Non-Supersymmetric Heterotic Model Building

Orestis Loukas
Arnold Sommerfeld Center for Theoretical Physics Ludwig-Maximilians-University, Munich

based on
JHEP 10(2014)119(arxi::1407.6362)
together with
Michael Blaszczyk (Mainz)
Stefan Groot Nibbelink (Munich)
Saul Ramos-Sánchez (Mexico)

Overview

(1) Non-SUSY SO $(16) \times \mathrm{SO}(16)$

- Motivation
- 10D formulation
- Orbifolds of $\mathrm{SO}(16) \times \mathrm{SO}(16)$
- $\mathcal{N}=0$ model building
(2) Non-SUSY smooth compactifications
- CY threefolds
- (No) tachyons
(3) Conclusion \& outlook

Heterotic SUSY: Review

- Conventional approach to systematic SUSY model-building Anderson,Blaszczyk,Bouchard,Braun,Buchmuller,Donagi,Gray, Groot Nibbelink,He,Kim,Lebedev, OL,Lukas,Nilles,Oehlmann, Ovrut,RamosSánchez,Ratz,Rühle,Trapletti, Vaudrevange,Wingerter...

Heterotic SUSY: Review

- Conventional approach to systematic SUSY model-building Anderson,Blaszczyk,Bouchard,Braun,Buchmuller,Donagi,Gray, Groot Nibbelink,He,Kim,Lebedev, OL,Lukas,Nilles,Oehlmann,Ovrut,RamosSánchez,Ratz,Rühle,Trapletti, Vaudrevange,Wingerter...
- begin with $\mathrm{E}_{8} \times \mathrm{E}_{8}$ on SUSY preserving compactification e.g. orbifolds, CY, non-geometric constructions...
- look for MSSM-like models
- introduce SUSY to obtain SM-like model

Motivation: Where is SUSY?

Figure: ATLAS analysis on experimental bounds for stop and neutralino masses, published 20 July 2013

Motivation: Where is SUSY?

- Search for non-SUSY string models

Motivation: Where is SUSY?

- Search for non-SUSY string models
- Previous studies
- Free fermionic construction with non-SUSY B.C.

Dienes'94,'06, Faraggi,Tsulaia'07

- Non-SUSY orbifolds of heterotic theories

Chamseddine,Derendinger,Quiros'88, Taylor'88, Toon'90, Sasada'95,
Font,Hernandez'02

- Non-SUSY orientifold of type II theories

Sagnotti'95, Angelantonj'98 Blumenhagen,Font,Luest'99,
Aldazabal,Ibanez, Quevedo'99

- Non-SUSY RCFT's

Gato-Rivera,Schellekens'07

Heterotic $\mathrm{SO}(16) \times \mathrm{SO}(16)$

- Tachyon-free \& Anomaly-free 10D non-SUSY heterotic theory Dixon,Harvey'86, Alvarez-Gaume,Ginsparg,Moore,Vafa'86

Heterotic SO (16) \times SO(16)

- Tachyon-free \& Anomaly-free 10D non-SUSY heterotic theory Dixon,Harvey'86, Alvarez-Gaume,Ginsparg,Moore,Vafa'86

	呂	$\begin{gathered} G_{M N}, B_{M N}, \phi \\ A_{M} \end{gathered}$	Graviton, Kalb-Ramond 2-form, dilaton Gauge bosons of $\mathrm{SO}(16) \times \mathrm{SO}(16)$
\sum^{\sim}	$\stackrel{\text { E }}{\substack{\text { L }}}$	$\begin{aligned} & \Psi_{+} \\ & \Psi_{-} \end{aligned}$	Spinors in $(\mathbf{1 2 8 , 1})$ and $(\mathbf{1}, \mathbf{1 2 8})$ Cospinors in $(16,16)$

Heterotic $\mathrm{SO}(16) \times \mathrm{SO}(16)$

- Tachyon-free \& Anomaly-free 10D non-SUSY heterotic theory Dixon,Harvey'86, Alvarez-Gaume,Ginsparg,Moore,Vafa'86

$\frac{\frac{0}{0}}{i \underline{i n}}$	n	$\begin{gathered} G_{M N}, B_{M N}, \phi \\ A_{M} \end{gathered}$	Graviton, Kalb-Ramond 2-form, dilaton Gauge bosons of $\mathrm{SO}(16) \times \mathrm{SO}(16)$
$\begin{aligned} & \frac{0}{N} \\ & \sum_{n}^{0} \end{aligned}$		$\begin{aligned} & \Psi_{+} \\ & \Psi_{-} \end{aligned}$	Spinors in $(\mathbf{1 2 8}, 1)$ and $(\mathbf{1}, \mathbf{1 2 8})$ Cospinors in $(\mathbf{1 6}, \mathbf{1 6})$

Heterotic (toroidal) orbifolds

- Begin with 10D heterotic theory

$$
\begin{array}{ccl}
\text { Left-movers } & \text { Right-movers } & \\
X_{L}^{\mu} & \left(X_{R}^{\mu}, \Psi_{R}^{\mu}\right) & \mu=0, \ldots, 9 \\
X_{L}^{I} & - & I=1, \ldots, 16
\end{array}
$$

Heterotic (toroidal) orbifolds

- Begin with 10D heterotic theory

$$
\begin{array}{ccl}
\text { Left-movers } & \text { Right-movers } & \\
X_{L}^{\mu} & \left(X_{R}^{\mu}, \Psi_{R}^{\mu}\right) & \mu=0, \ldots, 9 \\
X_{L}^{I} & - & I=1, \ldots, 16
\end{array}
$$

- 6D internal space on T^{6}

Heterotic (toroidal) orbifolds

- Begin with 10D heterotic theory
Left-movers Right-movers

$$
\begin{array}{ccc}
X_{L}^{\mu} & \left(X_{R}^{\mu}, \Psi_{R}^{\mu}\right) & \mu=0, \ldots, 9 \\
X_{L}^{I} & - & I=1, \ldots, 16
\end{array}
$$

- 6D internal space on T^{6}
- Identification $z^{i} \sim \mathrm{e}^{2 \pi i v^{i}} z^{i}$ on T^{6} by twist vector $v=\left(0, v_{1}, v_{2}, v_{3}\right)$

Heterotic (toroidal) orbifolds

- Begin with 10D heterotic theory Left-movers Right-movers

$$
\begin{array}{ccc}
X_{L}^{\mu} & \left(X_{R}^{\mu}, \Psi_{R}^{\mu}\right) & \mu=0, \ldots, 9 \\
X_{L}^{I} & - & I=1, \ldots, 16
\end{array}
$$

- 6D internal space on T^{6}
- Identification $z^{i} \sim \mathrm{e}^{2 \pi i v^{i}} z^{i}$ on T^{6} by twist vector $v=\left(0, v_{1}, v_{2}, v_{3}\right)$

- Shift on gauge 16 -torus by $V: X_{L}^{I} \sim X_{L}^{I}+\pi V^{I}$

10D formulation of $\mathrm{SO}(16) \times \mathrm{SO}(16)$

10D formulation of $\mathrm{SO}(16) \times \mathrm{SO}(16)$

- Fermions Ψ_{R} respond to 2π twist by acquiring (-1)

10D formulation of $\mathrm{SO}(16) \times \mathrm{SO}(16)$

- Fermions Ψ_{R} respond to 2π twist by acquiring (-1)
\Rightarrow twist GSO to kill space-time SUSY \Rightarrow SUSY at tree level

10D formulation of $\mathrm{SO}(16) \times \mathrm{SO}(16)$

- Fermions Ψ_{R} respond to 2π twist by acquiring (-1)
\Rightarrow twist GSO to kill space-time SUSY \Rightarrow SUSY at tree level
- Orbifold-like construction, e.g. orbifold of $\mathrm{E}_{8} \times \mathrm{E}_{8}$

10D formulation of $\mathrm{SO}(16) \times \mathrm{SO}(16)$

- Fermions Ψ_{R} respond to 2π twist by acquiring (-1)
\Rightarrow twist GSO to kill space-time SUSY \Rightarrow SUSY at tree level
- Orbifold-like construction, e.g. orbifold of $\mathrm{E}_{8} \times \mathrm{E}_{8}$
\Rightarrow freely acting SUSY \mathbb{Z}_{2} moding with

$$
v_{0}=(0,1,1,1) \text { and } V_{0}=\left(1,0^{7}\right)\left(1,0^{7}\right)^{\prime}
$$

Orbifolds of $\mathrm{SO}(16) \times \mathrm{SO}(16)$

- For phenomenology we want to compactify down to 4D using toroidal orbifolds

Orbifolds of $\mathrm{SO}(16) \times \mathrm{SO}(16)$

- For phenomenology we want to compactify down to 4D using toroidal orbifolds
- Singular geometries not preserving SUSY
- more than $29,100,000$
- a full classification lacking, but in principle straightforward

Orbifolds of $\mathrm{SO}(16) \times \mathrm{SO}(16)$

- For phenomenology we want to compactify down to 4D using toroidal orbifolds
- Singular geometries not preserving SUSY
- more than $29,100,000$
- a full classification lacking, but in principle straightforward
- Choose SUSY-preserving singular geometries
- well-studied, exploit previous techniques
- abelian symmetric toroidal orbifolds fully classified Fischer,Ratz,Torrado,Vaudrevange'12
- gain computational control

Orbifolds of $\mathrm{SO}(16) \times \mathrm{SO}(16)$

- We may think of construction as $\mathbb{Z}_{2} \times \mathbb{Z}_{N} \times \mathbb{Z}_{M}$ orbifold of $\mathrm{E}_{8} \times \mathrm{E}_{8}$

Orbifolds of $\mathrm{SO}(16) \times \mathrm{SO}(16)$

- We may think of construction as $\mathbb{Z}_{2} \times \mathbb{Z}_{N} \times \mathbb{Z}_{M}$ orbifold of $\mathrm{E}_{8} \times \mathrm{E}_{8}$
\Rightarrow Compactify $\mathrm{E}_{8} \times \mathrm{E}_{8}$ using

$$
\begin{aligned}
v_{g} & =l v_{0}+k v \\
V_{g} & =l V_{0}+k V
\end{aligned}
$$

$$
\begin{aligned}
& \text { with } v_{0}=(0,1,1,1) \quad \mathbb{Z}_{2} \text { SUSY twist } \\
& \text { with } \sum v_{i}=0 \quad \mathbb{Z}_{N} \text { SUSY twist } \\
& k=0, \ldots, N-1
\end{aligned}
$$

Orbifolds of $\mathrm{SO}(16) \times \mathrm{SO}(16)$

- We may think of construction as $\mathbb{Z}_{2} \times \mathbb{Z}_{N} \times \mathbb{Z}_{M}$ orbifold of $\mathrm{E}_{8} \times \mathrm{E}_{8}$
\Rightarrow Compactify $\mathrm{E}_{8} \times \mathrm{E}_{8}$ using

$$
\begin{aligned}
v_{g} & =l v_{0}+k v \\
V_{g} & =l V_{0}+k V
\end{aligned}
$$

$$
\begin{aligned}
& \text { with } v_{0}=(0,1,1,1) \quad \mathbb{Z}_{2} \text { SUSY twist } \\
& \text { with } \sum v_{i}=0 \quad \mathbb{Z}_{N} \text { SUSY twist } \\
& k=0, \ldots, N-1
\end{aligned}
$$

- Same consistency conditions as in SUSY case from orbifold periodicity and modular invariance

$$
\begin{gathered}
N v \in \mathbb{Z}^{4}, \quad N V \in \mathrm{E}_{8} \times \mathrm{E}_{8} \\
\frac{N}{2}\left(V^{2}-v^{2}\right) \equiv 0, \quad V \cdot V_{0} \equiv 0
\end{gathered}
$$

Orbifolds of $\mathrm{SO}(16) \times \mathrm{SO}(16)$

- We may think of construction as $\mathbb{Z}_{2} \times \mathbb{Z}_{N} \times \mathbb{Z}_{M}$ orbifold of $\mathrm{E}_{8} \times \mathrm{E}_{8}$
\Rightarrow Compactify $\mathrm{E}_{8} \times \mathrm{E}_{8}$ using

$$
\begin{aligned}
v_{g} & =l v_{0}+k v \\
V_{g} & =l V_{0}+k V
\end{aligned}
$$

$$
\begin{aligned}
& \text { with } v_{0}=(0,1,1,1) \quad \mathbb{Z}_{2} \text { SUSY twist } \\
& \text { with } \sum v_{i}=0 \quad \mathbb{Z}_{N} \text { SUSY twist } \\
& k=0, \ldots, N-1
\end{aligned}
$$

- Same consistency conditions as in SUSY case from orbifold periodicity and modular invariance

$$
\begin{gathered}
N v \in \mathbb{Z}^{4}, \quad N V \in \mathrm{E}_{8} \times \mathrm{E}_{8} \\
\frac{N}{2}\left(V^{2}-v^{2}\right) \equiv 0, \quad V \cdot V_{0} \equiv 0
\end{gathered}
$$

- Include $\mathbb{Z}_{N} \times \mathbb{Z}_{M}$ orbifolds and Wilson lines

Orbifolds of $\mathrm{SO}(16) \times \mathrm{SO}(16)$: Tachyons

- Tachyons from twisted right-movers

Orbifolds of $\mathrm{SO}(16) \times \mathrm{SO}(16)$: Tachyons

- Tachyons from twisted right-movers

Orbifold	Twist	Tachyons	Orbifold	Twist	Tachyons	
T^{6} / \mathbb{Z}_{3}	$\frac{1}{3}(1,1,-2)$	forbidden	$T^{6} / \mathbb{Z}_{2} \times \mathbb{Z}_{2}$	$\frac{1}{2}(1,-1,0) ; \frac{1}{2}(0,1,-1)$	forbidden	
T^{6} / \mathbb{Z}_{4}	$\frac{1}{4}(1,1,-2)$	forbidden	$T^{6} / \mathbb{Z}_{2} \times \mathbb{Z}_{4}$	$\frac{1}{2}(1,-1,0) ; \frac{1}{4}(0,1,-1)$	possible	
$T^{6} / \mathbb{Z}_{6 \text {-I }}$	$\frac{1}{6}(1,1,-2)$	possible	$T^{6} / \mathbb{Z}_{2} \times \mathbb{Z}_{6 \text {-I }}$	$\frac{1}{2}(1,-1,0) ; \frac{1}{6}(1,1,-2)$	possible	
$T^{6} / \mathbb{Z}_{6 \text {-II }}$	$\frac{1}{6}(1,2,-3)$	possible	$T^{6} / \mathbb{Z}_{2} \times \mathbb{Z}_{6 \text {-II }}$	$\frac{1}{2}(1,-1,0) ; \frac{1}{6}(0,1,-1)$	possible	
T^{6} / \mathbb{Z}_{7}	$\frac{1}{7}(1,2,-3)$	possible	$T^{6} / \mathbb{Z}_{3} \times \mathbb{Z}_{3}$	$\frac{1}{3}(1,-1,0) ; \frac{1}{3}(0,1,-1)$	possible	
$T^{6} / \mathbb{Z}_{8 \text {-I }}$	$\frac{1}{8}(1,2,-3)$	possible	$T^{6} / \mathbb{Z}_{3} \times \mathbb{Z}_{6}$	$\frac{1}{3}(1,-1,0) ; \frac{1}{6}(0,1,-1)$	possible	
$T^{6} / \mathbb{Z}_{8 \text {-II }}$	$\frac{1}{8}(1,3,-4)$	possible	$T^{6} / \mathbb{Z}_{4} \times \mathbb{Z}_{4}$	$\frac{1}{4}(1,-1,0) ; \frac{1}{4}(0,1,-1)$	possible	
$T^{6} / \mathbb{Z}_{12 \text {-I }}$	$\frac{1}{12}(1,4,-5)$	possible	$T^{6} / \mathbb{Z}_{6} \times \mathbb{Z}_{6}$	$\frac{1}{6}(1,-1,0) ; \frac{1}{6}(0,1,-1)$	possible	
$T^{6} / \mathbb{Z}_{12 \text {-II }}$	$\frac{1}{12}(1,5,-6)$	possible				

Orbifolds of $\mathrm{SO}(16) \times \mathrm{SO}(16)$: Tachyons

- Tachyons from twisted right-movers

Orbifold	Twist	Tachyons	Orbifold	Twist	Tachyons	
T^{6} / \mathbb{Z}_{3}	$\frac{1}{3}(1,1,-2)$	forbidden	$T^{6} / \mathbb{Z}_{2} \times \mathbb{Z}_{2}$	$\frac{1}{2}(1,-1,0) ; \frac{1}{2}(0,1,-1)$	forbidden	
T^{6} / \mathbb{Z}_{4}	$\frac{1}{4}(1,1,-2)$	forbidden	$T^{6} / \mathbb{Z}_{2} \times \mathbb{Z}_{4}$	$\frac{1}{2}(1,-1,0) ; \frac{1}{4}(0,1,-1)$	possible	
$T^{6} / \mathbb{Z}_{6 \text {-I }}$	$\frac{1}{6}(1,1,-2)$	possible	$T^{6} / \mathbb{Z}_{2} \times \mathbb{Z}_{6 \text {-I }}$	$\frac{1}{2}(1,-1,0) ; \frac{1}{6}(1,1,-2)$	possible	
$T^{6} / \mathbb{Z}_{6 \text {-II }}$	$\frac{1}{6}(1,2,-3)$	possible	$T^{6} / \mathbb{Z}_{2} \times \mathbb{Z}_{6 \text {-II }}$	$\frac{1}{2}(1,-1,0) ; \frac{1}{6}(0,1,-1)$	possible	
T^{6} / \mathbb{Z}_{7}	$\frac{1}{7}(1,2,-3)$	possible	$T^{6} / \mathbb{Z}_{3} \times \mathbb{Z}_{3}$	$\frac{1}{3}(1,-1,0) ; \frac{1}{3}(0,1,-1)$	possible	
$T^{6} / \mathbb{Z}_{8 \text {-I }}$	$\frac{1}{8}(1,2,-3)$	possible	$T^{6} / \mathbb{Z}_{3} \times \mathbb{Z}_{6}$	$\frac{1}{3}(1,-1,0) ; \frac{1}{6}(0,1,-1)$	possible	
$T^{6} / \mathbb{Z}_{8 \text {-II }}$	$\frac{1}{8}(1,3,-4)$	possible	$T^{6} / \mathbb{Z}_{4} \times \mathbb{Z}_{4}$	$\frac{1}{4}(1,-1,0) ; \frac{1}{4}(0,1,-1)$	possible	
$T^{6} / \mathbb{Z}_{12 \text {-I }}$	$\frac{1}{12}(1,4,-5)$	possible	$T^{6} / \mathbb{Z}_{6} \times \mathbb{Z}_{6}$	$\frac{1}{6}(1,-1,0) ; \frac{1}{6}(0,1,-1)$	possible	
$T^{6} / \mathbb{Z}_{12 \text {-II }}$	$\frac{1}{12}(1,5,-6)$	possible				

- When tachyons possible in a geometry, not all models tachyonic, some of the tachyons remain unlevel-matched or are killed by orbifold projection

$\mathcal{N}=0$ heterotic model building

- Look for SM-like models

$\mathcal{N}=0$ heterotic model building

- Look for SM-like models
- Only massless spectrum
- Standard Model gauge group

$\mathcal{N}=0$ heterotic model building

- Look for SM-like models
- Only massless spectrum
- Standard Model gauge group
- Matter spectrum

Fermions	Bosons
Net number three of SM-families	At least one Higgs doublet
Vector-like pairs of exotics	Scalar exotics unconstrained

$\mathcal{N}=0$ heterotic model building

- Look for SM-like models
- Only massless spectrum
- Standard Model gauge group
- Matter spectrum

Fermions	Bosons
Net number three of SM-families	At least one Higgs doublet
Vector-like pairs of exotics	Scalar exotics unconstrained

- Equivalency of two models at the level of non-Abelian representations

$\mathcal{N}=0$ heterotic model building

- An example of one-Higgs SM-like model with gauge group

$$
G_{\text {obs }}=\mathrm{SU}(3)_{C} \times \mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y} \quad \text { and } \quad G_{\text {hidden }}=\mathrm{SU}(4)^{\prime} \times \mathrm{SU}(2)^{\prime}
$$

Sector	Massless spectrum: chiral fermions / complex bosons
Observable	$\begin{gathered} 3(\mathbf{3}, \mathbf{2})_{1 / 6}+3(\overline{\mathbf{3}}, \mathbf{1})_{-2 / 3}+6(\overline{\mathbf{3}}, \mathbf{1})_{1 / 3}+3(\mathbf{3}, \mathbf{1})_{-1 / 3}+3(\mathbf{1}, \mathbf{1})_{1} \\ 5(\mathbf{1}, \mathbf{2})_{-1 / 2}+2(\mathbf{1}, \mathbf{2})_{1 / 2} \\ 20(\mathbf{1}, \mathbf{1})_{1 / 2}+20(\mathbf{1}, \mathbf{1})_{-1 / 2}+6(\mathbf{3}, \mathbf{1})_{1 / 6}+6(\overline{\mathbf{3}}, \mathbf{1})_{-1 / 6}+2(\mathbf{1}, \mathbf{2})_{0} \end{gathered}$
Obs. \& Hid.	$3(\mathbf{1}, \mathbf{1} ; \mathbf{1}, \mathbf{2})_{1 / 2}+3(\mathbf{1}, \mathbf{1} ; \mathbf{1}, \mathbf{2})_{-1 / 2}$
Hidden	$14(\mathbf{1}, \mathbf{2})_{0}+10\left(\overline{\mathbf{4}, \mathbf{1})_{0}+6(\mathbf{4}, \mathbf{1})_{0}+4(\mathbf{6}, \mathbf{1})_{0}+2(\mathbf{4}, \mathbf{2})_{0}+71(\mathbf{1})_{0}{ }^{\text {a }} \text { (}}\right.$
Observable	$\begin{gathered} (\mathbf{1}, \mathbf{2})_{-1 / 2} \\ (\mathbf{3}, \mathbf{1})_{1 / 6}+(\overline{\mathbf{3}}, \mathbf{1})_{-1 / 6}+2(\overline{\mathbf{3}}, \mathbf{1})_{1 / 3}+13(\mathbf{1}, \mathbf{2})_{0} \\ +20(\mathbf{1}, \mathbf{1})_{-1 / 2}+18(\mathbf{1}, \mathbf{1})_{1 / 2} \end{gathered}$
Obs. \& Hid.	$(\mathbf{1}, \mathbf{1} ; \mathbf{4}, \mathbf{1})_{1 / 2}+(\mathbf{1}, \mathbf{1} ; \mathbf{4}, \mathbf{1})_{-1 / 2}+(\mathbf{1}, \mathbf{2} ; \mathbf{1}, \mathbf{2})_{0}$
Hidden	$14(\mathbf{1}, \mathbf{2})_{0}+4(\mathbf{4}, \mathbf{1})_{0}+(\mathbf{6}, \mathbf{2})_{0}+23(\mathbf{1})_{0}$

$\mathcal{N}=0$ heterotic model building: Results

- Results from a first approach scan using modified version of The Orbifolder Nilles,Ramos-Sánchez,Vaudrevange,Wingerter'11

Orbifold twist $\#$ (geom)		Inequivalent scanned models	Tachyon-free percentage	SM-like models
\mathbb{Z}_{3}	(1)	74,958	100%	128
\mathbb{Z}_{4}	(3)	$1,100,336$	100%	12
$\mathbb{Z}_{6 \text {-I }}$	(2)	148,950	55%	59
$\mathbb{Z}_{6 \text {-II }}$	(4)	$15,036,790$	57%	109
$\mathbb{Z}_{8 \text {-I }}$	(3)	$2,751,085$	51%	24
$\mathbb{Z}_{8 \text {-II }}$	(2)	$4,397,555$	71%	187
$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$	(12)	$9,546,081$	100%	1,562
$\mathbb{Z}_{2} \times \mathbb{Z}_{4}$	(10)	$17,054,154$	67%	7,958
$\mathbb{Z}_{3} \times \mathbb{Z}_{3}$	(5)	$11,411,739$	52%	284
$\mathbb{Z}_{4} \times \mathbb{Z}_{4}$	(5)	$15,361,570$	64%	2,460

$\mathcal{N}=0$ heterotic model building: Results

- Results from a first approach scan using modified version of The Orbifolder Nilles,Ramos-Sánchez,Vaudrevange,Wingerter'11

Orbifold twist $\#$ (geom)		Inequivalent scanned models	Tachyon-free percentage	SM-like models
\mathbb{Z}_{3}	(1)	74,958	100%	128
\mathbb{Z}_{4}	(3)	$1,100,336$	100%	12
$\mathbb{Z}_{6 \text {-I }}$	(2)	148,950	55%	59
$\mathbb{Z}_{6 \text {-II }}$	(4)	$15,036,790$	57%	109
$\mathbb{Z}_{8 \text {-I }}$	(3)	$2,751,085$	51%	24
$\mathbb{Z}_{8 \text {-II }}$	(2)	$4,397,555$	71%	187
$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$	(12)	$9,546,081$	100%	1,562
$\mathbb{Z}_{2} \times \mathbb{Z}_{4}$	(10)	$17,054,154$	67%	7,958
$\mathbb{Z}_{3} \times \mathbb{Z}_{3}$	(5)	$11,411,739$	52%	284
$\mathbb{Z}_{4} \times \mathbb{Z}_{4}$	(5)	$15,361,570$	64%	2,460

$\mathcal{N}=0$ heterotic model building: Results

- Results from a first approach scan using modified version of The Orbifolder Nilles,Ramos-Sánchez, Vaudrevange,Wingerter'11

$\mathcal{N}=0$ heterotic model building: Results

- Results from a first approach scan using modified version of The Orbifolder Nilles,Ramos-Sánchez, Vaudrevange,Wingerter'11

$\mathrm{SO}(16) \times \mathrm{SO}(16)$ on CY

- On arbitrary smooth manifold
- difficult to compute index of bosons
- not clear how to deal with tachyons

$\mathrm{SO}(16) \times \mathrm{SO}(16)$ on CY

- On arbitrary smooth manifold
- difficult to compute index of bosons
- not clear how to deal with tachyons
- On $\mathcal{N}=1 \mathrm{CY}$ threefolds

$\mathrm{SO}(16) \times \mathrm{SO}(16)$ on CY

- On arbitrary smooth manifold
- difficult to compute index of bosons
- not clear how to deal with tachyons
- On $\mathcal{N}=1 \mathrm{CY}$ threefolds
- exploit background SUSY to compute 4D massless spectrum for fermions \& bosons
e.g. using index theorems for fermions

$\mathrm{SO}(16) \times \mathrm{SO}(16)$ on CY

- On arbitrary smooth manifold
- difficult to compute index of bosons
- not clear how to deal with tachyons
- On $\mathcal{N}=1 \mathrm{CY}$ threefolds
- exploit background SUSY to compute 4D massless spectrum for fermions \& bosons
e.g. using index theorems for fermions
- in particular for bosons, Laplace operator $\Delta \sim(i \not \varnothing))^{2}$
\Rightarrow bosonic spectrum bounded from below

$\mathrm{SO}(16) \times \mathrm{SO}(16)$ on CY : No tachyons

- What happens with orbifold tachyons?

$\mathrm{SO}(16) \times \mathrm{SO}(16)$ on CY : No tachyons

- What happens with orbifold tachyons?
- Consider particular example: $\boldsymbol{T}^{\mathbf{6}} / \mathbb{Z}_{6-\mathrm{I}}$ orbifold of $\mathcal{N}=0$ theory

Non-Abelian gauge group: $\mathrm{SU}(5) \times \mathrm{SU}(4)^{\prime} \times \mathrm{SO}(4)^{\prime} \times \mathrm{SU}(2)^{\prime}$	
States	Representations of massless spectrum
Bosonic tachyons	$3(\mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{2})$
Massless	$4(\mathbf{1 0} ; \mathbf{1})+(\overline{\mathbf{1 0}} ; \mathbf{1})+6(\mathbf{5} ; \mathbf{1})+3(\overline{\mathbf{5}} ; \mathbf{1})+(\mathbf{5} ; \mathbf{1}, \mathbf{4}, \mathbf{1})+2(\overline{\mathbf{5}} ; \mathbf{1}, \mathbf{1}, \mathbf{2})+(\mathbf{5} ; \mathbf{1}, \mathbf{1}, \mathbf{2})$
chiral fermions	$+2(\overline{\mathbf{5}} ; \mathbf{4}, \mathbf{1}, \mathbf{1})+12(\mathbf{1} ; \mathbf{4}, \mathbf{1}, \mathbf{1})+18(\mathbf{1} ; \overline{\mathbf{4}}, \mathbf{1}, \mathbf{1})+2\left(\mathbf{1} ; \overline{\mathbf{4}}, \mathbf{2}_{-}, \mathbf{2}\right)+2\left(\mathbf{1} ; \mathbf{4}, \mathbf{2}_{+}, \mathbf{1}\right)$
	$+\left(\mathbf{1} ; \mathbf{6}, \mathbf{2}_{-}, \mathbf{1}\right)+\left(\mathbf{1} ; \mathbf{6}, \mathbf{2}_{+}, \mathbf{1}\right)+12\left(\mathbf{1} ; \mathbf{1}, \mathbf{2}_{+}, \mathbf{2}\right)+4(\mathbf{1} ; \mathbf{1}, \mathbf{4}, \mathbf{1})+36\left(\mathbf{1} ; \mathbf{1}, \mathbf{2}_{-}, \mathbf{1}\right)$
	$+30\left(\mathbf{1} ; \mathbf{1}, \mathbf{2}_{+}, \mathbf{1}\right)+11(\mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{2})+53(\mathbf{1} ; \mathbf{1})$
Massless	$9(\mathbf{5} ; \mathbf{1})+2(\overline{\mathbf{5}} ; \mathbf{1})+(\overline{\mathbf{1 0}} ; \mathbf{1})+(\mathbf{1} ; \mathbf{1}, \mathbf{4}, \mathbf{2})+30\left(\mathbf{1} ; \mathbf{1}, \mathbf{2}_{-}, \mathbf{1}\right)+12(\mathbf{1} ; \mathbf{6}, \mathbf{1}, \mathbf{1})$
complex scalars	$+2(\mathbf{1} ; \mathbf{4}, \mathbf{1}, \mathbf{2})+2(\mathbf{1}, \overline{\mathbf{4}}, \mathbf{4}, \mathbf{1})+22\left(\mathbf{1} ; \mathbf{1}, \mathbf{2}_{+}, \mathbf{1}\right)+10\left(\mathbf{1} ; \mathbf{1}, \mathbf{2}_{-}, \mathbf{2}\right)+46(\mathbf{1} ; \mathbf{1})$

$\mathrm{SO}(16) \times \mathrm{SO}(16)$ on CY : No tachyons

- What happens with orbifold tachyons?
- Consider particular example: $\boldsymbol{T}^{\mathbf{6}} / \mathbb{Z}_{6-\mathrm{I}}$ orbifold of $\mathcal{N}=0$ theory

Non-Abelian gauge group: $\mathrm{SU}(5) \times \mathrm{SU}(4)^{\prime} \times \mathrm{SO}(4)^{\prime} \times \mathrm{SU}(2)^{\prime}$	
States	Representations of massless spectrum
Bosonic tachyons	$3(\mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{2})$
Massless	$4(\mathbf{1 0} ; \mathbf{1})+(\overline{\mathbf{1 0}} ; \mathbf{1})+6(\mathbf{5} ; \mathbf{1})+3(\overline{\mathbf{5}} ; \mathbf{1})+(\mathbf{5} ; \mathbf{1}, \mathbf{4}, \mathbf{1})+2(\overline{\mathbf{5}} ; \mathbf{1}, \mathbf{1}, \mathbf{2})+(\mathbf{5} ; \mathbf{1}, \mathbf{1}, \mathbf{2})$
chiral fermions	$+2\left(\overline{\mathbf{(} ; \mathbf{4}, \mathbf{1}, \mathbf{1})+12(\mathbf{1} ; \mathbf{4}, \mathbf{1}, \mathbf{1})+18(\mathbf{1} ; \overline{\mathbf{4}}, \mathbf{1}, \mathbf{1})+2\left(\mathbf{1} ; \overline{\mathbf{4}}, \mathbf{2}_{-}, \mathbf{2}\right)+2\left(\mathbf{1} ; \mathbf{4}, \mathbf{2}_{+}, \mathbf{1}\right)}\right.$
	$+\left(\mathbf{1} ; \mathbf{6}, \mathbf{2}_{-}, \mathbf{1}\right)+\left(\mathbf{1} ; \mathbf{6}, \mathbf{2}_{+}, \mathbf{1}\right)+12\left(\mathbf{1} ; \mathbf{1}, \mathbf{2}_{+}, \mathbf{2}\right)+4(\mathbf{1} ; \mathbf{1}, \mathbf{4}, \mathbf{1})+36\left(\mathbf{1} ; \mathbf{1}, \mathbf{2}_{-}, \mathbf{1}\right)$
	$+30\left(\mathbf{1} ; \mathbf{1}, \mathbf{2}_{+}, \mathbf{1}\right)+11(\mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{2})+53(\mathbf{1} ; \mathbf{1})$
Massless	$9(\mathbf{5} ; \mathbf{1})+2(\overline{\mathbf{5}} ; \mathbf{1})+(\overline{\mathbf{1 0}} ; \mathbf{1})+(\mathbf{1} ; \mathbf{1}, \mathbf{4}, \mathbf{2})+30\left(\mathbf{1} ; \mathbf{1}, \mathbf{2}_{-}, \mathbf{1}\right)+12(\mathbf{1} ; \mathbf{6}, \mathbf{1}, \mathbf{1})$
complex scalars	$+2(\mathbf{1} ; \mathbf{4}, \mathbf{1}, \mathbf{2})+2(\mathbf{1}, \overline{\mathbf{4}}, \mathbf{4}, \mathbf{1})+22\left(\mathbf{1} ; \mathbf{1}, \mathbf{2}_{+}, \mathbf{1}\right)+10\left(\mathbf{1} ; \mathbf{1}, \mathbf{2}_{-}, \mathbf{2}\right)+46(\mathbf{1} ; \mathbf{1})$

- Resolution of this model by standard techniques Lüst,Reffert,Scheidegger,Stieberger'08, Groot Nibbelink,Nilles, Trapletti'08

SO $(16) \times \mathrm{SO}(16)$ on CY : No tachyons

State	Sector	Representation
Tachyon t	θ^{1}	$(\mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{2})$
Blow-up mode b	θ^{2}	$\left(\mathbf{1} ; \mathbf{1}, \mathbf{2}_{-}, \mathbf{1}\right)$

$$
V(t, b)=-m_{t}^{2}|t|^{2}+|\lambda|^{2}|b|^{2}|t|^{2}+\mathcal{O}\left(b^{4}, t^{4}\right)
$$

$\mathrm{SO}(16) \times \mathrm{SO}(16)$ on CY : No tachyons

State	Sector	Representation
Tachyon t	θ^{1}	$(\mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{2})$
Blow-up mode b	θ^{2}	$\left(\mathbf{1} ; \mathbf{1}, \mathbf{2}_{-}, \mathbf{1}\right)$

$$
V(t, b)=-m_{t}^{2}|t|^{2}+|\lambda|^{2}|b|^{2}|t|^{2}+\mathcal{O}\left(b^{4}, t^{4}\right)
$$

- Field-theoretical Motivation

SO $(16) \times \mathrm{SO}(16)$ on CY : No tachyons

State	Sector	Representation
Tachyon t	θ^{1}	$(\mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{2})$
Blow-up mode b	θ^{2}	$\left(\mathbf{1} ; \mathbf{1}, \mathbf{2}_{-}, \mathbf{1}\right)$

$$
V(t, b)=-m_{t}^{2}|t|^{2}+|\lambda|^{2}|b|^{2}|t|^{2}+\mathcal{O}\left(b^{4}, t^{4}\right)
$$

- Field-theoretical Motivation
- sign ambiguity of 2 nd term
- on CY Δ-spectrum non-negative
\Rightarrow ambiguous sign has to be " + "

SO $(16) \times \mathrm{SO}(16)$ on CY : No tachyons

State	Sector	Representation
Tachyon t	θ^{1}	$(\mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{2})$
Blow-up mode b	θ^{2}	$\left(\mathbf{1} ; \mathbf{1}, \mathbf{2}_{-}, \mathbf{1}\right)$

$$
V(t, b)=-m_{t}^{2}|t|^{2}+|\lambda|^{2}|b|^{2}|t|^{2}+\mathcal{O}\left(b^{4}, t^{4}\right)
$$

- Field-theoretical Motivation
- sign ambiguity of 2 nd term
- on CY Δ-spectrum non-negative
\Rightarrow ambiguous sign has to be " + "
- In large volume limit tachyon gets lifted

$$
\nabla|b|^{2} \sim \operatorname{Vol}\left(E_{r}\right) \gg M_{s}^{2} \sim\left|m_{t}\right|^{2}
$$

Conclusions \& Outlook

- Non-SUSY SO(16)×SO(16)

Conclusions \& Outlook

- Non-SUSY SO(16)×SO(16)
- Constructed more than 12000 SM-like models on selected orbifold geometries

Conclusions \& Outlook

- Non-SUSY SO(16)×SO(16)
- Constructed more than 12000 SM-like models on selected orbifold geometries
- Non-SUSY theory on $\mathcal{N}=1$ smooth geometries
- No tree-level tachyons in large volume limit

Conclusions \& Outlook

- Non-SUSY SO(16)×SO(16)
- Constructed more than 12000 SM-like models on selected orbifold geometries
- Non-SUSY theory on $\mathcal{N}=1$ smooth geometries
- No tree-level tachyons in large volume limit
- Basic issues with non-SUSY models:
- Tachyons can get induced by α^{\prime} and g_{s} corrections

Conclusions \& Outlook

- Non-SUSY SO(16)×SO(16)
- Constructed more than 12000 SM-like models on selected orbifold geometries
- Non-SUSY theory on $\mathcal{N}=1$ smooth geometries
- No tree-level tachyons in large volume limit
- Basic issues with non-SUSY models:
- Tachyons can get induced by α^{\prime} and g_{s} corrections
- Cosmological constant Λ and destabilizing dilaton tadpole

Conclusions \& Outlook

- Some future directions:
- Systematic non-SUSY model searches on smooth CY's e.g. CICY, with (line) bundles Work in progress...

Conclusions \& Outlook

- Some future directions:
- Systematic non-SUSY model searches on smooth CY's e.g. CICY, with (line) bundles Work in progress...
- Investigate perturbative as well as non-perturbative generation of tachyons
e.g. how $\mathcal{N}=0$ theory reacts in presence of NS5-brane

Conclusions \& Outlook

- Some future directions:
- Systematic non-SUSY model searches on smooth CY's e.g. CICY, with (line) bundles Work in progress...
- Investigate perturbative as well as non-perturbative generation of tachyons
e.g. how $\mathcal{N}=0$ theory reacts in presence of NS5-brane
- Investigate the cosmological constant issue in non-SUSY string models Angelantonj,Florakis,Tsulaia'14, Abel,Dienes,Mavroudi'15

10D formulation of $\mathrm{SO}(16) \times \mathrm{SO}(16)$

Lattices in the theory	
$\mathrm{N}=1, \mathrm{E}_{8} \times \mathrm{E}_{8}$	$\mathrm{~N}=0, \mathrm{SO}(16) \times \mathrm{SO}(16)$
$\mathbf{V}_{4} \otimes \mathbf{R}_{8} \otimes \mathbf{R}_{8}$	$\mathbf{V}_{4} \otimes \mathbf{R}_{8} \otimes \mathbf{R}_{8}$
$\mathbf{V}_{4} \otimes \mathbf{S}_{8} \otimes \mathbf{S}_{8}$	$\mathbf{V}_{4} \otimes \mathbf{S}_{8} \otimes \mathbf{S}_{8}$
$\mathbf{V}_{4} \otimes \mathbf{S}_{8} \otimes \mathbf{R}_{8}$	$\mathbf{R}_{4} \otimes \mathbf{C}_{8} \otimes \mathbf{V}_{8}$
$\mathbf{V}_{4} \otimes \mathbf{R}_{8} \otimes \mathbf{S}_{8}$	$\mathbf{R}_{4} \otimes \mathbf{V}_{8} \otimes \mathbf{C}_{8}$
$\mathbf{S}_{4} \otimes \mathbf{S}_{8} \otimes \mathbf{R}_{8}$	$\mathbf{S}_{4} \otimes \mathbf{S}_{8} \otimes \mathbf{R}_{8}$
$\mathbf{S}_{4} \otimes \mathbf{R}_{8} \otimes \mathbf{S}_{8}$	$\mathbf{S}_{4} \otimes \mathbf{R}_{8} \otimes \mathbf{S}_{8}$
$\mathbf{S}_{4} \otimes \mathbf{R}_{8} \otimes \mathbf{R}_{8}$	$\mathbf{C}_{4} \otimes \mathbf{V}_{8} \otimes \mathbf{V}_{8}$
$\mathbf{S}_{4} \otimes \mathbf{S}_{8} \otimes \mathbf{S}_{8}$	$\mathbf{C}_{4} \otimes \mathbf{C}_{8} \otimes \mathbf{C}_{8}$

$\mathrm{SO}(16) \times \mathrm{SO}(16)$ on CY's

- On arbitrary smooth manifold difficult to compute index of bosons

$\mathrm{SO}(16) \times \mathrm{SO}(16)$ on CY's

- On arbitrary smooth manifold difficult to compute index of bosons
- On $\mathcal{N}=1$ CY threefolds exploit background SUSY to compute 4D massless spectrum, in particular

$\mathrm{SO}(16) \times \mathrm{SO}(16)$ on CY's

- On arbitrary smooth manifold difficult to compute index of bosons
- On $\mathcal{N}=1$ CY threefolds exploit background SUSY to compute 4D massless spectrum, in particular

Massless fermions
- spinors in $(\mathbf{1 2 8 , 1})$ and $(\mathbf{1}, \mathbf{1 2 8})$
- cospinors in $(\mathbf{1 6}, \mathbf{1 6})$

Massless bosons

- Gravity sector
- $(120,1)$ and $(1,120)$ adjoint

$\mathrm{SO}(16) \times \mathrm{SO}(16)$ on CY's

- On arbitrary smooth manifold difficult to compute index of bosons
- On $\mathcal{N}=1$ CY threefolds exploit background SUSY to compute 4D massless spectrum, in particular

Massless fermions
- spinors in $(\mathbf{1 2 8 , 1})$ and $(\mathbf{1}, \mathbf{1 2 8})$
- cospinors in $(\mathbf{1 6}, \mathbf{1 6})$

Massless bosons

- Gravity sector
- $(120,1)$ and $(1,120)$ adjoint
- Standard index theorems to determine multiplicity of 4D fermions

$\mathrm{SO}(16) \times \mathrm{SO}(16)$ on CY's

- On arbitrary smooth manifold difficult to compute index of bosons
- On $\mathcal{N}=1 \mathrm{CY}$ threefolds exploit background SUSY to compute 4D massless spectrum, in particular

Massless fermions
- spinors in $(\mathbf{1 2 8 , 1})$ and $(\mathbf{1}, \mathbf{1 2 8})$
- cospinors in $(\mathbf{1 6}, \mathbf{1 6})$

Massless bosons

- Gravity sector
- $(120,1)$ and $(1,120)$ adjoint
- Standard index theorems to determine multiplicity of 4D fermions
- To calculate multiplicities of 4D bosons, use index of their fermionic superpartners, before the latter are projected out by SUSY \mathbb{Z}_{2}

10D formulation of $\mathrm{SO}(16) \times \mathrm{SO}(16)$

Massless Fields 10D Space-time interpretation

¢	$\begin{gathered} G_{M N}, B_{M N}, \phi \\ A_{M} \end{gathered}$	Graviton, Kalb-Ramond 2-form, dilaton Gauge bosons of $\mathrm{SO}(16) \times \mathrm{SO}(16)$
.ㅡㅡㅈㅢ	Ψ_{+}	Spinors in (128,1) and (1,128)
L	Ψ_{-}	Cospinors in (16,16)

- Bosons and Spinors come from untwisted sector of $\mathbb{Z}_{2}{ }^{\text {SUSY }}$
- Cospinors come from twisted sector of $\mathbb{Z}_{2}^{\text {SUSY }}$

$\mathcal{N}=0$ heterotic model building

- Computer-aided scans in SM-landscape
- modified version of The Orbifolder using orbifold formulation

Nilles, Ramos-Sánchez, Vaudrevange,Wingerter'11

- anomaly cancellation in 4D

$\mathcal{N}=0$ heterotic model building

- Computer-aided scans in SM-landscape
- modified version of The Orbifolder using orbifold formulation Nilles,Ramos-Sánchez,Vaudrevange,Wingerter'11
- anomaly cancellation in 4D
- Further consistency checks
- independent Mathematica code using torsion phase formulation
- matching spectra with resolved models (see below)

Heterotic $\mathrm{SO}(16) \times \mathrm{SO}(16)$

- 10D non-SUSY superstring theory: $\mathrm{SO}(16) \times \mathrm{SO}(16)$

Heterotic $\mathrm{SO}(16) \times \mathrm{SO}(16)$

- 10D non-SUSY superstring theory: $\mathrm{SO}(16) \times \mathrm{SO}(16)$
- Relation to both heterotic $\mathrm{E}_{8} \times \mathrm{E}_{8}$ and $\mathrm{SO}(32)$

Heterotic $\mathrm{SO}(16) \times \mathrm{SO}(16)$

- 10D non-SUSY superstring theory: $\mathrm{SO}(16) \times \mathrm{SO}(16)$
- Relation to both heterotic $\mathrm{E}_{8} \times \mathrm{E}_{8}$ and $\mathrm{SO}(32)$
- To see this at the level of partition function of either standard heterotic theory:
- introduce modular invariant non-SUSY generalized discrete torsion phases or equivalently
- perform 10D orbifold-like construction to break SUSY
\Rightarrow SUSY broken already at tree level

$\mathrm{SO}(16) \times \mathrm{SO}(16)$ on $\mathrm{CY}:(\mathrm{No})$ tachyons

- On $\mathcal{N}=1$ CY we can avoid tachyons by working in large volume approximation

$\mathrm{SO}(16) \times \mathrm{SO}(16)$ on $\mathrm{CY}:(\mathrm{No})$ tachyons

- On $\mathcal{N}=1$ CY we can avoid tachyons by working in large volume approximation
- Evidence for no tachyons on CY's with a vector bundle:
- In general, the reduction of 10D bosonic action on CY uses only the bosonic lowest component of superfields, whose fermionic part maybe projected out by SUSY \mathbb{Z}_{2}

$\mathrm{SO}(16) \times \mathrm{SO}(16)$ on $\mathrm{CY}:(\mathrm{No})$ tachyons

- On $\mathcal{N}=1$ CY we can avoid tachyons by working in large volume approximation
- Evidence for no tachyons on CY's with a vector bundle:
- In general, the reduction of 10D bosonic action on CY uses only the bosonic lowest component of superfields, whose fermionic part maybe projected out by SUSY \mathbb{Z}_{2}
- Zero modes of Laplace opetator determine massless bosons
$\Delta \sim(i D)^{2} \longrightarrow \Delta$-spectrum is non-negative

$\mathrm{SO}(16) \times \mathrm{SO}(16):$ Open questions

- BUT
- orbifold tachyons can get induced by α^{\prime} and g_{s} corrections

$\mathrm{SO}(16) \times \mathrm{SO}(16):$ Open questions

- BUT
- orbifold tachyons can get induced by α^{\prime} and g_{s} corrections
- However in SM we need negative Higgs mass for EWSB
- MSSM: $m_{h}<0$ induced by SUSY, hierarchy problem
- $\mathcal{N}=0$ models: similar problem, just enhanced by $\frac{M_{s}}{m_{\text {SUSY }}}<10^{13}$

$\mathrm{SO}(16) \times \mathrm{SO}(16):$ Open questions

- BUT
- orbifold tachyons can get induced by α^{\prime} and g_{s} corrections
- However in SM we need negative Higgs mass for EWSB
- MSSM: $m_{h}<0$ induced by SUSY, hierarchy problem
- $\mathcal{N}=0$ models: similar problem, just enhanced by $\frac{M_{s}}{m_{\text {SUST }}}<10^{13}$
- Cosmological constant Λ and destabilizing dilaton tadpole
- in general value of Λ finite but not \sim zero
- contributions to Λ of tachyons and tower of massive states

Heterotic SUSY: Review

- Why SUSY?
- hierarchy problem, Higgs mass
- unification of gauge couplings
- dark matter candidate
- compelling extension of Poincaré group
- gain computational control

Motivation

- General non-SUSY geometric backgrounds for heterotic orbifolds
- 370 point groups representable by twist vectors
- More than 7000 point groups with arbitrary geometric action, e.g. complex conjugation
- More than $29,100,000$ corresponding geometric classes
- Generically some 4D models will have unprojected tachyons
- A full classification lacking, but in principle straightforward

Motivation

- General non-SUSY geometric backgrounds for heterotic orbifolds
- 370 point groups representable by twist vectors
- More than 7000 point groups with arbitrary geometric action, e.g. complex conjugation
- More than 29, 100, 000 corresponding geometric classes
- Generically some 4D models will have unprojected tachyons
- A full classification lacking, but in principle straightforward
- $\mathrm{SO}(16) \times \mathrm{SO}(16)$: 10D non-SUSY superstring theory
- Tachyon-free
- Anomaly-free
- Relation to both heterotic $\mathrm{E}_{8} \times \mathrm{E}_{8}$ and $\mathrm{SO}(32)$

Orbifolds of $\mathrm{SO}(16) \times \mathrm{SO}(16)$: Tachyons

- In twisted sector of $10 \mathrm{D} \mathbb{Z}_{2}^{-5 \text { SYY }}$ unlevel-matched right-moving tachyon on $\mathrm{SO}(8)_{R}$
- Tachyonic levels from twisted right-movers on root lattice $\mathrm{SO}(8)_{R}$

Orbifolds of $\mathrm{SO}(16) \times \mathrm{SO}(16)$: Tachyons

- In twisted sector of $10 \mathrm{D} \mathbb{Z}_{2}^{-5 \text { SYY }}$ unlevel-matched right-moving tachyon on $\mathrm{SO}(8)_{R}$
- Tachyonic levels from twisted right-movers on root lattice $\mathrm{SO}(8)_{R}$

Consider $\omega=k v+q, \quad q \in \operatorname{SO}(8)_{R}$ such that $0 \leq \omega_{1} \leq \omega_{2} \leq \frac{1}{2}$

$$
\begin{aligned}
& \text { R-movers mass on twisted } \mathrm{SO}(8)_{R} \\
& M_{R}^{2}=\omega_{1}+\omega_{2}-\frac{1}{2}
\end{aligned}
$$

Orbifolds of $\mathrm{SO}(16) \times \mathrm{SO}(16)$: Tachyons

- In twisted sector of $10 \mathrm{D} \mathbb{Z}_{2}^{-5 \text { SYY }}$ unlevel-matched right-moving tachyon on $\mathrm{SO}(8)_{R}$
- Tachyonic levels from twisted right-movers on root lattice $\mathrm{SO}(8)_{R}$

Consider $\omega=k v+q, q \in \operatorname{SO}(8)_{R}$ such that $0 \leq \omega_{1} \leq \omega_{2} \leq \frac{1}{2}$

$$
\begin{aligned}
& \text { R-movers mass on twisted } \mathrm{SO}(8)_{R} \\
& M_{R}^{2}=\omega_{1}+\omega_{2}-\frac{1}{2}
\end{aligned}
$$

- At most one tachyonic level possible

Orbifolds of $\mathrm{SO}(16) \times \mathrm{SO}(16)$: Tachyons

- In twisted sector of $10 \mathrm{D} \mathbb{Z}_{2}^{-5 \text { SYY }}$ unlevel-matched right-moving tachyon on $\mathrm{SO}(8)_{R}$
- Tachyonic levels from twisted right-movers on root lattice $\mathrm{SO}(8)_{R}$

Consider $\omega=k v+q, q \in \operatorname{SO}(8)_{R}$ such that $0 \leq \omega_{1} \leq \omega_{2} \leq \frac{1}{2}$

$$
\begin{aligned}
& \text { R-movers mass on twisted } \mathrm{SO}(8)_{R} \\
& M_{R}^{2}=\omega_{1}+\omega_{2}-\frac{1}{2}
\end{aligned}
$$

- At most one tachyonic level possible
- In contrast to $\mathcal{N}=1$, massless right-moving excitations possible

Orbifolds of $\mathrm{SO}(16) \times \mathrm{SO}(16)$: Tachyons

- In twisted sector of $10 \mathrm{D} \mathbb{Z}_{2}^{-5 \text { SYY }}$ unlevel-matched right-moving tachyon on $\mathrm{SO}(8)_{R}$
- Tachyonic levels from twisted right-movers on root lattice $\mathrm{SO}(8)_{R}$

Consider $\omega=k v+q, \quad q \in \operatorname{SO}(8)_{R}$ such that $0 \leq \omega_{1} \leq \omega_{2} \leq \frac{1}{2}$

$$
\begin{aligned}
& \text { R-movers mass on twisted } \mathrm{SO}(8)_{R} \\
& M_{R}^{2}=\omega_{1}+\omega_{2}-\frac{1}{2}
\end{aligned}
$$

- At most one tachyonic level possible
- In contrast to $\mathcal{N}=1$, massless right-moving excitations possible
- In some twists, tachyonic levels also from excited R-movers

Computer-aided model building

- $\mathrm{SO}(16) \times \mathrm{SO}(16)$-like non-SuSy twists

$$
\frac{N}{2} v=(0,1,1,1)=v_{0}
$$

Computer-aided model building

- $\mathrm{SO}(16) \times \mathrm{SO}(16)$-like non-SuSy twists

$$
\frac{N}{2} v=(0,1,1,1)=v_{0}
$$

- Two model-independently tachyon-free non-SUSY geometries

$$
v_{4}=\left(0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) \text { and } v_{6}=\left(0, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)
$$

- Results from a first approach scan

Orbifold twist \#(geom)		Inequivalent scanned models	Tachyon-free percentage	SM-like tachyon-free models			
		total		one-Higgs	two-Higgs		
v_{4}	(1)			100 \%		0	0
v_{6}	(1)	1226676	100 \%	1146	177	15	

$\mathrm{SO}(16) \times \mathrm{SO}(16)$ on CY : The Standard embedding

- Gauge embedding of spin structure already gives an SO(10) GUT:

$$
\mathrm{SO}(16) \times \mathrm{SO}(16)^{\prime} \longrightarrow \mathrm{SO}(10) \times \mathrm{U}(1) \times \mathrm{SO}(16)^{\prime}
$$

SO(16) \times SO(16) on CY: The Standard embedding

- Gauge embedding of spin structure already gives an SO(10) GUT:

$$
\mathrm{SO}(16) \times \mathrm{SO}(16)^{\prime} \longrightarrow \mathrm{SO}(10) \times \mathrm{U}(1) \times \mathrm{SO}(16)^{\prime}
$$

- 4D spectrum via standard cohomology theory as in SUSY-case

Multiplicity	Complex bosons	Chiral fermions
1	-	$(\mathbf{1 6} ; \mathbf{1})_{3}+(\overline{\mathbf{1 6}} ; \mathbf{1})_{-3}+(\mathbf{1} ; \mathbf{1 2 8})_{0}+(\mathbf{1 0} ; \mathbf{1 6})_{0}$
$h^{1,1}$	$(\mathbf{1 0} ; \mathbf{1})_{2}+(\mathbf{1} ; \mathbf{1})_{-4}$	$(\mathbf{1 6} ; \mathbf{1})_{-1}+(\mathbf{1} ; \mathbf{1 6})_{-2}$
$h^{1,2}$	$(\mathbf{1 0} ; \mathbf{1})_{-2}+(\mathbf{1} ; \mathbf{1})_{4}$	$(\overline{\mathbf{1 6}} ; \mathbf{1})_{1}+(\mathbf{1} ; \mathbf{1 6})_{2}$
$h^{1}(\operatorname{End}(V))$	$(\mathbf{1} ; \mathbf{1})_{0}$	-

$\mathrm{SO}(16) \times \mathrm{SO}(16)$ on CY : The Standard embedding

- Gauge embedding of spin structure already gives an SO(10) GUT:

$$
\mathrm{SO}(16) \times \mathrm{SO}(16)^{\prime} \longrightarrow \mathrm{SO}(10) \times \mathrm{U}(1) \times \mathrm{SO}(16)^{\prime}
$$

- 4D spectrum via standard cohomology theory as in SUSY-case

Multiplicity	Complex bosons	Chiral fermions
1	-	$(\mathbf{1 6} ; \mathbf{1})_{3}+(\overline{\mathbf{1 6}} ; \mathbf{1})_{-3}+(\mathbf{1} ; \mathbf{1 2 8})_{0}+(\mathbf{1 0} ; \mathbf{1 6})_{0}$
$h^{1,1}$	$(\mathbf{1 0} ; \mathbf{1})_{2}+(\mathbf{1} ; \mathbf{1})_{-4}$	$(\mathbf{1 6} ; \mathbf{1})_{-1}+(\mathbf{1} ; \mathbf{1 6})_{-2}$
$h^{1,2}$	$(\mathbf{1 0} ; \mathbf{1})_{-2}+(\mathbf{1} ; \mathbf{1})_{4}$	$(\overline{\mathbf{1 6}} ; \mathbf{1})_{1}+(\mathbf{1} ; \mathbf{1 6})_{2}$
$h^{1}($ End $(V))$	$(\mathbf{1} ; \mathbf{1})_{0}$	-

- Net number of $\mathbf{1 6}$ of $\mathrm{SO}(10)$ determined by $h^{1,1}-h^{2,1}$

$\mathrm{SO}(16) \times \mathrm{SO}(16)$ on CY : Line Bundles

- Work on same $\mathcal{N}=1$ backgrounds, all previous tools applicable

$\mathrm{SO}(16) \times \mathrm{SO}(16)$ on CY : Line Bundles

- Work on same $\mathcal{N}=1$ backgrounds, all previous tools applicable
- In particular,

Massless fermions

- spinors in $(\mathbf{1 2 8 , 1})$ and $(\mathbf{1}, 128)$
- cospinors in $(\mathbf{1 6}, \mathbf{1 6})$

Massless bosons

- Gravity sector
- $(\mathbf{1 2 0}, 1)$ and $(1,120)$ adjoint

$\mathrm{SO}(16) \times \mathrm{SO}(16)$ on CY : Line Bundles

- Work on same $\mathcal{N}=1$ backgrounds, all previous tools applicable
- In particular,

Massless fermions

- spinors in $(\mathbf{1 2 8 , 1})$ and $(\mathbf{1}, \mathbf{1 2 8})$
- cospinors in $(\mathbf{1 6}, \mathbf{1 6})$

Massless bosons

- Gravity sector
- $(120,1)$ and $(1,120)$ adjoint
- Index of fermions as before
- Use projected out superpartners from $\mathbf{S}_{4} \otimes \mathbf{R}_{8} \otimes \mathbf{R}_{8}$ to compute index of bosons from $\mathbf{V}_{4} \otimes \mathbf{R}_{8} \otimes \mathbf{R}_{8}$

$\mathrm{SO}(16) \times \mathrm{SO}(16)$ on CY : Orbifold Resolutions

- Application: Line bundle models on the resolution of $\boldsymbol{T}^{\mathbf{6}} / \mathbb{Z}_{\mathbf{3}}$ Luest,Reffert,Scheidegger,Stieberger'08, Groot-Nibbelink,Nilles, Trapletti'08

$\mathrm{SO}(16) \times \mathrm{SO}(16)$ on CY : Orbifold Resolutions

- Application: Line bundle models on the resolution of $\boldsymbol{T}^{\mathbf{6}} / \mathbb{Z}_{\mathbf{3}}$ Luest,Reffert,Scheidegger,Stieberger'08, Groot-Nibbelink,Nilles,Trapletti'08
- Abelian gauge flux: $\frac{\mathcal{F}}{2 \pi}=H_{I} W_{I}^{r} E_{r}$
- Integrated Bianchi identities: $W_{r}^{2}=\frac{4}{3}$
- DUY condition: $\int \frac{\mathcal{F}}{2 \pi} \in \mathbf{R}_{8} \otimes \mathbf{R}_{8}\left(\notin \mathrm{E}_{8} \times \mathrm{E}_{8}\right)$

$\mathrm{SO}(16) \times \mathrm{SO}(16)$ on CY : Orbifold Resolutions

- Application: Line bundle models on the resolution of $\boldsymbol{T}^{\mathbf{6}} / \mathbb{Z}_{\mathbf{3}}$ Luest,Reffert,Scheidegger,Stieberger'08, Groot-Nibbelink,Nilles, Trapletti'08
- Abelian gauge flux: $\frac{\mathcal{F}}{2 \pi}=H_{I} W_{I}^{r} E_{r}$
- Integrated Bianchi identities: $W_{r}^{2}=\frac{4}{3}$
\Rightarrow DUY condition: $\int \frac{\mathcal{F}}{2 \pi} \in \mathbf{R}_{8} \otimes \mathbf{R}_{8}\left(\notin \mathrm{E}_{8} \times \mathrm{E}_{8}\right)$

Line bundle vector W Gauge group G	Massless spectrum in blow-up: chiral fermions $/$ complex bosons
$\frac{1}{3}\left(0,2^{3}, 0^{4}\right)\left(0^{8}\right)$	$3(\mathbf{3}, \mathbf{1} ; \mathbf{1 6})_{2}+3(\overline{\mathbf{3}}, \overline{\mathbf{1 6}} ; \mathbf{1})_{1}+27(\mathbf{1}, \overline{\mathbf{1 6}} ; \mathbf{1})_{-3}$
$\mathrm{U}(3) \times \mathrm{SO}(10) \times \mathrm{SO}(16)^{\prime}$	$78(\overline{\mathbf{3}}, \mathbf{1} ; \mathbf{1})_{4}+3(\mathbf{3}, \mathbf{1 0} ; \mathbf{1})_{2}$
$\frac{1}{3}\left(1^{6}, 0^{2}\right)\left(1^{6}, 0^{2}\right)$	$3\left(\overline{\mathbf{6}}, \mathbf{2}_{-} ; \mathbf{1}\right)_{-2}+3\left(\mathbf{1} ; \overline{\mathbf{6}}, \mathbf{2}_{-}\right)-2+3\left(\mathbf{1 5}, \mathbf{2}_{+} ; \mathbf{1}\right)_{1}+3\left(\mathbf{1} ; \mathbf{1 5}, \mathbf{2}_{+}\right)_{1}+3(\overline{\mathbf{6}}, \mathbf{1} ; \overline{\mathbf{6}}, \mathbf{1})_{2}$
	$+3(\mathbf{6}, \mathbf{1} ; \mathbf{1}, \mathbf{4})_{-1}+3(\mathbf{1}, \mathbf{4} ; \mathbf{6}, \mathbf{1})_{-1}+27\left(\mathbf{1}, \mathbf{2}_{+} ; \mathbf{1}\right)_{-3}+27\left(\mathbf{1} ; \mathbf{1}, \mathbf{2}_{+}\right)-3$
$\mathrm{U}(6) \times \mathrm{SO}(4) \times \mathrm{U}(6)^{\prime} \times \mathrm{SO}(4)^{\prime}$	$3(\mathbf{1 5}, \mathbf{1} ; \mathbf{1})_{2}+3(\mathbf{1} ; \mathbf{1 5}, \mathbf{1})_{2}+3(\mathbf{6}, \mathbf{4} ; \mathbf{1})_{-1}+3(\mathbf{1} ; \mathbf{6}, \mathbf{4})_{-1}$
$\frac{1}{3}\left(1^{8}\right)\left(1^{4}, 0^{4}\right)$	$3\left(\mathbf{8} ; \mathbf{1}, \mathbf{8}_{v}\right)_{-1}+3\left(\mathbf{1} ; \mathbf{1}, \mathbf{8}_{s}\right)_{-2}+3\left(\mathbf{1} ; \mathbf{4}, \mathbf{8}_{c}\right)_{1}+3\left(\overline{\mathbf{(2 8} ; \mathbf{1})_{-2}}\right.$
	$+3(\overline{\mathbf{8}} ; \mathbf{\mathbf { 4 }}, \mathbf{1})_{2}+78(\mathbf{1} ; \mathbf{1})_{-4}$
$\mathrm{U}(8) \times \mathrm{U}(4)^{\prime} \times \mathrm{SO}(8)^{\prime}$	$3\left(\overline{\mathbf{2 8} ; \mathbf{1})_{2}+3(\mathbf{1} ; \mathbf{6}, \mathbf{1})_{2}+3\left(\mathbf{1} ; \mathbf{4}, \mathbf{8}_{v}\right)_{-1}}\right.$

$\mathrm{SO}(16) \times \mathrm{SO}(16)$ on $\mathrm{CY}:(\mathrm{No})$ Tachyons

- On arbitrary $\mathcal{N}=1 \mathrm{CY}$ we can avoid tachyons by working in large volume approximation

$\mathrm{SO}(16) \times \mathrm{SO}(16)$ on $\mathrm{CY}:($ No $)$ Tachyons

- On arbitrary $\mathcal{N}=1 \mathrm{CY}$ we can avoid tachyons by working in large volume approximation
- Evidence for no tachyons on CY's with a vector bundle:
- Zero modes of Laplace opetator determine massless bosons

$$
\Delta \sim(i D)^{2} \longrightarrow \Delta \text {-spectrum is non-negative }
$$

$\mathrm{SO}(16) \times \mathrm{SO}(16)$ on $\mathrm{CY}:(\mathrm{No})$ Tachyons

- On arbitrary $\mathcal{N}=1 \mathrm{CY}$ we can avoid tachyons by working in large volume approximation
- Evidence for no tachyons on CY's with a vector bundle:
- Zero modes of Laplace opetator determine massless bosons $\Delta \sim(i D)^{2} \longrightarrow \Delta$-spectrum is non-negative
- F- and D-terms govern the scalar potential to leading order

$$
V=\sum_{a}\left|\frac{\partial \mathcal{W}}{\partial Z^{a}}\right|^{2}+\frac{1}{2} D^{2} \longrightarrow \text { non-negative contributions }
$$

where Z^{a} would-be chiral extension to massless complex scalars

- Form of V justified since the reduction of 10D bosonic action on CY uses only the bosonic lowest component of Z^{a}

The End

