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Topological String Theory

N = (2, 2) nonlinear �-models on Riemann surfaces ⌃
g

Path integral localises on fixed points � = 0 of SUSY
transformations, BUT: this needs covariantly constant spinors!

Solution: Modify generator of Lorentz group (Twisting)
! Some fermions become “scalars”

On Calabi-Yau 3-folds two di↵erent twists lead to

A-Model - depends on complexified Kähler class of target space

B-Model - depends on complex structure of target space

Sum over genera + integration over worldsheet complex structure

! Topological string theory

Free energy F =
X

g

�2�2gF
g
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Local Mirror Symmetry

A-Model on toric non-compact CY 3-fold

B-Model geometry essentially defined by Riemann surface ⌃
g

So far only models on mirror curves of genus one
have been solved for F

g

, g � 0

Modular structure in these cases well known

We calculated F
g

, g = 0, ..., 3 for mirror curve of
genus two

Generalised modular to Siegel modular Structure
+ Found genus two analogue for E

2

Mirror Symmetry
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B-Model at genus 0 (and 1)

FB

0

essentially special Geometry on M
c.s.

Choice of complex structure
$ Integrals of meromorphic 1-form over A-cycles on ⌃

Periods over symplectic basis ↵
i

,�
i

2 H
1

, i = 1, ..., g

⇧ = (1, t
i

, tD
i

)

@
t

i

FB

0

= tD
i

and flat coordinates t
i

identify M
c.s = M

Kähl .

FX

A

(t) = FY

B

(t)

Periods are annihilated by “Picard-Fuchs” operators, e.g.

⇥
⇥3 + 3z(3⇥� 2)(3⇥� 1)⇥

⇤
⇧
i

= 0, ⇥ = z@
z

Operators can be read o↵ from A-Model Diagram

FB

1

can be fixed from boundary behaviour
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Direct Integration

B-Model Free energies at higher genus can be obtained from
holomorphic anomaly equation
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=
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Skl = �C
inm

SkmS ln + f kl
i

, �k
ij

= �C
ijl

Skl + f̃ k
ij

,

@
i

F
1

=
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2
C
ijk

S jk + A
i

with C
ijk

= @
i

@
j

@
k

F
0

BCOV [hep-th/9309140], M.-x. Huang, A. Klemm [1009.1126]

B. Haghighat, A. Klemm, M. Rauch [0809.1674]
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Direct Integration

B-Model Free energies at higher genus can be obtained from
holomorphic anomaly equation
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Riemann surfaces of genus one

Weierstrass form of defining equation is

y2 = 4x3 � g
2

(z ,m
i

)x � g
3

(z ,m
i

)

Note: (g
2

, g
3

) ⇠ (r2g
2

, r3g
3

) for r 2 C⇤

On the other hand ⌃
1

(⌧) = C/(1Z+ ⌧Z), ⌧ 2 C : Im(⌧) > 0

Action of Sp(2,Z)/{±1} on ⌧ leaves ⌃
1

invariant

� =

✓
a b
c d

◆
: ⌧ 7! a⌧ + b

c⌧ + d

Modular forms of weight k on H = {⌧ 2 C : Im(⌧) > 0} are
holomorphic “functions” satisfying

f (�⌧) = (c⌧ + d)k f (z)
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Modular forms for PSp(2,Z)

Eisenstein series of weight k=4,6,8,...

E
k

(⌧) =
1

2

X

c,d2Z
(c,d)=1

1

(c⌧ + d)k

Can be regularised for k=2 to give form E
2

transforming as

E
2

(�⌧) = (c⌧ + d)2E
2

(⌧)� 6

⇡
ic(c⌧ + d)

Modular discriminant (with q = exp(2⇡i⌧))

�
mod

(⌧) =
1

1728
(E

4

(⌧)3 � E
6

(⌧)2) = q
1Y

n=1

(1� qn)24,

⌘ = �1/24
mod

, E
2

⇠ @⌧ log(⌘), E
4

= r4g
2

, E
6

= r6g
3
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Modularity and Direct Integration

For genus one mirror curves everything can be expressed in modular
forms:
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M.-x. Huang, A.-K. Kashani-Poor, A. Klemm [1109.5728]

How does this work for mirror curves of genus two?
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Riemann surfaces of genus two

Defined by hyperelliptic equation

y2 = v
0

x5 � v
1

x4 + v
2

x3 � v
3

x2 + v
4

x � v
5

Weierstrass functions g
2

, g
3

replaced by Igusa invariants

[I
2

(v
i

) : I
4

(v
i

) : I
6

(v
i

) : I
10

(v
i

)] 2 P(1,2,3,5)

⌧ replaced by 2x2 matrix ⌧
ij

in Siegel upper half plane

H
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⌧
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⌧
12

⌧
12

⌧
22

◆
2 Mat(2⇥ 2,C) : ⌧ t = ⌧, Im(⌧) > 0}

PSp(2,Z) replaced by PSp(4,Z), ie. isometries of symplectic
intersections ✓

0 I
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Siegel modular forms

Holomorphic on H
2

and satisfy f (�⌧) = det(C + ⌧D)k f (⌧)

Siegel Eisenstein series are defined as

E (2)

k

=
X

(C ,D)

det(C⌧ + D)�k

Series also diverges for k=2 and cannot be regularised!

Cusp forms
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G. van der Geer [math/0605346]
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Siegel modularity and direct integration

Note: Intersection matrix of integral set of periods on mirror curve is
not symplectic! S. Hosono [hep-th/0404043]

Instead:

✓
0 C

�C 0

◆

We found for B-Model on genus two mirror curve of C3/Z
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Generalised Ramanujan identity

For genus one mirror curves

D
z

Szz = �C
zzz

SzzSzz + f zz
z

can be transformed into Ramanujan identity

@⌧E2

=
1

12

�
E 2

2

� E
4

�

For genus two mirror curves

D
i

Skl = �C
inm

SkmS ln + f kl

i

relates to
R
sym

2

S = t(S ⌦ S) + fRS

(⌧)

with
f mn

i

= �C
irs

C r

k

C s

l
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o

Cn

p

(f
RS

)kl ,op
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Conclusion

Modular expressions for B-Model quantities generalise to genus two

Propagator can be chosen as logarithmic derivative of �
10

! Theory of almost meromorphic Siegel modular forms

Constraint on propagator $ generalised Ramanujan identity

Modified intersection matrix becomes important

Checked for C3/Z
5

for g = 0, 1, 2, 3 and C3/Z
6

for g = 0, 1
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Thank you!
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