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Topological String Theory

N = (2,2) nonlinear o-models on Riemann surfaces X

m Path integral localises on fixed points 3 = 0 of SUSY
transformations, BUT: this needs covariantly constant spinors!

m Solution: Modify generator of Lorentz group (Twisting)
— Some fermions become ‘“scalars”

m On Calabi-Yau 3-folds two different twists lead to
A-Model - depends on complexified Kahler class of target space
B-Model - depends on complex structure of target space

m Sum over genera + integration over worldsheet complex structure

— Topological string theory

Free energy F = Z )\2_2gFg
g



Local Mirror Symmetry

A-Model on toric non-compact CY 3-fold
I Mirror Symmetry
B-Model geometry essentially defined by Riemann surface ¥,

m So far only models on mirror curves of genus one
have been solved for Fz,g >0

m Modular structure in these cases well known 4
m We calculated Fg,g =0, ...,3 for mirror curve of
genus two ,

m Generalised modular to Siegel modular Structure
+ Found genus two analogue for E;



B-Model at genus 0 (and 1)

n Ff essentially special Geometry on M.

m Choice of complex structure
<> Integrals of meromorphic 1-form over A-cycles on X

m Periods over symplectic basis «j, 3 € H1, i=1,...,g
n=(1,t, tP)

8t,.FOB = t,-D and flat coordinates t; identify M.s = Mgsn.

FA(t) = F5 (1)

m Periods are annihilated by “Picard-Fuchs” operators, e.g.
(03 +32(30 -2)(30 - 1)0] N; =0, © = z0,

Operators can be read off from A-Model Diagram

FE can be fixed from boundary behaviour



Direct Integration

B-Model Free energies at higher genus can be obtained from
holomorphic anomaly equation
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Direct Integration

B-Model Free energies at higher genus can be obtained from
holomorphic anomaly equation

8FgB 1 B B B
ﬁ == 5 D,'ang_]_ + Z (9,-Fg/8ng_g,
0<g’'<g

D;SK = —C;,, Skmsin 4 f’_kl’ rg_ _ —C;j/5kl + ﬁjl'(v

1 .
0iF1 = 5 ,'ijJk + A; with C,'jk = 8;8j8kFo

BCOV [hep-th/9309140], M.-x. Huang, A. Klemm [1009.1126]
B. Haghighat, A. Klemm, M. Rauch [0809.1674]



Riemann surfaces of genus one

m Weierstrass form of defining equation is
2 _ 4.3
y© =4x" — ga(z, mi)x — g3(z, m;)

Note: (g2, g3) ~ (r’g2, r’gs) for r € C*
On the other hand X1(7) =C/(1Z+ 7Z), 7€ C : Im(7) >0
Action of Sp(2,Z)/{%1} on 7 leaves X; invariant

[ a b .THBT—f—b
T=\ ¢ d ) ct+d

m Modular forms of weight k on H = {7 € C : Im(7) > 0} are
holomorphic “functions” satisfying

f(y7) = (c7 + d)*F(2)



Modular forms for PSp(2, Z)

m Eisenstein series of weight k=4,6,8,...

1 1
53 2 arap

c,deZ
(¢,d)=1

m Can be regularised for k=2 to give form E, transforming as
6
E>x(77) = (¢ + d)?Ex(7) — —ic(cT + d)
T

m Modular discriminant (with g = exp(27iT))

Amoa(r) = o (Ba(r)? — Es(r)?) =a [J(1 - "),
n=1
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n=A»A E> ~ 0-log(n), Es=r'g, Eo=rgs



Modularity and Direct Integration

m For genus one mirror curves everything can be expressed in modular
forms:

ot | Es(7)g2(z, mi)
0z Es(7)g3(2, mj)

0?2 C C or
@Fo(t, m;) = —%T(t, m;), Cer = o0t

1
81_-/:1 — At = §Cttt5tt = —8t IOg(?’])

C
St = 3 E2 ~ O log(n)

M.-x. Huang, A.-K. Kashani-Poor, A. Klemm [1109.5728]

m How does this work for mirror curves of genus two?
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Riemann surfaces of genus two

m Defined by hyperelliptic equation

5 3

y2 = X~ — v1><4 + vox® — V3x2 + vgx — v

m Weierstrass functions g», g3 replaced by Igusa invariants
[b(vi) : (Vi) = ls(vi) = ho(vi)] € P1-235)

m 7 replaced by 2x2 matrix 7;; in Siegel upper half plane

Ho={r= ( T T2 > € Mat(2 x 2,C) : 7' =7, Im(7) > 0}
Ti2 T2

m PSp(2,7Z) replaced by PSp(4,7Z), ie. isometries of symplectic

intersections
< 0 Ioxo )
—Ibxo O
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Siegel modular forms

= Holomorphic on Hy and satisfy f(y7) = det(C + 7D)f(7)

m Siegel Eisenstein series are defined as

E,Ez) = Z det(Ct + D)%
(¢.D)

m Series also diverges for k=2 and cannot be regularised!

m Cusp forms

X10 ~ Es4E6 — Exo
X12 ~ A41E} 4 250E2 — 691E;,

1
u E4 = r4l4, E6 = rﬁlé = r6§(lzl4 - 3/6), X10 = rlollo
G. van der Geer [math/0605346]
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Siegel modularity and direct integration

m Note: Intersection matrix of integral set of periods on mirror curve is
not symplectic! S. Hosono [hep-th/0404043]

0 C
Instead: ( C o >

m We found for B-Model on genus two mirror curve of C3/Z5

det <0tj> B E6(q17q27r)l4(q17q27r)
] - 6 8
0z Ea(q1, g2, r)lg(q1, a2, 1)z 23

—7 = CKC with K’J = 81—[0th0

m And one can choose A; so that

1 1 [ _0log(xw) -\”
,'F = — ,'| A,' Lty —
OiFy = —350ilog(x10) + Ar, S = 5 (C oo C
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Generalised Ramanujan identity

m For genus one mirror curves

DzSZZ - _ CZZZSZZSZZ + fZZZ

can be transformed into Ramanujan identity
I
aTEQ - E(Ez - E4)
m For genus two mirror curves

D;Skl — _Cinmskmsln + f;'kl

relates to
Rym2 S =t(S®S) + frs(7)

with
7" = — s LGP C G )
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Conclusion

Modular expressions for B-Model quantities generalise to genus two

Propagator can be chosen as logarithmic derivative of x1g
— Theory of almost meromorphic Siegel modular forms

Constraint on propagator <> generalised Ramanujan identity

Modified intersection matrix becomes important
Checked for C3/Zs for g = 0,1,2,3 and C3/Zg for g = 0,1
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Thank you!
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