1}, \ \overline{\nu}:(1,1)_{0}$

n7 \ n9	1	2	3	4	5	6	7
10	(13;204)						
9	-	(11; 140)					
8	(33;94)	(10; 119)	(9;90)				
7	-	(9; 100)	(6;77)	(14;48)			
6	(15; 108)	(8;86)	(21; 52)	(12;46)	(5;44)		
5	(6; 106)	(35;44)	-	(30; 16)	-	(3;44)	
4	(7; 102)	(6;75)	(15;50)	(8; 42)	(15;30)	(6;41)	(7;42)
3	(6; 106)	(35;44)	-	(30; 16)	-	(3;44)	
2	(15; 108)	(8;86)	(21; 52)	(12;46)	(5;44)		
1	-	(9; 100)	(6;77)	(14;48)			
0	(33;94)	(10; 119)	(9;90)				
-1	-	(11; 140)					
-2	(13; 204)						

Construct the fibration

Construct Fibration $F_{13} \rightarrow Y_4 \rightarrow \mathbb{P}^3$) $K_B^{-1} = -4H_B$ $S_7 = n_7H_B$ $S_9 = n_9H_B$ Two integer (n_7, n_9) fibration All base divisors muss be *effective* \hookrightarrow defines the allowed region of Y_4

Three family flux solution

For (<i>n</i> ₇ , <i>n</i> ₉)	= (5,6) there is	a th	ree family flu	x solutions	
Name	Representation			SM decomp	osition
SM Matter	$3 imes (4, 2, 1)_M$	\rightarrow	$Q_i: (3, 2)_{\frac{1}{6}},$	$L_i: (1,2)_{-\frac{1}{2}}$	
SM Matter	$3 imes (\overline{4}, 1, 2)_M$	\rightarrow	\overline{d} : $(\overline{3}, 1)_{\frac{1}{3}}$,	$\overline{u}:(\overline{3},1)_{-\frac{2}{3}},$	\overline{e} : $(1,1)_{1}$, $ar{ u}$: $(1,1)_{0}$
SM Higgs	$1 imes (1,2,2)_H$	\rightarrow	$H_u: (1, 2)_{1/2}$	$H_d: (1,2)_{-\frac{1}{2}}$	

Construct the Pati-Salam Fibration

n7\ n9	1	2	3	4	5	6	7
10	(13;204)						
9	-	(11; 140)					
8	(33; 94)	(10; 119)	(9;90)				
7	-	(9; 100)	(6;77)	(14;48)			
6	(15; 108)	(8;86)	(21; 52)	(12;46)	(5;44)		
5	(6; 106)	(35;44)	-	(30; 16)	-	(3;44)	
4	(7; 102)	(6;75)	(15; 50)	(8; 42)	(15;30)	(6;41)	(7;42)
3	(6; 106)	(35;44)	-	(30; 16)	-	(3;44)	
2	(15; 108)	(8;86)	(21; 52)	(12;46)	(5;44)		
1	-	(9; 100)	(6;77)	(14;48)			
0	(33;94)	(10; 119)	(9;90)				
-1	-	(11; 140)					
-2	(13; 204)						

Construct the fibration

Construct Fibration $F_{13} \rightarrow Y_4 \rightarrow \mathbb{P}^3$) $\mathcal{K}_B^{-1} = -4H_B \quad \mathcal{S}_7 = n_7H_B$ $\mathcal{S}_9 = n_9H_B$ Two integer (n_7, n_9) fibration All base divisors muss be *effective* \hookrightarrow defines the allowed region of Y_4

Three family flux solution

For (<i>n</i> ₇ , <i>n</i> ₉)	= (5,6)	there is a	three family f	lux solutions

Name	Representation		SM decomposition
SM Matter	$3 imes (4, 2, 1)_M$	\rightarrow	$Q_i: (3, 2)_{\frac{1}{6}}, L_i: (1, 2)_{-\frac{1}{2}}$
SM Matter	$3 imes (\overline{4}, 1, 2)_M$	\rightarrow	$\overline{d}:(\overline{3},1)_{\frac{1}{3}}, \overline{u}:(\overline{3},1)_{-\frac{2}{3}}, \overline{e}:(1,1)_{1}, \overline{\nu}:(1,1)_{0}$
SM Higgs	$1 \times ({f 1},{f 2},{f 2})_H$	\rightarrow	$H_u: (1,2)_{1/2}, \ H_d: (1,2)_{-\frac{1}{2}}$
PS Higgs	$1 imes (\overline{f 4}, f 1, f 2)_{H^1}$	\rightarrow	$ar{d}_H: (ar{3},1)_{rac{1}{3}}, ar{u}_H: (ar{3},1)_{-rac{2}{3}}, \ ar{e}_H: (1,1)_1, ar{ u}_H: (1,1)_0$
PS Higgs	$1 imes (4, 1, 2)_{H^2}$	\rightarrow	$d_H: (3,1)_{-\frac{1}{3}}, u_H: (3,1)_{\frac{2}{3}}, e_H: (1,1)_{-1}, \nu_H: (1,1)_0$

Geometry of Higgsing

Geometric Restrictions

- Match divisor classes (n_7, n_9) : Only horizontal transitions \hookrightarrow Geometric transition $\leftrightarrow \langle (\overline{4}, 1, 2) \rangle = \langle (4, 1, 2) \rangle \neq 0$ [Klevers, Mayorga, O, Reuter '14]
- Higgsing does not change chirality: Family number is the same.
- A Higgs transition is possible!

Conclusions

What we did:

• We constructed **globally** defined models of particle physics that

- Have three chiral families
- The exact MSSM, Pati-Salam and Trinification gauge group and matter content
- All anomalies and *n*_{D3} tadpoles are canceled
- The models allow for a Higgs transition among them

Open problems

- No distinction between Leptons and $H_d
 ightarrow$ proton decay
 - \hookrightarrow Additional discrete symmetries [Lin, Weigand 14]
- Vector-like matter sector not visible
 - $\hookrightarrow \mathsf{Analyze \ the \ Chow-Ring}_{[Bies, Mayrhover, Pehle, Weigand'14]}$

Conclusions

What we did:

• We constructed **globally** defined models of particle physics that

- Have three chiral families
- The exact MSSM, Pati-Salam and Trinification gauge group and matter content
- All anomalies and n_{D3} tadpoles are canceled
- The models allow for a Higgs transition among them

Thank You!

Open problems

- No distinction between Leptons and $H_d
 ightarrow$ proton decay
 - \hookrightarrow Additional discrete symmetries [Lin, Weigand 14]
- Vector-like matter sector not visible
 - $\hookrightarrow \mathsf{Analyze \ the \ Chow-Ring}_{[\mathsf{Bies},\mathsf{Mayrhover},\mathsf{Pehle},\mathsf{Weigand'}14]}$