Topological Strings and Siegel Modular Forms

Thorsten Schimannek
with A. Klemm, M. Poretschkin and M. Westerholt-Raum
웅 1502.00557

Outline

1 Introduction

2 Modularity for mirror curves of genus one

3 Modularity for mirror curves of genus two

4 Conclusion

Topological String Theory

$$
\mathcal{N}=(2,2) \text { nonlinear } \sigma \text {-models on Riemann surfaces } \Sigma_{g}
$$

■ Path integral localises on fixed points $\delta \psi=0$ of SUSY transformations, BUT: this needs covariantly constant spinors!
■ Solution: Modify generator of Lorentz group (Twisting)
\rightarrow Some fermions become "scalars"

- On Calabi-Yau 3-folds two different twists lead to

A-Model - depends on complexified Kähler class of target space
B-Model - depends on complex structure of target space
■ Sum over genera + integration over worldsheet complex structure
\rightarrow Topological string theory

$$
\text { Free energy } \quad F=\sum_{g} \lambda^{2-2 g} F_{g}
$$

Local Mirror Symmetry

A-Model on toric non-compact CY 3-fold \downarrow Mirror Symmetry

B-Model geometry essentially defined by Riemann surface Σ_{g}

- So far only models on mirror curves of genus one have been solved for $F_{g}, g \geq 0$
- Modular structure in these cases well known
- We calculated $F_{g}, g=0, \ldots, 3$ for mirror curve of genus two
- Generalised modular to Siegel modular Structure
 + Found genus two analogue for E_{2}

B-Model at genus 0 (and 1)

- F_{0}^{B} essentially special Geometry on $\mathcal{M}_{\text {c.s. }}$
- Choice of complex structure \leftrightarrow Integrals of meromorphic 1-form over A-cycles on Σ
■ Periods over symplectic basis $\alpha_{i}, \beta_{i} \in H_{1}, \quad i=1, \ldots, g$

$$
\Pi=\left(1, t_{i}, t_{i}^{D}\right)
$$

- $\partial_{t_{i}} F_{0}^{B}=t_{i}^{D}$ and flat coordinates t_{i} identify $\mathcal{M}_{c . s}=\mathcal{M}_{\text {Kähl }}$.

$$
F_{A}^{X}(t)=F_{B}^{Y}(t)
$$

■ Periods are annihilated by "Picard-Fuchs" operators, e.g.

$$
\left[\Theta^{3}+3 z(3 \Theta-2)(3 \Theta-1) \Theta\right] \Pi_{i}=0, \quad \Theta=z \partial_{z}
$$

- Operators can be read off from A-Model Diagram
- F_{1}^{B} can be fixed from boundary behaviour

Direct Integration

B-Model Free energies at higher genus can be obtained from holomorphic anomaly equation

$$
\frac{\partial F_{g}^{B}}{\partial S^{i j}}=\frac{1}{2}\left(D_{i} \partial_{j} F_{g-1}^{B}+\sum_{0<g^{\prime}<g} \partial_{i} F_{g^{\prime}}^{B} \partial_{j} F_{g-g^{\prime}}^{B}\right)
$$

$\left.\left.+\frac{1}{8} \bigcirc \begin{array}{l}x \\ x \\ x\end{array}\right)+\frac{1}{2} \bigcirc+\infty+\ldots\right]+f_{2}(t)$

Direct Integration

B-Model Free energies at higher genus can be obtained from holomorphic anomaly equation

$$
\frac{\partial F_{g}^{B}}{\partial S^{i j}}=\frac{1}{2}\left(D_{i} \partial_{j} F_{g-1}^{B}+\sum_{0<g^{\prime}<g} \partial_{i} F_{g^{\prime}}^{B} \partial_{j} F_{g-g^{\prime}}^{B}\right)
$$

$$
\begin{gathered}
D_{i} S^{k l}=-C_{i n m} S^{k m} S^{\prime n}+f_{i}^{k l}, \quad \Gamma_{i j}^{k}=-C_{i j l} S^{k l}+\tilde{f}_{i j}^{k} \\
\partial_{i} F_{1}=\frac{1}{2} C_{i j k} S^{j k}+A_{i} \quad \text { with } \quad C_{i j k}=\partial_{i} \partial_{j} \partial_{k} F_{0}
\end{gathered}
$$

BCOV [hep-th/9309140], M.-x. Huang, A. Klemm [1009.1126] B. Haghighat, A. Klemm, M. Rauch [0809.1674]

Riemann surfaces of genus one

- Weierstrass form of defining equation is

$$
y^{2}=4 x^{3}-g_{2}\left(z, m_{i}\right) x-g_{3}\left(z, m_{i}\right)
$$

- Note: $\left(g_{2}, g_{3}\right) \sim\left(r^{2} g_{2}, r^{3} g_{3}\right)$ for $r \in \mathbb{C}^{*}$

■ On the other hand $\Sigma_{1}(\tau)=\mathbb{C} /(1 \mathbb{Z}+\tau \mathbb{Z}), \tau \in \mathbb{C}: \operatorname{Im}(\tau)>0$

- Action of $\operatorname{Sp}(2, \mathbb{Z}) /\{ \pm 1\}$ on τ leaves Σ_{1} invariant

$$
\gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): \tau \mapsto \frac{a \tau+b}{c \tau+d}
$$

■ Modular forms of weight k on $\mathcal{H}=\{\tau \in \mathbb{C}: \operatorname{Im}(\tau)>0\}$ are holomorphic "functions" satisfying

$$
f(\gamma \tau)=(c \tau+d)^{k} f(z)
$$

Modular forms for PSp(2, Z $)$

■ Eisenstein series of weight $k=4,6,8, \ldots$

$$
E_{k}(\tau)=\frac{1}{2} \sum_{\substack{c, d \in \mathbb{Z} \\(c, d)=1}} \frac{1}{(c \tau+d)^{k}}
$$

- Can be regularised for $\mathrm{k}=2$ to give form E_{2} transforming as

$$
E_{2}(\gamma \tau)=(c \tau+d)^{2} E_{2}(\tau)-\frac{6}{\pi} i c(c \tau+d)
$$

■ Modular discriminant (with $q=\exp (2 \pi i \tau)$)

$$
\begin{aligned}
& \Delta_{\bmod }(\tau)=\frac{1}{1728}\left(E_{4}(\tau)^{3}-E_{6}(\tau)^{2}\right)=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24} \\
& \eta=\Delta_{\bmod }^{1 / 24}, \quad E_{2} \sim \partial_{\tau} \log (\eta), \quad E_{4}=r^{4} g_{2}, \quad E_{6}=r^{6} g_{3}
\end{aligned}
$$

Modularity and Direct Integration

- For genus one mirror curves everything can be expressed in modular forms:

$$
\begin{gathered}
\frac{\partial t}{\partial z}=\sqrt{\frac{E_{6}(\tau) g_{2}\left(z, m_{i}\right)}{E_{4}(\tau) g_{3}\left(z, m_{i}\right)}} \\
\frac{\partial^{2}}{\partial t^{2}} F_{0}\left(t, m_{i}\right)=-\frac{C}{2 \pi i} \tau\left(t, m_{i}\right), \quad C_{t t t}=-\frac{C}{2 \pi i} \frac{\partial \tau}{\partial t} \\
\partial_{t} F_{1}-A_{t}=\frac{1}{2} C_{t t t} S^{t t}=-\partial_{t} \log (\eta) \\
S^{t t}=\frac{c_{0}}{12} E_{2} \sim \partial_{\tau} \log (\eta) \\
\text { M.-x. Huang, A.-K. Kashani-Poor, A. Klemm [1109.5728] }
\end{gathered}
$$

■ How does this work for mirror curves of genus two?

Riemann surfaces of genus two

- Defined by hyperelliptic equation

$$
y^{2}=v_{0} x^{5}-v_{1} x^{4}+v_{2} x^{3}-v_{3} x^{2}+v_{4} x-v_{5}
$$

■ Weierstrass functions g_{2}, g_{3} replaced by Igusa invariants

$$
\left[I_{2}\left(v_{i}\right): I_{4}\left(v_{i}\right): I_{6}\left(v_{i}\right): I_{10}\left(v_{i}\right)\right] \in \mathbb{P}^{(1,2,3,5)}
$$

- τ replaced by 2×2 matrix $\tau_{i j}$ in Siegel upper half plane

$$
\mathcal{H}_{2}=\left\{\tau=\left(\begin{array}{ll}
\tau_{11} & \tau_{12} \\
\tau_{12} & \tau_{22}
\end{array}\right) \in \operatorname{Mat}(2 \times 2, \mathbb{C}): \tau^{t}=\tau, \operatorname{Im}(\tau)>0\right\}
$$

■ $\operatorname{PSp}(2, \mathbb{Z})$ replaced by $\operatorname{PSp}(4, \mathbb{Z})$, ie. isometries of symplectic intersections

$$
\left(\begin{array}{cc}
0 & \mathbb{I}_{2 \times 2} \\
-\mathbb{I}_{2 \times 2} & 0
\end{array}\right)
$$

Siegel modular forms

- Holomorphic on \mathcal{H}_{2} and satisfy $f(\gamma \tau)=\operatorname{det}(C+\tau D)^{k} f(\tau)$
- Siegel Eisenstein series are defined as

$$
E_{k}^{(2)}=\sum_{(C, D)} \operatorname{det}(C \tau+D)^{-k}
$$

- Series also diverges for $k=2$ and cannot be regularised!
- Cusp forms

$$
\begin{aligned}
\chi_{10} & \sim E_{4} E_{6}-E_{10} \\
\chi_{12} & \sim 441 E_{4}^{3}+250 E_{6}^{2}-691 E_{12} \\
\square E_{4}=r^{4} I_{4}, \quad E_{6}=r^{6} I_{6}^{\prime} & =r^{6} \frac{1}{2}\left(I_{2} I_{4}-3 I_{6}\right), \quad \chi_{10}=r^{10} I_{10} \\
& G . \text { van der Geer [math/0605346] }
\end{aligned}
$$

Siegel modularity and direct integration

■ Note: Intersection matrix of integral set of periods on mirror curve is not symplectic! S. Hosono [hep-th/0404043]

$$
\text { Instead: } \quad\left(\begin{array}{cc}
0 & C \\
-C & 0
\end{array}\right)
$$

- We found for B-Model on genus two mirror curve of $\mathbb{C}^{3} / \mathbb{Z}_{5}$

$$
\begin{aligned}
\operatorname{det}\left(\frac{\partial t_{j}}{\partial z_{i}}\right) & =\sqrt{\frac{E_{6}\left(q_{1}, q_{2}, r\right) I_{4}\left(q_{1}, q_{2}, r\right)}{E_{4}\left(q_{1}, q_{2}, r\right) I_{6}^{\prime}\left(q_{1}, q_{2}, r\right) z_{1}^{\frac{6}{5}} z_{2}^{\frac{8}{5}}}} \\
-\tau & =\text { CKC with } \quad K_{i j}=\partial_{t_{i}} \partial_{t_{j}} F_{0}
\end{aligned}
$$

- And one can choose A_{i} so that

$$
\partial_{i} F_{1}=-\frac{1}{20} \partial_{i} \log \left(\chi_{10}\right)+A_{i}, \quad S^{t_{i} t_{j}}=\frac{1}{10}\left(C \frac{\partial \log \left(\chi_{10}\right)}{\partial \tau} C\right)^{i j}
$$

Generalised Ramanujan identity

■ For genus one mirror curves

$$
D_{z} S^{z z}=-C_{z z z} S^{z z} S^{z z}+f_{z}^{z z}
$$

can be transformed into Ramanujan identity

$$
\partial_{\tau} E_{2}=\frac{1}{12}\left(E_{2}^{2}-E_{4}\right)
$$

- For genus two mirror curves

$$
D_{i} S^{k l}=-C_{i n m} S^{k m} S^{l n}+f_{i}^{k l}
$$

relates to

$$
R_{\mathrm{sym}^{2}} S=\mathrm{t}(S \otimes S)+f_{\mathrm{R} S}(\tau)
$$

with

$$
f_{i}^{m n}=-C_{i r s} C_{k}^{r} C_{l}^{s} C_{o}^{m} C_{p}^{n}\left(f_{\mathrm{RS}}\right)^{k l, o p}
$$

Conclusion

- Modular expressions for B-Model quantities generalise to genus two

■ Propagator can be chosen as logarithmic derivative of χ_{10}
\rightarrow Theory of almost meromorphic Siegel modular forms
■ Constraint on propagator \leftrightarrow generalised Ramanujan identity
■ Modified intersection matrix becomes important

- Checked for $\mathbb{C}^{3} / \mathbb{Z}_{5}$ for $g=0,1,2,3$ and $\mathbb{C}^{3} / \mathbb{Z}_{6}$ for $g=0,1$

Thank you!

