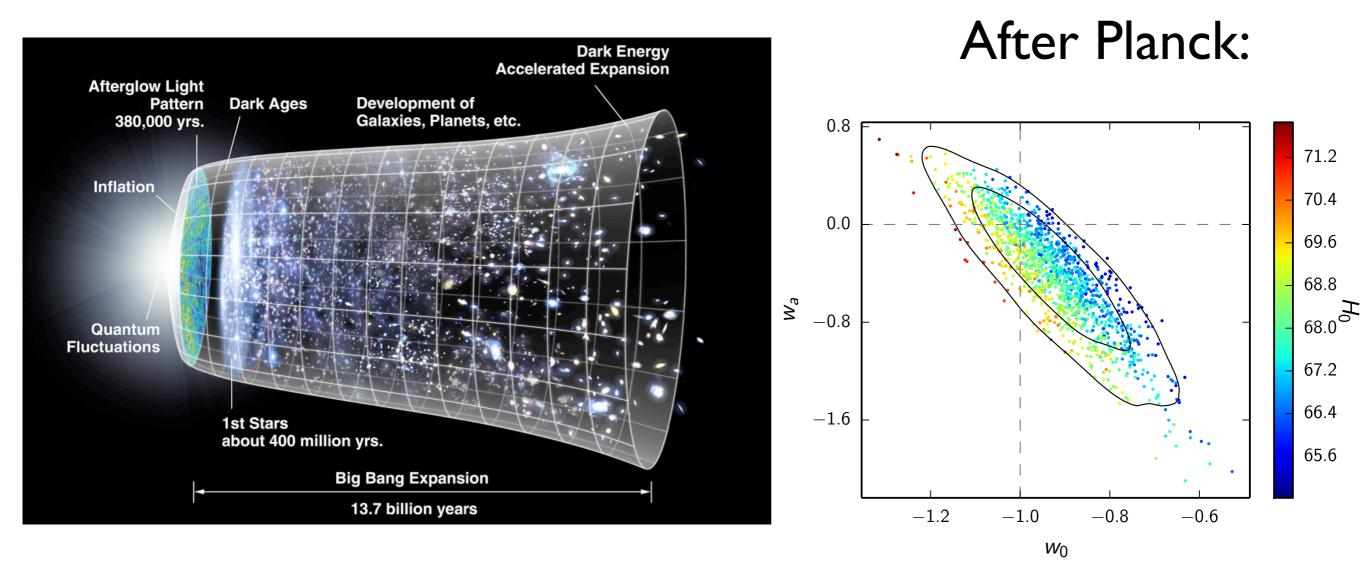
De Sitter Vacua from a D-term Generated Racetrack Uplift

arXiv:1407.7580 [hep-th] (JHEP 1501 (2015) 015) with Yoske Sumitomo + work in progress with Andreas Braun, Roberto Valandro and Yoske Sumitomo

Markus Rummel, University of Oxford

Bad Honnef 2015, 17/03/2015

Dark Energy



 $w = -1.023^{+0.091}_{-0.096}$ *Planck* TT+lowP+ext (BAO, JLA and H_0) [Planck 15]

agrees with cosmological constant w = -1

De Sitter Vacua from a D-term Generated Racetrack Uplift

Markus Rummel 2 / 14

Moduli Stabilization

- Compactification from IOD to 4D results in many many moduli ϕ_a
- 5th forces and cosmological constraints: $m_{\phi_a}\gtrsim 30~{
 m TeV}\Rightarrow~{
 m Stabilization~required~[see Palti's talk]}$
- CC is very small $\langle V \rangle \sim \Lambda \sim 10^{-120} M_{\rm P}^4$ \Rightarrow Tuning necessary in absence of dynamical mechanism

• $\mathcal{P} \equiv \frac{\#\text{stable points}}{\#\text{critical points}} \sim e^{-\mathcal{O}(1)N^2}$ \Rightarrow Hierarchical structure preferred Sumitomo, Tye 12], [Bachlechner,

[Aazami, Easther 05], [Dean Majumdar 08], [Borot, Eynard, Majumdar, Nadal 10], [Marsh, McAllister, Wrase 12], [Chen, Shiu, Marsh, McAllister, Wrase 12]

Moduli Stabilization

- Compactification from I0D to 4D results in many many moduli ϕ_a
- 5th forces and cosmological constraints: $m_{\phi_a} \gtrsim 30 \text{ TeV} \Rightarrow$ Stabilization required [see Palti's talk]
- CC is very small $\langle V \rangle \sim \Lambda \sim 10^{-120} {
 m M}_{
 m P}^4$ \Rightarrow Tuning necessary in absence of dynamical mechanism

• $\mathcal{P} \equiv \frac{\#\text{stable points}}{\#\text{critical points}} \sim e^{-\mathcal{O}(1)N^2}$

 \Rightarrow Hierarchical structure preferred Sumitomo, Tye 12], [Bachlechner,

[Aazami, Easther 05], [Dean Majumdar 08], [Borot, Eynard, Majumdar, Nadal 10], [Marsh, McAllister, Wrase 12], [Chen, Shiu, Sumitomo, Tye 12], [Bachlechner, Marsh, McAllister, Wrase 12]

\Rightarrow **Type IIB**

Type IIB models

Type IIB has no-scale structure:

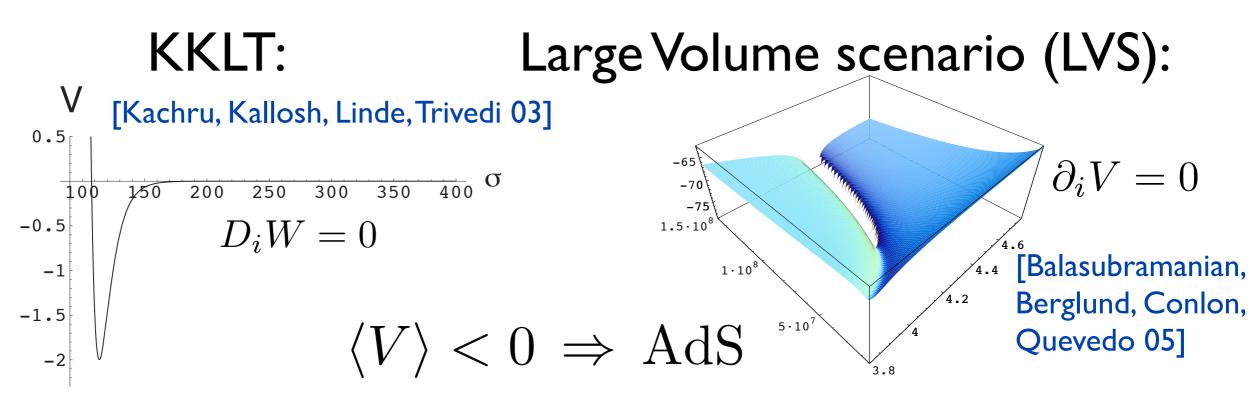
[Cremmer, Ferrara, Kounnas, Nanopoulos 83], [Giddings, Kachru, Polchinski 01], [Grimm, Louis 04]

$$V = e^k \left(K^{a\overline{b}} D_a W \overline{D_b W} - 3W^2 \right)$$

$$= \underbrace{V_{\text{Flux}}}_{\mathcal{O}(\mathcal{V}^{-2})} + \underbrace{V_{\text{NP}} + V_{\alpha'}}_{\mathcal{O}(\mathcal{V}^{-3})}$$

and $V_{\rm Flux}$ positive semi-definite

 \Rightarrow Flux stabilized moduli can be integrated out



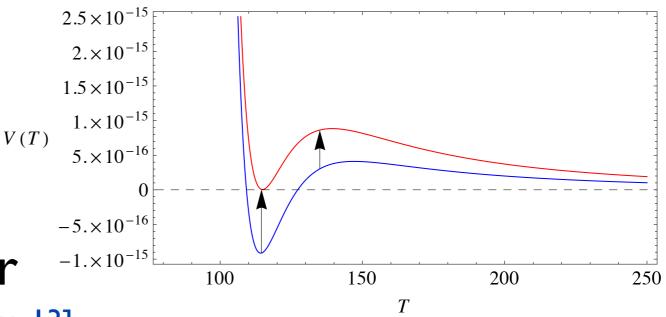
De Sitter Vacua from a D-term Generated Racetrack Uplift

Markus Rummel 4 / 14

De Sitter uplifting

• Anti D3 branes

[Kachru, Pearson, Verlinde 01], [Kachru, Kallosh, Linde, Trivedi 03], [Talks by Gautason and Junghans]



• Complex structure sector

[Saltman, Silverstein 04], [Danielsson, Dibitetto 13], [Blaback, Roest, Zavala, 13], [Kallosh, Linde, Vercnocke, Wrase 14]

- negative curvature of manifold [Silverstein 07]
- D-terms via magnetic flux on D7 branes
 [Burgess, Kallosh, Quevedo 03], [Cremades, Garcia del Moral, Quevedo 07], [Krippendorf, Quevedo 09]
- non-perturbative dilaton effects

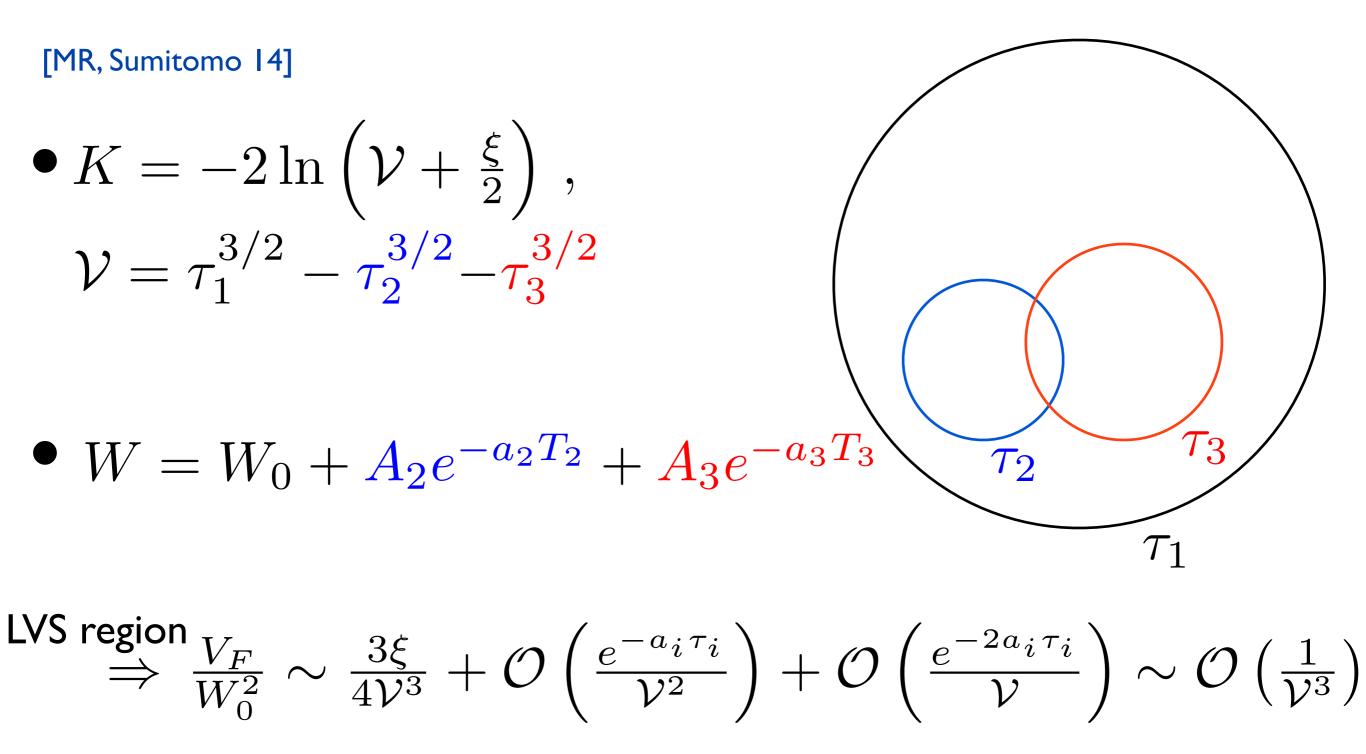
[Cicoli, Maharana, Quevedo, Burgess 12]

Kähler Uplifting

[Balasubramanian, Berglund 04], [Westphal 06], [MR, Westphal, 11], [de Alwis, Givens 11]

$$K = -\ln\left(\mathcal{V} + \frac{\xi}{2}\right), \quad W = W_0 + A_1 e^{-a_1 T_1} + \dots$$

- same setup as Large Volume scenario but different region in parameter space
- de Sitter directly from V_F but upper bound on ${\mathcal V}$
- Racetrack Kähler Uplift [Sumitomo, Tye, Wong, 13] $W = W_0 + A_1 e^{-a_1 T_1} + B_1 e^{-b_1 T_1}$ \Rightarrow No upper bound



De Sitter Vacua from a D-term Generated Racetrack Uplift

Markus Rummel 7 / 14

- Wrap divisor $T_D = T_2 + T_3$ with D7 branes
- \Rightarrow D-term potential $V_D \sim \left(\sum_j \varphi_j - \xi_D\right)^2$
- with matter fields $\, arphi_{j} \,$ and

 $\begin{array}{c} D7 \Rightarrow \mathcal{F}_D \\ \hline \\ \hline \\ \mathcal{T}_2 \\ \hline \\ \mathcal{T}_3 \\ \end{array}$

 $\xi_D = \frac{1}{\mathcal{V}} \int D_D \wedge J \wedge \mathcal{F}_D \sim \sqrt{\tau_2} - \sqrt{\tau_3}$ (gauge Flux \mathcal{F}_D)

De Sitter Vacua from a D-term Generated Racetrack Uplift

 au_1

- Wrap divisor $T_D = T_2 + T_3$ with D7 branes
- \Rightarrow D-term potential $V_D \sim \left(\sum_j \varphi_j - \xi_D\right)^2$
- with matter fields $\, arphi_{j} \,$ and
- $\xi_D = \frac{1}{\mathcal{V}} \int D_D \wedge J \wedge \mathcal{F}_D \sim \sqrt{\tau_2} \sqrt{\tau_3}$ (gauge Flux \mathcal{F}_D)

$$\xi_D = 0 \Longrightarrow \tau_2 = \tau_3$$

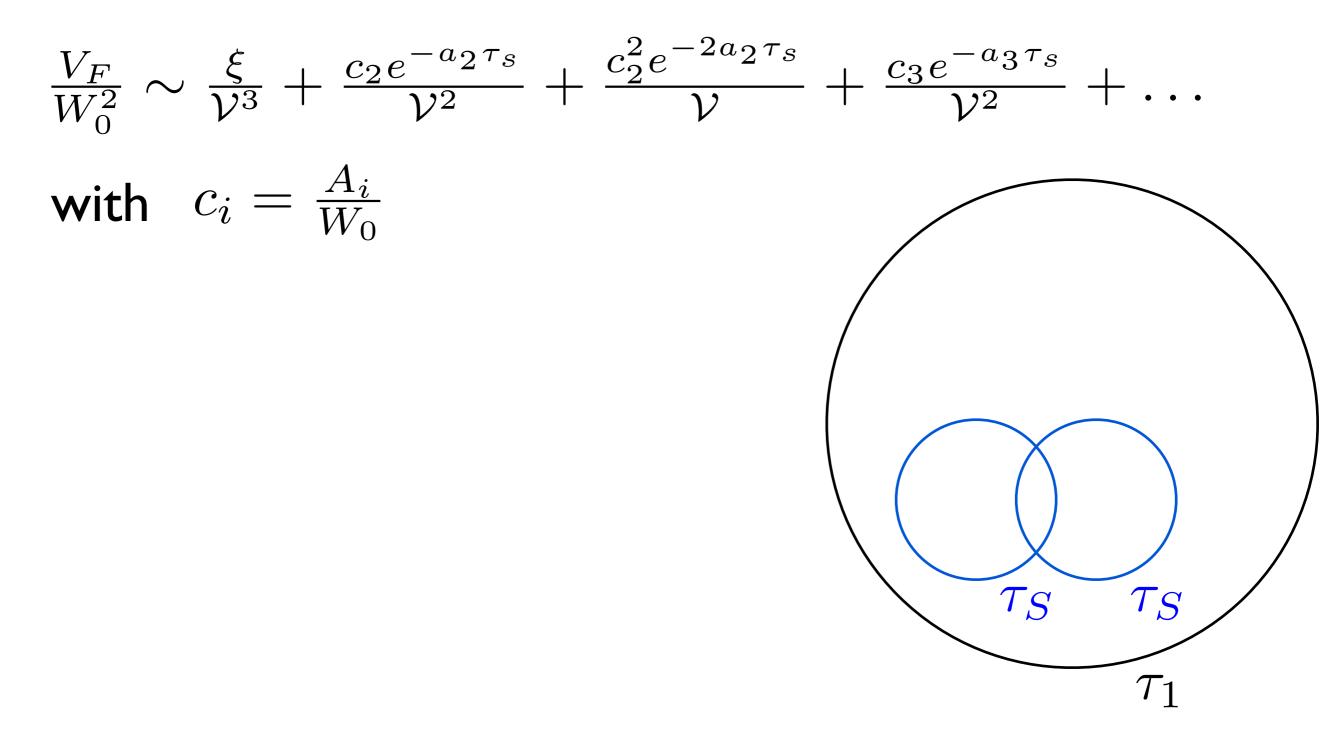
De Sitter Vacua from a D-term Generated Racetrack Uplift

 au_1

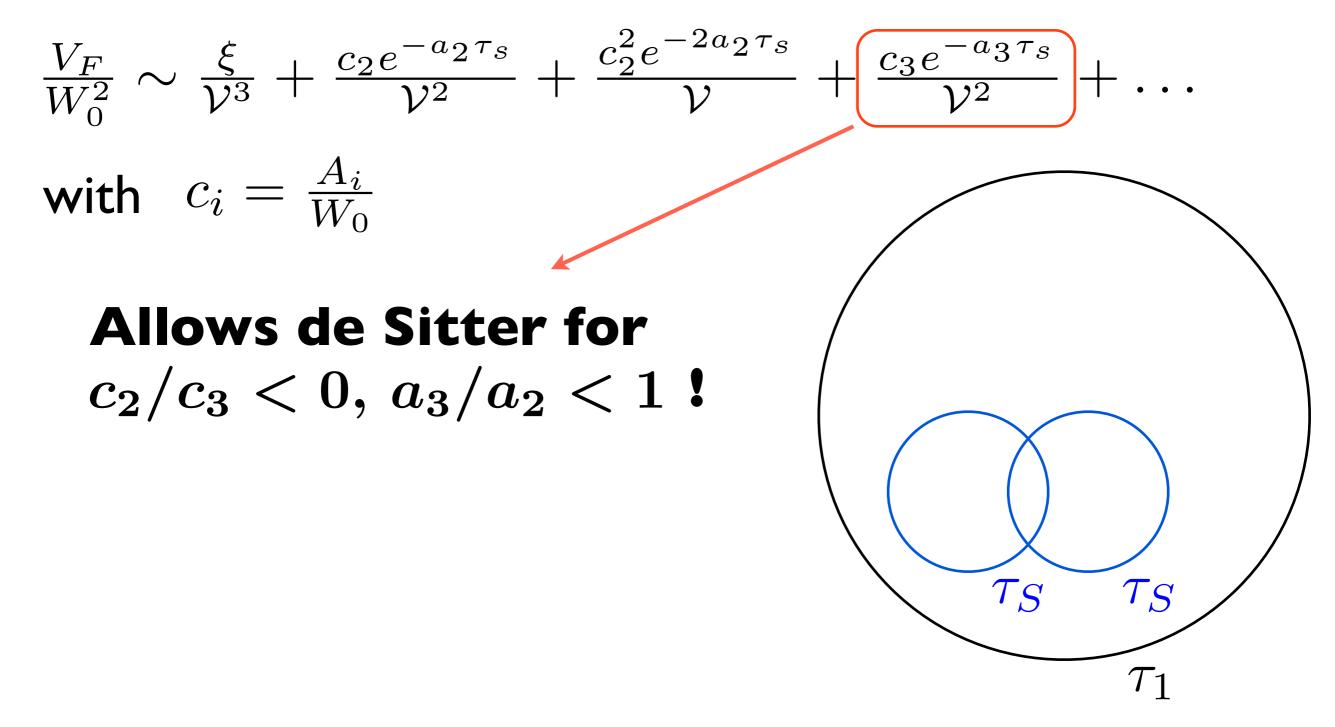
 $D7 \Rightarrow \mathcal{F}_D$

 au_2

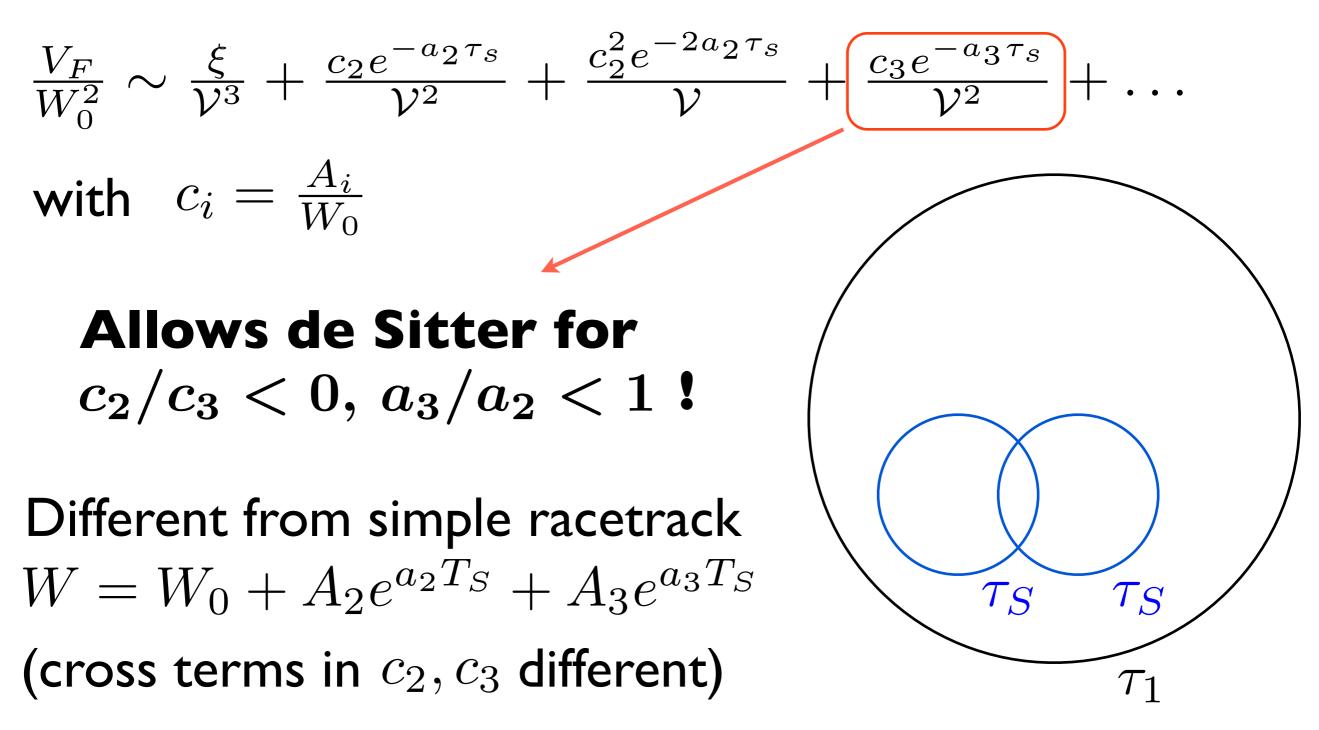
Resultant F-Term potential for $\mathcal{V} \sim \tau_1^{3/2}$ and $\tau_S = \tau_2 = \tau_3$:



Resultant F-Term potential for $\mathcal{V} \sim \tau_1^{3/2}$ and $\tau_S = \tau_2 = \tau_3$:



Resultant F-Term potential for $\mathcal{V} \sim \tau_1^{3/2}$ and $\tau_S = \tau_2 = \tau_3$:



Explicit Examples

Explicit Examples exist for D-term LVS and Kähler Uplifting [Cicoli,Krippendorf,Mayrhofer,Quevedo,Valandro 12],[Louis,MR,Valandro,Westphal 12] \Rightarrow Construct explicit models!

Constraints:

- Matter field stabilization and $\xi_D = 0$
- Tension between $\mathcal{F}_D \neq 0$ and $A_2, A_3 \neq 0$

[Blumenhagen, Moster, Plauschinn 07]

- Stabilization inside Kähler Cone
- D7 and D3 Tadpole
- Freed-Witten Anomalies [Minasian, Moore 97], [Freed, Witten 99]

Explicit Examples

Explicit Examples exist for D-term LVS and Kähler Uplifting [Cicoli,Krippendorf,Mayrhofer,Quevedo,Valandro 12],[Louis,MR,Valandro,Westphal 12] \Rightarrow Construct explicit models!

Constraints:

- Matter field stabilization and $\xi_D = 0$
- Tension between $\mathcal{F}_D \neq 0$ and $A_2, A_3 \neq 0$

[Blumenhagen, Moster, Plauschinn 07]

- Stabilization inside Kähler Cone
- D7 and D3 Tadpole
- Freed-Witten Anomalies [Minasian, Moore 97], [Freed, Witten 99]
 ⇒ Scan toric Calabi-Yaus! [Kreuzer, Skarke 00], [Altman, Gray, He, Jejjala, Nelson 14]

De Sitter Vacua from a D-term Generated Racetrack Uplift

Markus Rummel 10/14

Matter field stabilization

• In general $\mathcal{F}_D \neq 0$ leads to hidden sector matter fields living on D_2 , D_3 and $D_2 \cap D_3$

$$V = V_D + V_{matter}$$

= $\frac{1}{\mathcal{V}^{\alpha}} \left(\sum_{i}^{N} q_i |\phi_i|^2 - \frac{\tilde{\xi}}{\mathcal{V}} \right)^2 + \frac{1}{\mathcal{V}^{\beta}} \sum_{i}^{N} a_i |\phi_i|^2 + \frac{1}{\mathcal{V}^{\gamma}} \sum_{i}^{N} c_i |\phi_i|^4 + \dots$

• For certain parameters, in particular tachyonic soft masses $a_i < 0$, minima with

 $\langle |\phi_i| \rangle \neq 0 \ (\Rightarrow A_2, A_3 \neq 0), \ \sum_i^N q_i \langle |\phi_i|^2 \rangle = 0 \ (\Rightarrow \xi_D = 0)$

Scanning for explicit examples

Checklist for simplest realization of D-term generated racetrack:

- Two rigid, only self-intersecting, small divisors D_2, D_3 leading to two ED3 instantons, avoids Freed-Witten anomalies, inside Kähler cone
- Irreducible divisor D_D intersecting D_2, D_3 generates $\xi_D = 0$ via $\mathcal{F}_D = f_2 D_2 + f_3 D_3$ via 8 D7 branes on D_D , $O_7: z_D \mapsto -z_D$

•
$$Q_{D3} \sim \int F_3 \wedge H_3 - \frac{\chi(D_D)}{2} - \int \mathcal{F}_D \wedge \mathcal{F}_D$$

Scanning for explicit examples

Checklist for simplest realization of D-term generated racetrack:

- Two rigid, only self-intersecting, small divisors D_2, D_3 leading to two ED3 instantons, avoids Freed-Witten anomalies, inside Kähler cone
- Irreducible divisor D_D intersecting D_2, D_3 generates $\xi_D = 0$ via $\mathcal{F}_D = f_2 D_2 + f_3 D_3$ via 8 D7 branes on D_D , $O_7: z_D \mapsto -z_D$

•
$$Q_{D3} \sim \int F_3 \wedge H_3 - \frac{\chi(D_D)}{2} - \int \mathcal{F}_D \wedge \mathcal{F}_D$$

$\mathcal{V} = \tau_b^{3/2} - \tau_2^{3/2} - \tau_3^{3/2} \qquad D_D = 4D_b - 2D_2 - 2D_3$

•
$$\mathcal{F}_D \Rightarrow \tau_2 = \frac{9}{16}\tau_3$$
 $Q_{D3} = \int F_3 \wedge H_3 - 20 \quad \chi(D_D) = 240$

- $\mathcal{F}_D \Rightarrow \tau_2 = \frac{9}{16}\tau_3$ $Q_{D3} = \int F_3 \wedge H_3 20 \quad \chi(D_D) = 240$
- Choose parameters $W_0 = 1$, $\hat{\xi} = 2$

- $\mathcal{F}_D \Rightarrow \tau_2 = \frac{9}{16}\tau_3$ $Q_{D3} = \int F_3 \wedge H_3 20 \quad \chi(D_D) = 240$
- Choose parameters $W_0 = 1$, $\hat{\xi} = 2$
- AdS LVS solution: $A_2 = -0.1$, $A_3 = 0$ $\langle \mathcal{V} \rangle = 3.7 \cdot 10^5$, $\langle \tau_s \rangle = 2.13$, $\langle V \rangle = -1.1 \cdot 10^{-18}$

- $\mathcal{F}_D \Rightarrow \tau_2 = \frac{9}{16}\tau_3$ $Q_{D3} = \int F_3 \wedge H_3 20 \quad \chi(D_D) = 240$
- Choose parameters $W_0 = 1$, $\hat{\xi} = 2$
- AdS LVS solution: $A_2 = -0.1$, $A_3 = 0$ $\langle \mathcal{V} \rangle = 3.7 \cdot 10^5$, $\langle \tau_s \rangle = 2.13$, $\langle V \rangle = -1.1 \cdot 10^{-18}$
- D-term racetrack **dS**: $A_2 = -0.1, \ A_3 = 2 \cdot 10^{-5}$
 - $\langle \mathcal{V} \rangle = 5.2 \cdot 10^5, \qquad \langle \tau_s \rangle = 2.20, \qquad \langle V \rangle = 2.3 \cdot 10^{-19}$

Conclusions

- De Sitter model building in String Theory is important since dark energy is consistent with small cc
- D-term generated racetrack is Large Volume Scenario with uplifting completely within Kähler sector
- Price: additional cycle with NP effect + D-term
- Search for examples can be highly automated using toric geometry
- Search for explicit examples promising!

Conclusions

- De Sitter model building in String Theory is important since dark energy is consistent with small cc
- D-term generated racetrack is Large Volume Scenario with uplifting completely within Kähler sector
- Price: additional cycle with NP effect + D-term
- Search for examples can be highly automated using toric geometry
- Search for explicit examples promising!

Thank you for your attention!