Non-Supersymmetric Heterotic Model Building

Orestis Loukas Arnold Sommerfeld Center for Theoretical Physics Ludwig-Maximilians-University, Munich

based on JHEP10(2014)119(arXiv:1407.6362)

together with

Michael Blaszczyk (Mainz) Stefan Groot Nibbelink (Munich) Saul Ramos-Sánchez (Mexico)

∃ ► < ∃ ►</p>

Overview

1

Non-SUSY SO(16) \times SO(16)

- Motivation
- 10D formulation
- Orbifolds of SO(16)×SO(16)
- $\mathcal{N} = 0$ model building

Non-SUSY smooth compactifications

- CY threefolds
- (No) tachyons

Conclusion & outlook

• Conventional approach to systematic SUSY model-building Anderson,Blaszczyk,Bouchard,Braun,Buchmuller,Donagi,Gray,Groot Nibbelink,He,Kim,Lebedev,OL,Lukas,Nilles,Oehlmann,Ovrut,Ramos-Sánchez,Ratz,Rühle,Trapletti,Vaudrevange,Wingerter...

- Conventional approach to systematic SUSY model-building Anderson,Blaszczyk,Bouchard,Braun,Buchmuller,Donagi,Gray,Groot Nibbelink,He,Kim,Lebedev,OL,Lukas,Nilles,Oehlmann,Ovrut,Ramos-Sánchez,Ratz,Rühle,Trapletti,Vaudrevange,Wingerter...
 - begin with E₈×E₈ on SUSY preserving compactification e.g. orbifolds, CY, non-geometric constructions...
 - look for MSSM-like models
 - introduce SUSY to obtain SM-like model

Motivation: Where is SUSY?

Figure : ATLAS analysis on experimental bounds for stop and neutralino masses, published 20 July 2013

Motivation: Where is SUSY?

• Search for non-SUSY string models

3

過 ト イヨ ト イヨト

Motivation: Where is SUSY?

- Search for non-SUSY string models
- Previous studies
 - Free fermionic construction with non-SUSY B.C. Dienes'94,'06, Faraggi,Tsulaia'07
 - Non-SUSY orbifolds of heterotic theories Chamseddine, Derendinger, Quiros'88, Taylor'88, Toon'90, Sasada'95, Font, Hernandez'02
 - Non-SUSY orientifold of type II theories Sagnotti'95, Angelantonj'98 Blumenhagen, Font, Luest'99, Aldazabal, Ibanez, Quevedo'99
 - Non-SUSY RCFT's
 - Gato-Rivera, Schellekens'07

Heterotic $SO(16) \times SO(16)$

• Tachyon-free & Anomaly-free 10D non-SUSY heterotic theory Dixon,Harvey'86, Alvarez-Gaume,Ginsparg,Moore,Vafa'86

Heterotic $SO(16) \times SO(16)$

• Tachyon-free & Anomaly-free 10D non-SUSY heterotic theory Dixon,Harvey'86, Alvarez-Gaume,Ginsparg,Moore,Vafa'86

s Fields	osons	G_{MN}, B_{MN}, ϕ	Graviton, Kalb-Ramond 2-form, dilaton
	Bos	A_M	Gauge bosons of $SO(16) \times SO(16)$
Massless	ions	Ψ_+	Spinors in (128,1) and (1,128)
	⊥ Ler Ler	Ψ_{-}	Cospinors in (16 , 16)

Heterotic $SO(16) \times SO(16)$

• Tachyon-free & Anomaly-free 10D non-SUSY heterotic theory Dixon,Harvey'86, Alvarez-Gaume,Ginsparg,Moore,Vafa'86

Orestis Loukas (ASC, LMU)

• Begin with 10D heterotic theory

Left-movers	Right-movers	
X_L^{μ}	$\left(X^{\mu}_{R}, \Psi^{\mu}_{R} ight)$	$\mu=0,,9$
X_L^I	_	I=1,,16

47 ▶

3

- Left-movers **Right-movers** Begin with 10D X_L^{μ} $(X_B^{\mu}, \Psi_B^{\mu}) \qquad \mu = 0, ..., 9$ heterotic theory X_L^I - I = 1, ..., 16
- 6D internal space on T^6

3

47 ▶

- Begin with 10D heterotic theory Left-movers Right-movers X_L^{μ} $(X_R^{\mu}, \Psi_R^{\mu})$ $\mu = 0, ..., 9$ X_L^I - I = 1, ..., 16
- 6D internal space on T^6
- Identification $z^i \sim e^{2\pi i v^i} z^i$ on T^6 by twist vector $v = (0, v_1, v_2, v_3)$

- Begin with 10D heterotic theory Left-movers Right-movers X_L^{μ} $(X_R^{\mu}, \Psi_R^{\mu})$ $\mu = 0, ..., 9$ X_L^I - I = 1, ..., 16
- 6D internal space on T^6
- Identification $z^i \sim e^{2\pi i v^i} z^i$ on T^6 by twist vector $v = (0, v_1, v_2, v_3)$

• Shift on gauge 16-torus by $V: X_L^I \sim X_L^I + \pi V^I$

Orestis Loukas (ASC, LMU)

Orestis Loukas (ASC, LMU)

3

A

• Fermions Ψ_R respond to 2π twist by acquiring (-1)

Orestis Loukas (ASC, LMU)

• Fermions Ψ_R respond to 2π twist by acquiring (-1)

 \Rightarrow twist GSO to kill space-time SUSY \Rightarrow SUSY at tree level

Orestis Loukas (ASC, LMU)

- Fermions Ψ_R respond to 2π twist by acquiring (-1) \Rightarrow twist GSO to kill space-time SUSY \Rightarrow SUSY at tree level
- Orbifold-like construction, e.g. orbifold of $E_8 \times E_8$

Orestis Loukas (ASC, LMU)

- Fermions Ψ_R respond to 2π twist by acquiring (-1) \Rightarrow twist GSO to kill space-time SUSY \Rightarrow SUSY at tree level
- Orbifold-like construction, e.g. orbifold of $E_8 \times E_8$
 - \Rightarrow freely acting SUSY \mathbb{Z}_2 moding with

$$v_0 = (0, 1, 1, 1)$$
 and $V_0 = (1, 0^7)(1, 0^7)'$

4 1 1 4 1 1 1

• For phenomenology we want to compactify down to 4D using toroidal orbifolds

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- For phenomenology we want to compactify down to 4D using toroidal orbifolds
- Singular geometries not preserving SUSY
 - ▶ more than 29, 100, 000
 - > a full classification lacking, but in principle straightforward

- For phenomenology we want to compactify down to 4D using toroidal orbifolds
- Singular geometries not preserving SUSY
 - more than 29, 100, 000
 - a full classification lacking, but in principle straightforward
- Choose SUSY-preserving singular geometries
 - well-studied, exploit previous techniques
 - abelian symmetric toroidal orbifolds fully classified Fischer, Ratz, Torrado, Vaudrevange'12
 - gain computational control

- 3

• We may think of construction as $\mathbb{Z}_2 \times \mathbb{Z}_N \times \mathbb{Z}_M$ orbifold of $\mathsf{E}_8 \times \mathsf{E}_8$

イロト 不得下 イヨト イヨト 二日

- We may think of construction as $\mathbb{Z}_2 \times \mathbb{Z}_N \times \mathbb{Z}_M$ orbifold of $\mathsf{E}_8 \times \mathsf{E}_8$
 - Compactify E₈×E₈ using

$$v_g = lv_0 + kv$$
$$V_g = lV_0 + kV$$

with $v_0 = (0, 1, 1, 1)$ \mathbb{Z}_2 SUSY twist with $\sum v_i = 0$ \mathbb{Z}_N SUSY twist k = 0, ..., N - 1

- We may think of construction as $\mathbb{Z}_2 \times \mathbb{Z}_N \times \mathbb{Z}_M$ orbifold of $\mathsf{E}_8 \times \mathsf{E}_8$
 - Compactify E₈×E₈ using

 $v_q = lv_0 + kv$

 $V_a = lV_0 + kV$

with $v_0 = (0, 1, 1, 1)$ \mathbb{Z}_2 SUSY twist with $\sum v_i = 0$ \mathbb{Z}_N SUSY twist k = 0, ..., N - 1

Same consistency conditions as in SUSY case from orbifold periodicity and modular invariance

$$Nv \in \mathbb{Z}^4$$
, $NV \in \mathsf{E}_8 imes \mathsf{E}_8$,
 $rac{N}{2}(V^2 - v^2) \equiv 0$, $V \cdot V_0 \equiv 0$

Orestis Loukas (ASC, LMU)

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- We may think of construction as $\mathbb{Z}_2 \times \mathbb{Z}_N \times \mathbb{Z}_M$ orbifold of $\mathsf{E}_8 \times \mathsf{E}_8$
 - Compactify E₈×E₈ using

 $v_q = lv_0 + kv$

 $V_a = lV_0 + kV$

with $v_0 = (0, 1, 1, 1)$ \mathbb{Z}_2 SUSY twist with $\sum v_i = 0$ \mathbb{Z}_N SUSY twist k = 0, ..., N - 1

Same consistency conditions as in SUSY case from orbifold periodicity and modular invariance

$$Nv \in \mathbb{Z}^4$$
, $NV \in \mathsf{E}_8 \times \mathsf{E}_8$,
 $\frac{N}{2}(V^2 - v^2) \equiv 0$, $V \cdot V_0 \equiv 0$

▶ Include $\mathbb{Z}_N \times \mathbb{Z}_M$ orbifolds and Wilson lines

Orbifolds of $SO(16) \times SO(16)$: Tachyons

• Tachyons from twisted right-movers

Orestis Loukas (ASC, LMU)

 $\mathcal{N} = 0$ heterotic strings

Bad Honnef, March 16, 2015 11 / 20

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Orbifolds of $SO(16) \times SO(16)$: Tachyons

• Tachyons from twisted right-movers

Orbifold	Twist	Tachyons	Orbifold	Twist	Tachyons
T^6/\mathbb{Z}_3	$\frac{1}{3}(1,1,-2)$	forbidden	$T^6/\mathbb{Z}_2 \times \mathbb{Z}_2$	$\frac{1}{2}(1,-1,0); \frac{1}{2}(0,1,-1)$	forbidden
T^6/\mathbb{Z}_4	$\frac{1}{4}(1,1,-2)$	forbidden	$T^6/\mathbb{Z}_2 \times \mathbb{Z}_4$	$\frac{1}{2}(1,-1,0); \frac{1}{4}(0,1,-1)$	possible
T^6/\mathbb{Z}_{6-1}	$\frac{1}{6}(1,1,-2)$	possible	$T^6/\mathbb{Z}_2 imes \mathbb{Z}_{6-1}$	$\frac{1}{2}(1,-1,0); \frac{1}{6}(1,1,-2)$	possible
T^6/\mathbb{Z}_{6-H}	$\frac{1}{6}(1,2,-3)$	possible	$T^6/\mathbb{Z}_2 imes \mathbb{Z}_{6-H}$	$\frac{1}{2}(1,-1,0); \frac{1}{6}(0,1,-1)$	possible
T^6/\mathbb{Z}_7	$\frac{1}{7}(1,2,-3)$	possible	$T^6/\mathbb{Z}_3 \times \mathbb{Z}_3$	$\frac{1}{3}(1,-1,0); \frac{1}{3}(0,1,-1)$	possible
T^6/\mathbb{Z}_{8-1}	$\frac{1}{8}(1,2,-3)$	possible	$T^6/\mathbb{Z}_3 \times \mathbb{Z}_6$	$\frac{1}{3}(1,-1,0); \frac{1}{6}(0,1,-1)$	possible
T^6/\mathbb{Z}_{8-H}	$\frac{1}{8}(1,3,-4)$	possible	$T^6/\mathbb{Z}_4 \times \mathbb{Z}_4$	$\frac{1}{4}(1,-1,0); \frac{1}{4}(0,1,-1)$	possible
T^6/\mathbb{Z}_{12-I}	$\frac{1}{12}(1,4,-5)$	possible	$T^6/\mathbb{Z}_6 \times \mathbb{Z}_6$	$\frac{1}{6}(1,-1,0); \frac{1}{6}(0,1,-1)$	possible
T^6/\mathbb{Z}_{12-II}	$\frac{1}{12}(1,5,-6)$	possible			

3

11 / 20

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Orbifolds of $SO(16) \times SO(16)$: Tachyons

• Tachyons from twisted right-movers

Orbifold	Twist	Tachyons	Orbifold	Twist	Tachyons
T^6/\mathbb{Z}_3	$\frac{1}{3}(1,1,-2)$	forbidden	$T^6/\mathbb{Z}_2 \times \mathbb{Z}_2$	$\frac{1}{2}(1,-1,0); \frac{1}{2}(0,1,-1)$	forbidden
T^6/\mathbb{Z}_4	$\frac{1}{4}(1,1,-2)$	forbidden	$T^6/\mathbb{Z}_2 \times \mathbb{Z}_4$	$\frac{1}{2}(1,-1,0); \frac{1}{4}(0,1,-1)$	possible
T^6/\mathbb{Z}_{6-1}	$\frac{1}{6}(1,1,-2)$	possible	$T^6/\mathbb{Z}_2 imes \mathbb{Z}_{6-1}$	$\frac{1}{2}(1,-1,0); \frac{1}{6}(1,1,-2)$	possible
T^6/\mathbb{Z}_{6-H}	$\frac{1}{6}(1,2,-3)$	possible	$T^6/\mathbb{Z}_2 imes \mathbb{Z}_{6-H}$	$\frac{1}{2}(1,-1,0); \frac{1}{6}(0,1,-1)$	possible
T^6/\mathbb{Z}_7	$\frac{1}{7}(1,2,-3)$	possible	$T^6/\mathbb{Z}_3 \times \mathbb{Z}_3$	$\frac{1}{3}(1,-1,0); \frac{1}{3}(0,1,-1)$	possible
T^6/\mathbb{Z}_{8-1}	$\frac{1}{8}(1,2,-3)$	possible	$T^6/\mathbb{Z}_3 \times \mathbb{Z}_6$	$\frac{1}{3}(1,-1,0); \frac{1}{6}(0,1,-1)$	possible
T^6/\mathbb{Z}_{8-H}	$\frac{1}{8}(1,3,-4)$	possible	$T^6/\mathbb{Z}_4 \times \mathbb{Z}_4$	$\frac{1}{4}(1,-1,0); \frac{1}{4}(0,1,-1)$	possible
T^6/\mathbb{Z}_{12-I}	$\frac{1}{12}(1,4,-5)$	possible	$T^6/\mathbb{Z}_6 \times \mathbb{Z}_6$	$\frac{1}{6}(1,-1,0); \frac{1}{6}(0,1,-1)$	possible
T^6/\mathbb{Z}_{12-II}	$\frac{1}{12}(1,5,-6)$	possible			

• When tachyons possible in a geometry, not all models tachyonic, some of the tachyons remain unlevel-matched or are killed by orbifold projection

Orestis Loukas (ASC, LMU)

$\mathcal{N} = 0$ heterotic model building

• Look for SM-like models

3

過 ト イヨ ト イヨト

$\mathcal{N} = 0$ heterotic model building

- Look for SM-like models
 - Only massless spectrum
 - Standard Model gauge group

3

$\mathcal{N} = 0$ heterotic model building

- Look for SM-like models
 - Only massless spectrum
 - Standard Model gauge group
 - Matter spectrum

Fermions	Bosons	
Net number three of SM-families	At least one Higgs doublet	
Vector-like pairs of exotics	Scalar exotics unconstrained	

Orestis Loukas (ASC, LMU)

3

$\mathcal{N}=0$ heterotic model building

- Look for SM-like models
 - Only massless spectrum
 - Standard Model gauge group
 - Matter spectrum

Fermions	Bosons
Net number three of SM-families	At least one Higgs doublet
Vector-like pairs of exotics	Scalar exotics unconstrained

• Equivalency of two models at the level of non-Abelian representations

Orestis Loukas (ASC, LMU)

$\mathcal{N}=0$ heterotic model building

• An example of one-Higgs SM-like model with gauge group

 $G_{\mathsf{obs}} = \mathsf{SU}(3)_C \times \mathsf{SU}(2)_L \times \mathsf{U}(1)_Y \text{ and } G_{\mathsf{hidden}} = \mathsf{SU}(4)' \times \mathsf{SU}(2)'$

Sector	Massless spectrum: chiral fermions / complex bosons
Observable	$3(3, 2)_{1/6} + 3(\overline{3}, 1)_{-2/3} + 6(\overline{3}, 1)_{1/3} + 3(3, 1)_{-1/3} + 3(1, 1)_1$
	$5(1,2)_{-1/2} + 2(1,2)_{1/2}$
	$20(1,1)_{1/2} + 20(1,1)_{-1/2} + 6(3,1)_{1/6} + 6(\mathbf{\overline{3}},1)_{-1/6} + 2(1,2)_0$
Obs. & Hid.	$3(1,1;1,2)_{1/2} + 3(1,1;1,2)_{-1/2}$
Hidden	$14(1,2)_0 + 10(\overline{4},1)_0 + 6(4,1)_0 + 4(6,1)_0 + 2(4,2)_0 + 71(1)_0$
Observable	$(1, 2)_{-1/2}$
	$(3,1)_{1/6} + (\overline{3},1)_{-1/6} + 2(\overline{3},1)_{1/3} + 13(1,2)_0$
	$+20(1,1)_{-1/2}+18(1,1)_{1/2}$
Obs. & Hid.	$(1,1;4,1)_{1/2}+(1,1;4,1)_{-1/2}+(1,2;1,2)_0$
Hidden	$14(1,2)_0 + 4(4,1)_0 + (6,2)_0 + 23(1)_0$

Orestis Loukas (ASC, LMU)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

$\mathcal{N} = 0$ heterotic model building: Results

• Results from a first approach scan using modified version of *The Orbifolder* Nilles,Ramos-Sánchez,Vaudrevange,Wingerter'11

Orbifold		Inequivalent	Tachyon-free	SM-like
twist	#(geom)	scanned models	percentage	models
\mathbb{Z}_3	(1)	74,958	100 %	128
\mathbb{Z}_4	(3)	1,100,336	100 %	12
ℤ ₆₋	(2)	148,950	55 %	59
\mathbb{Z}_{6-II}	(4)	15,036,790	57 %	109
\mathbb{Z}_{8-1}	(3)	2,751,085	51 %	24
\mathbb{Z}_{8-11}	(2)	4,397,555	71 %	187
$\mathbb{Z}_2 \times \mathbb{Z}_2$	(12)	9,546,081	100 %	1,562
$\mathbb{Z}_2 \times \mathbb{Z}_4$	(10)	17,054,154	67 %	7,958
$\mathbb{Z}_3 \times \mathbb{Z}_3$, (5)	11,411,739	52 %	284
$\mathbb{Z}_4 \times \mathbb{Z}_4$	(5)	15,361,570	64 %	2,460

Orestis Loukas (ASC, LMU)

$\mathcal{N} = 0$ heterotic model building: Results

• Results from a first approach scan using modified version of *The Orbifolder* Nilles,Ramos-Sánchez,Vaudrevange,Wingerter'11

Orbifold		Inequivalent	Tachyon-free	SM-like
twist	#(geom)	scanned models	percentage	models
\mathbb{Z}_3	(1)	74,958	100 %	128
\mathbb{Z}_4	(3)	1,100,336	100 %	12
ℤ ₆₋	(2)	148,950	55 %	59
\mathbb{Z}_{6-II}	(4)	15,036,790	57 %	109
\mathbb{Z}_{8-1}	(3)	2,751,085	51 %	24
\mathbb{Z}_{8-11}	(2)	4,397,555	71 %	187
$\mathbb{Z}_2 \times \mathbb{Z}_2$	(12)	9,546,081	100 %	1,562
$\mathbb{Z}_2 \times \mathbb{Z}_4$	(10)	17,054,154	67 %	7,958
$\mathbb{Z}_3 \times \mathbb{Z}_3$, (5)	11,411,739	52 %	284
$\mathbb{Z}_4 \times \mathbb{Z}_4$	(5)	15,361,570	64 %	2,460

Orestis Loukas (ASC, LMU)

$\mathcal{N} = 0$ heterotic model building: Results

• Results from a first approach scan using modified version of *The Orbifolder* Nilles, Ramos-Sánchez, Vaudrevange, Wingerter'11

Orestis Loukas (ASC, LMU)

Bad Honnef, March 16, 2015

3 D (3 D)

$\mathcal{N} = 0$ heterotic model building: Results

• Results from a first approach scan using modified version of *The Orbifolder* Nilles, Ramos-Sánchez, Vaudrevange, Wingerter'11

Orestis Loukas (ASC, LMU)

Bad Honnef, March 16, 2015

3 D (3 D)

- On arbitrary smooth manifold
 - difficult to compute index of bosons
 - not clear how to deal with tachyons

- On arbitrary smooth manifold
 - difficult to compute index of bosons
 - not clear how to deal with tachyons
- On $\mathcal{N} = 1$ CY threefolds

- On arbitrary smooth manifold
 - difficult to compute index of bosons
 - not clear how to deal with tachyons
- On $\mathcal{N} = 1$ CY threefolds
 - exploit background SUSY to compute 4D massless spectrum for fermions & bosons
 - e.g. using index theorems for fermions

- On arbitrary smooth manifold
 - difficult to compute index of bosons
 - not clear how to deal with tachyons
- On $\mathcal{N} = 1$ CY threefolds
 - exploit background SUSY to compute 4D massless spectrum for fermions & bosons
 - e.g. using index theorems for fermions
 - \blacktriangleright in particular for bosons, Laplace operator $\Delta \sim (~i \not\!\! D ~)^2$
 - \Rightarrow bosonic spectrum bounded from below

(過) (モン・モン・ヨ)

16 / 20

• What happens with orbifold tachyons?

イロト 不得 トイヨト イヨト 二日

- What happens with orbifold tachyons?
- Consider particular example: T^6/\mathbb{Z}_{6-1} orbifold of $\mathcal{N}=0$ theory

Non-Abelian gauge group: $SU(5) \times SU(4)' \times SO(4)' \times SU(2)'$	
States	Representations of massless spectrum
Bosonic tachyons	3 (1;1,1,2)
Massless	$4(10;1) + (\overline{10};1) + 6(5;1) + 3(\overline{5};1) + (5;1,4,1) + 2(\overline{5};1,1,2) + (5;1,1,2)$
chiral fermions	$+2(\overline{\bf 5};{\bf 4},{\bf 1},{\bf 1})+12({\bf 1};{\bf 4},{\bf 1},{\bf 1})+18({\bf 1};\overline{\bf 4},{\bf 1},{\bf 1})+2({\bf 1};\overline{\bf 4},{\bf 2}_{-},{\bf 2})+2({\bf 1};{\bf 4},{\bf 2}_{+},{\bf 1})$
	$+(1; 6, 2_{-}, 1) + (1; 6, 2_{+}, 1) + 12(1; 1, 2_{+}, 2) + 4(1; 1, 4, 1) + 36(1; 1, 2_{-}, 1)$
	$+30(1; 1, 2_+, 1) + 11(1; 1, 1, 2) + 53(1; 1)$
Massless	$9(5;1) + 2(\overline{5};1) + (\overline{10};1) + (1;1,4,2) + 30(1;1,2,1) + 12(1;6,1,1)$
complex scalars	$+2(1;4,1,2)+2(1,\overline{4},4,1)+22(1;1,2_{+},1)+10(1;1,2_{-},2)+46(1;1)$

- 御下 - 西下 - 西下 - 西

17 / 20

- What happens with orbifold tachyons?
- Consider particular example: T^6/\mathbb{Z}_{6-1} orbifold of $\mathcal{N}=0$ theory

Non-Abelian gauge group: $SU(5) \times SU(4)' \times SU(4)' \times SU(2)'$	
States	Representations of massless spectrum
Bosonic tachyons	3 (1;1,1,2)
Massless	$4(10; 1) + (\overline{10}; 1) + 6(5; 1) + 3(\overline{5}; 1) + (5; 1, 4, 1) + 2(\overline{5}; 1, 1, 2) + (5; 1, 1, 2)$
chiral fermions	$+2(\overline{\bf 5};{\bf 4},{\bf 1},{\bf 1})+12({\bf 1};{\bf 4},{\bf 1},{\bf 1})+18({\bf 1};\overline{\bf 4},{\bf 1},{\bf 1})+2({\bf 1};\overline{\bf 4},{\bf 2}_{-},{\bf 2})+2({\bf 1};{\bf 4},{\bf 2}_{+},{\bf 1})$
	$+(1; 6, 2_{-}, 1) + (1; 6, 2_{+}, 1) + 12(1; 1, 2_{+}, 2) + 4(1; 1, 4, 1) + 36(1; 1, 2_{-}, 1)$
	$+30 ({\bf 1};{\bf 1},{\bf 2}_+,{\bf 1})+11 ({\bf 1};{\bf 1},{\bf 1},{\bf 2})+53 ({\bf 1};{\bf 1})$
Massless	$9(5;1) + 2(\overline{5};1) + (\overline{10};1) + (1;1,4,2) + 30(1;1,2_{-},1) + 12(1;6,1,1)$
complex scalars	$+2(1;4,1,2)+2(1,\overline{4},4,1)+22(1;1,2_{+},1)+10(1;1,2_{-},2)+46(1;1)$

 Resolution of this model by standard techniques Lüst, Reffert, Scheidegger, Stieberger'08, Groot Nibbelink, Nilles, Trapletti'08

Orestis Loukas (ASC, LMU)

State	Sector	Representation
Tachyon t	θ^1	(1; 1, 1, 2)
Blow-up mode b	θ^2	$({f 1};{f 1},{f 2},{f 1})$

$$V(t,b) = -m_t^2 |t|^2 + |\lambda|^2 |b|^2 |t|^2 + \mathcal{O}(b^4, t^4)$$

3

(人間) システン イラン

State	Sector	Representation
Tachyon t	θ^1	(1; 1, 1, 2)
Blow-up mode b	θ^2	$({f 1};{f 1},{f 2},{f 1})$

$$V(t,b) = -m_t^2 |t|^2 + |\lambda|^2 |b|^2 |t|^2 + \mathcal{O}(b^4, t^4)$$

Field-theoretical Motivation

Orestis Loukas (ASC, LMU)

 $\mathcal{N} = 0$ heterotic strings

• • = • • = • Bad Honnef, March 16, 2015 18 / 20

3

State	Sector	Representation
Tachyon t	θ^1	(1; 1, 1, 2)
Blow-up mode b	θ^2	$({f 1};{f 1},{f 2},{f 1})$

$$V(t,b) = -m_t^2 |t|^2 + |\lambda|^2 |b|^2 |t|^2 + \mathcal{O}(b^4, t^4)$$

• Field-theoretical Motivation

- sign ambiguity of 2nd term
- ▶ on CY Δ -spectrum non-negative

 \Rightarrow ambiguous sign has to be "+"

State	Sector	Representation
Tachyon t	θ^1	(1; 1, 1, 2)
Blow-up mode b	θ^2	$({f 1};{f 1},{f 2},{f 1})$

$$V(t,b) = -m_t^2 |t|^2 + |\lambda|^2 |b|^2 |t|^2 + \mathcal{O}(b^4, t^4)$$

- Field-theoretical Motivation
 - sign ambiguity of 2nd term
 - ▶ on CY Δ -spectrum non-negative

 \Rightarrow ambiguous sign has to be "+"

• In large volume limit tachyon gets lifted

$$\blacktriangleright |b|^2 \sim \operatorname{Vol}(E_r) \gg M_s^2 \sim |m_t|^2$$

• Non-SUSY SO $(16) \times$ SO(16)

æ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Non-SUSY SO $(16) \times$ SO(16)
- Constructed more than 12000 SM-like models on selected orbifold geometries

3

伺下 イヨト イヨト

- Non-SUSY SO $(16) \times$ SO(16)
- Constructed more than 12000 SM-like models on selected orbifold geometries
- $\bullet\,$ Non-SUSY theory on $\mathcal{N}=1$ smooth geometries
 - No tree-level tachyons in large volume limit

A D A D A D A

- Non-SUSY SO $(16) \times$ SO(16)
- Constructed more than 12000 SM-like models on selected orbifold geometries
- Non-SUSY theory on $\mathcal{N}=1$ smooth geometries
 - No tree-level tachyons in large volume limit
- Basic issues with non-SUSY models:
 - \blacktriangleright Tachyons can get induced by α' and g_s corrections

- Non-SUSY $SO(16) \times SO(16)$
- Constructed more than 12000 SM-like models on selected orbifold geometries
- Non-SUSY theory on $\mathcal{N} = 1$ smooth geometries
 - No tree-level tachyons in large volume limit
- Basic issues with non-SUSY models:
 - \blacktriangleright Tachyons can get induced by α' and g_s corrections
 - \blacktriangleright Cosmological constant Λ and destabilizing dilaton tadpole

3

- Some future directions:
 - Systematic non-SUSY model searches on smooth CY's e.g. CICY, with (line) bundles Work in progress...

3

- Some future directions:
 - Systematic non-SUSY model searches on smooth CY's e.g. CICY, with (line) bundles Work in progress...
 - Investigate perturbative as well as non-perturbative generation of tachyons
 e.g. how N = 0 theory reacts in presence of NS5-brane

- Some future directions:
 - Systematic non-SUSY model searches on smooth CY's e.g. CICY, with (line) bundles Work in progress...
 - Investigate perturbative as well as non-perturbative generation of tachyons
 e.g. how N = 0 theory reacts in presence of NS5-brane
 - Investigate the cosmological constant issue in non-SUSY string models Angelantonj,Florakis,Tsulaia'14, Abel,Dienes,Mavroudi'15

Orestis Loukas (ASC, LMU)

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

10D formulation of $SO(16) \times SO(16)$

Lattices in the theory		
N=1, $E_8 \times E_8$	N=0, SO(16)×SO(16)	
$V_4\otimesR_8\otimesR_8$	${f V}_4\otimes{f R}_8\otimes{f R}_8$	
$V_4\otimesS_8\otimesS_8$	${f V}_4\otimes{f S}_8\otimes{f S}_8$	
${f V}_4\otimes{f S}_8\otimes{f R}_8$	${f R}_4 \otimes {f C}_8 \otimes {f V}_8$	
$V_4\otimesR_8\otimesS_8$	${f R}_4\otimes {f V}_8\otimes {f C}_8$	
$S_4 \otimes S_8 \otimes R_8$	${\sf S}_4\otimes{\sf S}_8\otimes{\sf R}_8$	
${f S}_4\otimes{f R}_8\otimes{f S}_8$	${f S}_4\otimes {f R}_8\otimes {f S}_8$	
${f S}_4\otimes {f R}_8\otimes {f R}_8$	$C_4\otimesV_8\otimesV_8$	
$S_4\otimesS_8\otimesS_8$	$C_4\otimesC_8\otimesC_8$	

Orestis Loukas (ASC, LMU)

 $\mathcal{N} = 0$ heterotic strings

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > ⊇
 Bad Honnef, March 16, 2015

20 / 20

• On arbitrary smooth manifold difficult to compute index of bosons

3

・ 同 ト ・ ヨ ト ・ ヨ ト

- On arbitrary smooth manifold difficult to compute index of bosons
- On $\mathcal{N} = 1$ CY threefolds exploit background SUSY to compute 4D massless spectrum, in particular

< 回 ト < 三 ト < 三 ト

- On arbitrary smooth manifold difficult to compute index of bosons
- On $\mathcal{N}=1$ CY threefolds exploit background SUSY to compute 4D massless spectrum, in particular

Massless fermions

- spinors in (128,1) and (1,128)
- cospinors in (16,16)

Massless bosons	
Gravity sector	

• (120,1) and (1,120) adjoint

- On arbitrary smooth manifold difficult to compute index of bosons
- On $\mathcal{N} = 1$ CY threefolds exploit background SUSY to compute 4D massless spectrum, in particular

• Standard index theorems to determine multiplicity of 4D fermions

Orestis Loukas (ASC, LMU)

20 / 20

- On arbitrary smooth manifold difficult to compute index of bosons
- On $\mathcal{N} = 1$ CY threefolds exploit background SUSY to compute 4D massless spectrum, in particular

- Standard index theorems to determine multiplicity of 4D fermions
- To calculate multiplicities of 4D bosons, use index of their fermionic superpartners, before the latter are projected out by SUSY \mathbb{Z}_2

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

10D formulation of $SO(16) \times SO(16)$

	Massless Fields	10D Space-time interpretation
Bosons	G_{MN}, B_{MN}, ϕ	Graviton, Kalb-Ramond 2-form, dilaton
	A_M	Gauge bosons of $SO(16) \times SO(16)$
Fermions	Ψ_+	Spinors in (128,1) and (1,128)
	Ψ_{-}	Cospinors in (16 , 16)

- Bosons and Spinors come from untwisted sector of \mathbb{Z}_2^{SUSY}
- Cospinors come from twisted sector of $\mathbb{Z}_2^{\text{SUSY}}$

Orestis Loukas (ASC, LMU)

$\mathcal{N}=0$ heterotic model building

- Computer-aided scans in SM-landscape
 - modified version of *The Orbifolder* using orbifold formulation Nilles, Ramos-Sánchez, Vaudrevange, Wingerter'11
 - anomaly cancellation in 4D

$\mathcal{N}=0$ heterotic model building

- Computer-aided scans in SM-landscape
 - modified version of *The Orbifolder* using orbifold formulation Nilles, Ramos-Sánchez, Vaudrevange, Wingerter'11
 - anomaly cancellation in 4D
- Further consistency checks
 - independent Mathematica code using torsion phase formulation
 - matching spectra with resolved models (see below)

20 / 20

Heterotic $SO(16) \times SO(16)$

• 10D non-SUSY superstring theory: $SO(16) \times SO(16)$

Heterotic $SO(16) \times SO(16)$

• 10D non-SUSY superstring theory: $SO(16) \times SO(16)$

• Relation to both heterotic $E_8 \times E_8$ and SO(32)

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Heterotic $SO(16) \times SO(16)$

• 10D non-SUSY superstring theory: $SO(16) \times SO(16)$

- Relation to both heterotic $E_8 \times E_8$ and SO(32)
- To see this at the level of partition function of either standard heterotic theory:
 - introduce modular invariant non-SUSY generalized discrete torsion phases or equivalently
 - perform 10D orbifold-like construction to break SUSY
 - \Rightarrow SUSY broken already at tree level

20 / 20

 $\bullet~{\rm On}~{\cal N}=1~{\rm CY}$ we can avoid tachyons by working in large volume approximation

イロト 不得 トイヨト イヨト 二日

- On $\mathcal{N}=1$ CY we can avoid tachyons by working in large volume approximation
- Evidence for no tachyons on CY's with a vector bundle:
 - ► In general, the reduction of 10D bosonic action on CY uses only the bosonic lowest component of superfields, whose fermionic part maybe projected out by SUSY Z₂

- On $\mathcal{N}=1$ CY we can avoid tachyons by working in large volume approximation
- Evidence for no tachyons on CY's with a vector bundle:
 - ► In general, the reduction of 10D bosonic action on CY uses only the bosonic lowest component of superfields, whose fermionic part maybe projected out by SUSY Z₂

▶ Zero modes of Laplace opetator determine massless bosons $\Delta \sim (iD)^2 ~\longrightarrow ~\Delta\text{-spectrum is non-negative}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

$SO(16) \times SO(16)$: Open questions

BUT

 \blacktriangleright orbifold tachyons can get induced by α' and g_s corrections

$SO(16) \times SO(16)$: Open questions

BUT

- \blacktriangleright orbifold tachyons can get induced by α' and g_s corrections
- However in SM we need negative Higgs mass for EWSB
 - ▶ MSSM: $m_h < 0$ induced by SUSY, hierarchy problem

 $\blacktriangleright~{\cal N}=0$ models: similar problem, just enhanced by $\frac{M_s}{m_{SUSY}}<10^{13}$

$SO(16) \times SO(16)$: Open questions

BUT

- \blacktriangleright orbifold tachyons can get induced by lpha' and g_s corrections
- However in SM we need negative Higgs mass for EWSB
 - ▶ MSSM: $m_h < 0$ induced by SUSY, hierarchy problem

> $\mathcal{N}=0$ models: similar problem, just enhanced by $\frac{M_s}{m_{SLMSY}} < 10^{13}$

- $\bullet\,$ Cosmological constant Λ and destabilizing dilaton tadpole
 - \blacktriangleright in general value of Λ finite but not \sim zero
 - \blacktriangleright contributions to Λ of tachyons and tower of massive states

- Why SUSY?
 - hierarchy problem, Higgs mass
 - unification of gauge couplings
 - dark matter candidate
 - compelling extension of Poincaré group
 - gain computational control

Motivation

- General non-SUSY geometric backgrounds for heterotic orbifolds
 - > 370 point groups representable by twist vectors
 - More than 7000 point groups with arbitrary geometric action, e.g. complex conjugation
 - ▶ More than 29,100,000 corresponding geometric classes
 - Generically some 4D models will have unprojected tachyons
 - A full classification lacking, but in principle straightforward

Motivation

• General non-SUSY geometric backgrounds for heterotic orbifolds

- 370 point groups representable by twist vectors
- More than 7000 point groups with arbitrary geometric action, e.g. complex conjugation
- ▶ More than 29,100,000 corresponding geometric classes
- Generically some 4D models will have unprojected tachyons
- ▶ A full classification lacking, but in principle straightforward
- $SO(16) \times SO(16)$: 10D non-SUSY superstring theory
 - Tachyon-free
 - Anomaly-free
 - Relation to both heterotic E₈×E₈ and SO(32)

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- In twisted sector of 10D $\mathbb{Z}_2^{\text{SUSY}}$ unlevel-matched right-moving tachyon on $\text{SO}(8)_R$
- Tachyonic levels from twisted right-movers on root lattice $SO(8)_R$

- In twisted sector of 10D $\mathbb{Z}_2^{\text{SUSY}}$ unlevel-matched right-moving tachyon on $\text{SO}(8)_R$
- Tachyonic levels from twisted right-movers on root lattice $SO(8)_R$ Consider $\omega = kv + q$, $q \in SO(8)_R$ such that $0 \le \omega_1 \le \omega_2 \le \frac{1}{2}$

R-movers mass on twisted SO(8)_R $M_R^2 = \omega_1 + \omega_2 - \frac{1}{2}$

Orestis Loukas (ASC, LMU)

- In twisted sector of 10D $\mathbb{Z}_2^{\text{SUSY}}$ unlevel-matched right-moving tachyon on $\text{SO}(8)_R$
- Tachyonic levels from twisted right-movers on root lattice $SO(8)_R$ Consider $\omega = kv + q$, $q \in SO(8)_R$ such that $0 \le \omega_1 \le \omega_2 \le \frac{1}{2}$

R-movers mass on twisted SO(8)_R $M_R^2 = \omega_1 + \omega_2 - \frac{1}{2}$

• At most one tachyonic level possible

- In twisted sector of 10D $\mathbb{Z}_2^{\text{SUSY}}$ unlevel-matched right-moving tachyon on $\text{SO}(8)_R$
- Tachyonic levels from twisted right-movers on root lattice $SO(8)_R$ Consider $\omega = kv + q$, $q \in SO(8)_R$ such that $0 \le \omega_1 \le \omega_2 \le \frac{1}{2}$

R-movers mass on twisted SO(8)_R $M_R^2 = \omega_1 + \omega_2 - \frac{1}{2}$

- At most one tachyonic level possible
- In contrast to $\mathcal{N} = 1$, massless right-moving excitations possible

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

20 / 20

- In twisted sector of 10D $\mathbb{Z}_2^{\text{SUSY}}$ unlevel-matched right-moving tachyon on $\text{SO}(8)_R$
- Tachyonic levels from twisted right-movers on root lattice $SO(8)_R$ Consider $\omega = kv + q$, $q \in SO(8)_R$ such that $0 \le \omega_1 \le \omega_2 \le \frac{1}{2}$

R-movers mass on twisted SO(8)_R $M_R^2 = \omega_1 + \omega_2 - \frac{1}{2}$

- At most one tachyonic level possible
- In contrast to $\mathcal{N}=1$, massless right-moving excitations possible
- In some twists, tachyonic levels also from excited R-movers

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

20 / 20

Computer-aided model building

• SO(16)×SO(16)-like non-SuSy twists

$$\frac{N}{2}v = (0, 1, 1, 1) = v_0$$

Computer-aided model building

• $SO(16) \times SO(16)$ -like non-SuSy twists

$$\frac{N}{2}\upsilon = (0, 1, 1, 1) = \upsilon_0$$

- Two model-independently tachyon-free non-SUSY geometries $v_4 = (0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ and $v_6 = (0, \frac{1}{3}, \frac{1}{3}, \frac{1}{3})$
- Results from a first approach scan

Orbifold		Inequivalent	Tachyon-free	SM-like tachyon-free models		
twist	#(geom)	scanned models	percentage	total	one-Higgs	two-Higgs
v_4	(1)		100 %		0	0
v_6	(1)	1226676	100 %	1146	177	15

$SO(16) \times SO(16)$ on CY: The Standard embedding

• Gauge embedding of spin structure already gives an SO(10) GUT: $SO(16) \times SO(16)' \longrightarrow SO(10) \times U(1) \times SO(16)'$

$SO(16) \times SO(16)$ on CY: The Standard embedding

• Gauge embedding of spin structure already gives an SO(10) GUT: $SO(16) \times SO(16)' \longrightarrow SO(10) \times U(1) \times SO(16)'$

• 4D spectrum via standard cohomology theory as in SUSY-case

Multiplicity	Complex bosons	Chiral fermions
1	-	$({f 16};{f 1})_3+(\overline{{f 16}};{f 1})_{{-}3}+({f 1};{f 128})_0+({f 10};{f 16})_0$
$h^{1,1}$	$(10; 1)_2 + (1; 1)_{-4}$	$({f 16};{f 1})_{{f -1}}+({f 1};{f 16})_{{f -2}}$
$h^{1,2}$	$(10; 1)_{-2} + (1; 1)_4$	$(\overline{f 16}; {f 1})_1 + ({f 1}; {f 16})_2$
$h^1(\operatorname{End}(V))$	$(1;1)_0$	-

- 4 回 ト 4 ヨ ト - ヨ - シック

$SO(16) \times SO(16)$ on CY: The Standard embedding

• Gauge embedding of spin structure already gives an SO(10) GUT: $SO(16) \times SO(16)' \longrightarrow SO(10) \times U(1) \times SO(16)'$

• 4D spectrum via standard cohomology theory as in SUSY-case

Multiplicity	Complex bosons	Chiral fermions
1	-	$({f 16};{f 1})_3+(\overline{{f 16}};{f 1})_{{-}3}+({f 1};{f 128})_0+({f 10};{f 16})_0$
$h^{1,1}$	$(10; 1)_2 + (1; 1)_{-4}$	$({f 16};{f 1})_{{f -1}}+({f 1};{f 16})_{{f -2}}$
$h^{1,2}$	$(10; 1)_{-2} + (1; 1)_4$	$(\overline{f 16}; {f 1})_1 + ({f 1}; {f 16})_2$
$h^1(\operatorname{End}(V))$	$({f 1};{f 1})_0$	_

• Net number of $\mathbf{16}$ of $\mathrm{SO}(10)$ determined by $h^{1,1} - h^{2,1}$

Orestis Loukas (ASC, LMU)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

20 / 20

$SO(16) \times SO(16)$ on CY: Line Bundles

 \bullet Work on same $\mathcal{N}=1$ backgrounds, all previous tools applicable

イロト 不得下 イヨト イヨト 二日

$SO(16) \times SO(16)$ on CY: Line Bundles

- $\bullet\,$ Work on same $\mathcal{N}=1$ backgrounds, all previous tools applicable
- In particular,

$SO(16) \times SO(16)$ on CY: Line Bundles

- $\bullet\,$ Work on same $\mathcal{N}=1$ backgrounds, all previous tools applicable
- In particular,

- Index of fermions as before
- ► Use projected out superpartners from S₄ ⊗ R₈ ⊗ R₈ to compute index of bosons from V₄ ⊗ R₈ ⊗ R₈

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

$SO(16) \times SO(16)$ on CY: Orbifold Resolutions

• Application: Line bundle models on the resolution of T^6/\mathbb{Z}_3 Luest,Reffert,Scheidegger,Stieberger'08, Groot-Nibbelink,Nilles,Trapletti'08

$SO(16) \times SO(16)$ on CY: Orbifold Resolutions

• Application: Line bundle models on the resolution of T^6/\mathbb{Z}_3 Luest,Reffert,Scheidegger,Stieberger'08, Groot-Nibbelink,Nilles,Trapletti'08

• Abelian gauge flux:
$$\frac{\mathcal{F}}{2\pi} = H_I W_I^r E_r$$

- ▶ Integrated Bianchi identities: $W_r^2 = \frac{4}{3}$
- **DUY** condition: $\int \frac{\mathcal{F}}{2\pi} \in \mathbf{R}_8 \otimes \mathbf{R}_8 \quad (\notin \mathsf{E}_8 \times \mathsf{E}_8)$

$SO(16) \times SO(16)$ on CY: Orbifold Resolutions

• Application: Line bundle models on the resolution of T^6/\mathbb{Z}_3 Luest,Reffert,Scheidegger,Stieberger'08, Groot-Nibbelink,Nilles,Trapletti'08

• Abelian gauge flux:
$$\frac{\mathcal{F}}{2\pi} = H_I W_I^r E_r$$

- ▶ Integrated Bianchi identities: $W_r^2 = \frac{4}{3}$
- **•** DUY condition: $\int \frac{\mathcal{F}}{2\pi} \in \mathbf{R}_8 \otimes \mathbf{R}_8 \quad (\notin \mathsf{E}_8 \times \mathsf{E}_8)$

Line bundle vector W	Massless spectrum in blow-up:		
Gauge group G	chiral fermions / complex bosons		
$\frac{1}{3}(0,2^3,0^4)(0^8)$	$3(3,1;16)_2 + 3(\overline{3},\overline{16};1)_1 + 27(1,\overline{16};1)_{-3}$		
U(3)×SO(10)×SO(16)'	$78(\overline{\bf 3},{f 1};{f 1})_4+3({f 3},{f 10};{f 1})_2$		
$\frac{1}{3}(1^6,0^2)(1^6,0^2)$	$3(\overline{6}, 2_{-}; 1)_{-2} + 3(1; \overline{6}, 2_{-})_{-2} + 3(15, 2_{+}; 1)_{1} + 3(1; 15, 2_{+})_{1} + 3(\overline{6}, 1; \overline{6}, 1)_{2}$		
	$+3(6, 1; 1, 4) - 1 + 3(1, 4; 6, 1) - 1 + 27(1, 2_+; 1) - 3 + 27(1; 1, 2_+) - 3$		
U(6)×SO(4)×U(6)'×SO(4)'	$3(\overline{15},1;1)_2 + 3(1;\overline{15},1)_2 + 3(6,4;1)_{-1} + 3(1;6,4)_{-1}$		
$\frac{1}{3}(1^8)(1^4,0^4)$	$3(8;1,8_v)_{-1} + 3(1;1,8_s)_{-2} + 3(1;4,8_c)_1 + 3(\overline{28};1)_{-2}$		
	$+3(\overline{\bf 8};\overline{\bf 4},{f 1})_2+78({f 1};{f 1})_{-4}$		
U(8)×U(4)'×SO(8)'	$3(\overline{28}; 1)_2 + 3(1; 6, 1)_2 + 3(1; 4, 8_v)_{-1}$		
	くしゃ 小田 ・山下・山下・山・		

Orestis Loukas (ASC, LMU)

$SO(16) \times SO(16)$ on CY: (No) Tachyons

 $\bullet\,$ On arbitrary $\mathcal{N}=1$ CY we can avoid tachyons by working in large volume approximation

イロト 不得 トイヨト イヨト 二日

$SO(16) \times SO(16)$ on CY: (No) Tachyons

- $\bullet\,$ On arbitrary $\mathcal{N}=1$ CY we can avoid tachyons by working in large volume approximation
- Evidence for no tachyons on CY's with a vector bundle:

Zero modes of Laplace opetator determine massless bosons

 $\Delta \sim (iD)^2 \ \longrightarrow \ \Delta \text{-spectrum is non-negative}$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ■ ● ● ● ●

$SO(16) \times SO(16)$ on CY: (No) Tachyons

- $\bullet\,$ On arbitrary $\mathcal{N}=1$ CY we can avoid tachyons by working in large volume approximation
- Evidence for no tachyons on CY's with a vector bundle:
 - ▶ Zero modes of Laplace opetator determine massless bosons $\Delta \sim (iD)^2 \implies \Delta\text{-spectrum is non-negative}$

F- and D-terms govern the scalar potential to leading order

 $V=\sum_a |\frac{\partial \mathcal{W}}{\partial Z^a}|^2+\frac{1}{2}D^2 ~\longrightarrow~$ non-negative contributions

where Z^a would-be chiral extension to massless complex scalars

▶ Form of V justified since the reduction of 10D bosonic action on CY uses only the bosonic lowest component of Z^a

Orestis Loukas (ASC, LMU)

20 / 20

The End

Orestis Loukas (ASC, LMU)

 $\mathcal{N} = 0$ heterotic strings

Bad Honnef, March 16, 2015 20 / 20

3

<ロ> (日) (日) (日) (日) (日)