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Outline

• Introduction: discrete selection rules in F-theory

• Background: Higgsing as a conifold transition

• G4 fluxes on both sides of the transition

• Fluxes in models with enhanced gauge symmetry

• Outlook
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Discrete selection rules in F-theory

Discrete symmetries are interesting to study both in

field theory and geometry

Zk symmetries can forbid dangerous couplings e.g pro-

ton decay operators in GUT models
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Discrete selection rules in F-theory

Lots of activity in the last year e.g

Klevers/Mayorga Pena/Oehlmann/Piragua/Reuter [1408.4808] Grimm/Garcia-

Etxebarria/Keitel [1408.6448] Cvetic/Donagi/Klevers/Piragua/Poretschkin

[1502.06953] Cvetic/Klevers/Mayorga Pena/Oehlmann/Reuter [1503.02068]

and more.

See also talks by J. Reuter and P. Oehlmann.
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Higgsing as conifold transition I

On general grounds, all symmetries are gauged in quan-

tum gravity.

Discrete symmetries as broken gauge symmetries

Higgsing a U(1) with a field of charge n leads to a

Zn remnant discrete symmetry. [see also talk by C.

Mayrhofer]

5



Higgsing as conifold transition II

Higgsing in F-theory is a complex structure deformation

(brane deformation in type IIB theory)

F-theory geometry with an extra U(1): A (resolved)

conifold singularity in codimension two.

Conifold transition: Blowing down the exceptional fiber

component, and deforming away from the singularity.

Intriligator/Jockers et al [1203.6662]
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Higgsing as conifold transition III, the

explicit setup

Elliptic fibration as the smooth hypersurface Y4 Morri-

son/Park [1208.2695]

sw2+b0su
2w + b1suvw + b2v

2w

+ c0s
3u4 + c1s

2u3v + c2su
2v2 + c3uv

3

with the resolved conifold singularity along the curve

C : {b2 = c3 = 0} in the base.

States of U(1) charge 2 is localized along the curve C.

There is also a matter curve hosting states of charge 1
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Higgsing as conifold transition III, the

explicit setup

By blowing down, s→ 1, and deforming to the generic
quartic in P112 we get

w2+b0u
2w + b1uvw + b2wv

2

+ c0u
4 + c1u

3v + c2u
2v2 + c3uv

3 + c4v
4 .

Note that this is one of two possible deformations, see
talk by C. Mayrhofer. This hypersurface X4 has no
section, but a bi-section, given by the intersection of U :
{u = 0} with the hypersurface Braun/Morrison [1401.7844].

No matter states remain along the curve b2 = c3 = 0,
but the curve of singly charged states in the U(1) model
remain, hosting states of odd Z2 charge.
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G4 flux in F-theory

G4 is the field strength of the 3-form gauge field in

M-theory.

G4 flux is crucial for a chiral matter spectrum, breaking

GUT symmetries and stabilizing moduli.

In an elliptically fibered fourfold M4 with zero-section

Z, the G4 flux must obey∫
M4

G4 ∧ Z ∧ π∗Da =
∫
M4

G4 ∧ π∗Da ∧ π∗Db = 0

for all Da,b ∈ H1,1(B) in order to have a well defined 4d

limit.
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G4 flux in the U(1) model

The U(1) gauge field A comes from expanding the M-

theory 3-form as C3 = A∧wU(1) + . . . where wU(1) is a

harmonic 2-form, usually called the U(1)-generator.

It is given by

wU(1) = S − U − K̄ − [b2]

which is the harmonic 2-form dual to the image of the

extra section under the Shioda map.

The associated vertical flux is of the form

G4(F ) = wU(1) ∧ π
∗F

for F ∈ H1,1(B) some class in the base.

10



The D3-tadpole

The Euler characteristics of the two models are related
by

χ(Y4)− 3χ(C) = χ(X4)

where C is the curve of conifold singularities. Gaiotto

et al [0509168] and Collinucci/Denef/Esole [0805.1573]. The
number of D3-branes

nD3 =
1

24
χ(Y4) +

1

2

∫
Y4

G4 ∧G4

is preserved under the smooth deformation.

If G4(F ) = 0 on Y4, then a flux G4 on X4 must appear,
such that

1

2

∫
X4

G4 ∧G4 = −
1

8
χ(C)
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The D3 tadpole

By specializing to a locus in complex moduli space

where c4 = ρτ → new 4-cycles, with duals in H2,2(X4).

Braun/Collinucci/Valandro [1107.5337] Krause/Mayrhofer/Weigand

[1109.3454]

σ0 = {u = 0} ∩ {ρ = 0} ∩ {w = 0} ⊂ X5

σ1 = {u = 0} ∩ {ρ = 0} ∩ {w + b2v
2 = 0} ⊂ X5

The flux G4(ρ) = [σ1]− 1
2U ∧ [ρ] satisfies the analogous

transversality conditions∫
X4

G4 ∧ U ∧ π∗Da =
∫
X4

G4 ∧ π∗Da ∧ π∗Db = 0

with the class of the bisection instead of the zero-

section.
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The D3 tadpole

With no U(1) flux, G4(ρ) accounts precisely for the
tadpole contribution

1

2

∫
X4

G4(ρ) ∧G4(ρ) = −
1

8
χ(C)

for the choice [ρ] = [b2].

For a non-zero U(1)-flux, this generalizes to

1

2

∫
X4

G4(ρ) ∧G4(ρ) = −
1

8
χ(C) +

1

2

∫
X4

G4(F ) ∧G4(F )

with [ρ] = 2F + [b2]

Since c4 = ρτ the inequality 0 ≤ [ρ] ≤ [c4] must hold and
if violated, no transition is possible since the necessary
vector-like pairs of higgs fields fail to exist.
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Outlook

Algorithmic and automatized computation of fluxes and

indices

Use new technology to do better phenomenology →
GUT models with R-parity, realistic chiral spectra

Broken non-abelian gauge symmetry → Non-abelian

discrete symmetries in F-theory?
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