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Dark Energy

2

After Planck:

agrees with cosmological constant w = �1
[Planck 15]
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Fig. 27. Samples from the distribution of the dark energy pa-
rameters w0 and wa using Planck TT+lowP+BAO+JLA data,
colour-coded by the value of the Hubble parameter H0. Contours
show the corresponding 68 % and 95 % limits. Dashed grey lines
intersect at the point in parameter space corresponding to a cos-
mological constant.

This constraint is unchanged at the quoted precision if we add
the JLA supernovae data and the H0 prior of Eq. (30).

Figure 26 illustrates these results in the ⌦m–⌦⇤ plane. We
adopt Eq. (50) as our most reliable constraint on spatial curva-
ture. Our Universe appears to be spatially flat to an accuracy of
0.5%.

6.3. Dark energy

The physical explanation for the observed accelerated expansion
of the Universe is currently not known. In standard ⇤CDM the
acceleration is provided by a cosmological constant satisfying an
equation of state w ⌘ pDE/⇢DE = �1. However, there are many
possible alternatives, typically described either in terms of extra
degrees of freedom associated with scalar fields or modifications
of general relativity on cosmological scales (for reviews see e.g.,
Copeland et al. 2006; Tsujikawa 2010). A detailed study of these
models and the constraints imposed by Planck and other data is
presented in a separate paper, Planck Collaboration XIV (2015).

Here we will limit ourselves to the most basic extensions
of ⇤CDM, which can be phenomenologically described in
terms of the equation of state parameter w alone. Specifically
we will use the camb implementation of the “parameterized
post-Friedmann” (PPF) framework of Hu & Sawicki (2007) and
Fang et al. (2008) to test whether there is any evidence that w
varies with time. This framework aims to recover the behaviour
of canonical (i.e., those with a standard kinetic term) scalar field
cosmologies minimally coupled to gravity when w � �1, and
accurately approximates them for values w ⇡ �1. In these mod-
els the speed of sound is equal to the speed of light so that the
clustering of the dark energy inside the horizon is strongly sup-
pressed. The advantage of using the PPF formalism is that it is
possible to study the “phantom domain”, w < �1, including tran-
sitions across the “phantom barrier”, w = �1, which is not pos-
sible for canonical scalar fields.

The CMB temperature data alone does not strongly constrain
w, because of a strong geometrical degeneracy even for spatially-
flat models. From Planck we find

w = �1.54+0.62
�0.50 (95%,Planck TT+lowP), (51)

i.e., almost a 2� shift into the phantom domain. This is partly,
but not entirely, a parameter volume e↵ect, with the average ef-
fective �2 improving by h��2i ⇡ 2 compared to base ⇤CDM.
This is consistent with the preference for a higher lensing am-
plitude discussed in Sect. 5.1.2, improving the fit in the w < �1
region, where the lensing smoothing amplitude becomes slightly
larger. However, the lower limit in Eq. (51) is largely determined
by the (arbitrary) prior H0 < 100 km s�1Mpc�1, chosen for the
Hubble parameter. Much of the posterior volume in the phan-
tom region is associated with extreme values for cosmological
parameters,which are excluded by other astrophysical data. The
mild tension with base ⇤CDM disappears as we add more data
that break the geometrical degeneracy. Adding Planck lensing
and BAO, JLA and H0 (“ext”) gives the 95 % constraints:

w = �1.023+0.091
�0.096 Planck TT+lowP+ext ; (52a)

w = �1.006+0.085
�0.091 Planck TT+lowP+lensing+ext ; (52b)

w = �1.019+0.075
�0.080 Planck TT,TE,EE+lowP+lensing+ext .

(52c)

The addition of Planck lensing, or using the full Planck tem-
perature+polarization likelihood together with the BAO, JLA,
and H0 data does not substantially improve the constraint of
Eq. (52a). All of these data set combinations are compatible with
the base ⇤CDM value of w = �1. In PCP13, we conservatively
quoted w = �1.13+0.24

�0.25, based on combining Planck with BAO,
as our most reliable limit on w. The errors in Eqs. (52a)–(52c) are
substantially smaller, mainly because of the addition of the JLA
SNe data, which o↵er a sensitive probe of the dark energy equa-
tion of state at z <⇠ 1. In PCP13, the addition of the SNLS SNe
data pulled w into the phantom domain at the 2� level, reflecting
the tension between the SNLS sample and the Planck 2013 base
⇤CDM parameters. As noted in Sect. 5.3, this discrepancy is no
longer present, following improved photometric calibrations of
the SNe data in the JLA sample. One consequence of this is the
tightening of the errors in Eqs. (52a)–(52c) around the ⇤CDM
value w = �1 when we combine the JLA sample with Planck.

If w di↵ers from �1, it is likely to change with time. We
consider here the case of a Taylor expansion of w at first order in
the scale factor, parameterized by

w = w0 + (1 � a)wa. (53)

More complex models of dynamical dark energy are discussed
in Planck Collaboration XIV (2015). Figure 27 shows the 2D
marginalized posterior distribution for w0 and wa for the com-
bination Planck+BAO+JLA. The JLA SNe data are again cru-
cial in breaking the geometrical degeneracy at low redshift and
with these data we find no evidence for a departure from the
base ⇤CDM cosmology. The points in Fig. 27 show samples
from these chains colour-coded by the value of H0. From these
MCMC chains, we find H0 = (68.2 ± 1.1) km s�1Mpc�1. Much
higher values of H0 would favour the phantom regime, w < �1.

As pointed out in Sects. 5.5.2 and 5.6 the CFHTLenS weak
lensing data are in tension with the Planck base ⇤CDM parame-
ters. Examples of this tension can be seen in investigations of
dark energy and modified gravity, since some of these mod-
els can modify the growth rate of fluctuations from the base
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intersect at the point in parameter space corresponding to a cos-
mological constant.
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• Compactification from 10D to 4D results in many 
many moduli

• 5th forces and cosmological constraints:

• CC is very small

•

Moduli Stabilization

3

�a

m�a � 30 TeV � Stabilization required

P � #stable points
#critical points

� e�O(1)N2

�V � � � � 10�120M4
P

Tuning necessary in absence of dynamical mechanism�

� Hierarchical structure preferred

[Aazami, Easther 05], [Dean 
Majumdar 08], [Borot, Eynard, 
Majumdar, Nadal10], [Marsh, 
McAllister, Wrase 12], [Chen, Shiu, 
Sumitomo, Tye 12], [Bachlechner, 
Marsh, McAllister, Wrase 12]

[see Palti’s talk]
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Flux stabilized moduli can be integrated out

and          positive semi-definite

Type IIB models

4

Type IIB has no-scale structure:

VFlux

�

[Cremmer, Ferrara, Kounnas, 
Nanopoulos 83], [Giddings, Kachru, 
Polchinski 01], [Grimm, Louis 04]

�V � < 0 � AdS

4

and the low-energy theory is pure N = 1 supersymmet-
ric SU(Nc) gauge theory. This theory undergoes gluino
condensation, which results in a nonperturbative super-
potential

Wgauge = Λ3
Nc

= Ae
2πiρ
Nc (10)

where ΛNc is the dynamical scale of the gauge theory,
and the coefficient A is determined by the energy scale
below which the the SQCD theory is valid (There are also
threshold corrections in general, these contribute sub-
leading effects.) We see that this leads to an exponential
superpotential for ρ similar to the one above (but with a
fractional multiple of ρ in the exponent, since the gaug-
ino condensate looks like a fractional instanton effect in
W ).

So effects 1) and 2) have rather similar consequences
for our analysis; we will simply assume that there is
an exponential superpotential for ρ at large volume. In
our companion paper [14], we investigate some interest-
ing possibilities for cosmology if there are multiple non-
Abelian gauge factors. Using the fourfolds in [27], it is
easy to construct examples (with h1,1(X) = 2) which
could yield gauge groups of total rank up to ∼ 30. The
results of [39] suggest that much larger ranks should be
possible.

One important comment is in order before we proceed.
Besides corrections to the superpotential of the kind dis-
cussed above, there are also corrections to the Kähler
potential (see e.g. [40] for a calculation of some lead-
ing corrections). In our analysis we will ensure that the
volume modulus is stabilized at values which are para-
metrically large compared to the string scale. This makes
our neglect of Kähler corrections self consistent.

C. Supersymmetric AdS Vacua

Here, we show that the corrections to the superpoten-
tial considered above can stabilize the volume modulus,
leading to a susy preserving AdS minimum. We perform
an analysis of the vacuum structure just keeping the tree-
level Kähler potential

K = −3 ln[−i(ρ− ρ)] (11)

and a superpotential

W = W0 + Aeiaρ . (12)

W0 is a tree level contribution which arises from the
fluxes. The exponential term arises from either of the
two sources above, and the coefficient a can be deter-
mined accordingly. In keeping with the fact that the
complex structure moduli and the dilaton have received a
mass (5), we have set them equal to their VEVs and con-
sider only the low-energy theory of the volume modulus.
To avoid the need to worry about additional open-string
moduli, we assume the tadpole condition (1) has been

solved by turning on only flux, i.e. with no additional
D3 branes.

At a supersymmetric vacuum DρW = 0. We simplify
things by setting the axion in the ρ modulus to zero, and
letting ρ = iσ. In addition we take A, a and W0 to be all
real and W0 negative. The minimum then lies at

DW = 0 → W0 = −Ae−a σcr (1 +
2

3
aσcr) (13)

The potential, V = eK
(

GρρDρWDρW − 3|W |2
)

, at
the minimum is negative and equal to

VAdS = (−3eKW 2)AdS = −
a2A2e−2 a σcr

6 σcr
(14)

We see that we have stabilized the volume modulus while
preserving supersymmetry. It is important to note that
the AdS minimum is quite generic. Any corrections to
the Kähler potential will still result in a susy minimum
which solves (13).

A few comments are in order before we proceed. A
controlled calculation requires that σ $ 1, this ensures
that the supergravity approximation is valid and the α′

corrections to the Kähler potential are under control. It
also requires that aσ > 1 so that the contribution to
the superpotential from a single (fractional) instanton is
reliable. Generically, if the fluxes break supersymmetry,
W0 ∼ O(1), and these conditions will not be met. How-
ever it is reasonable to expect that by tuning fluxes one
can arrange so that W0 % 1. In these circumstances we
see from (13) that aσ > 1. Taking a < 1, one can then
ensure that σ $ 1, as required.

As an illustrative example we consider W0 = −10−4,
A = 1, a = 0.1. This results in a minimum at σcr ∼ 113.

100 150 200 250 300 350 400

-2

-1.5

-1

-0.5

0.5
V

σ

FIG. 1: Potential (multiplied by 1015) for the case of expo-
nential superpotential with W0 = −10−4, A = 1, a = 0.1.
There is an AdS minimum.

Another possibility to get a minimum at large vol-
ume is to consider a situation where the fluxes preserve
susy, and the superpotential involves multiple exponen-
tial terms, i.e. “racetrack potentials” for the stabilization
of ρ [41]. Such a superpotential could arise from multiple
stacks of seven branes wrapping four cycles which cannot

KKLT:

where numerical coefficients have been dropped. We have implicitly extremized
with respect to the axion b4 to get a negative sign in front of the second term as
described below equation (27). It is obvious that in the limit

τ5 → ∞ with a4τ4 = lnV, (49)

the potential approaches zero from below as the middle term of equation (48)
dominates. This is illustrated in figure 1 where we plot the numerical values of
ln(V ).
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Figure 1: ln(V ) for P 4
[1,1,1,6,9] in the large volume limit, as a function of the

divisors τ4 and τ5. The void channel corresponds to the region where V becomes
negative and ln(V ) undefined. As V → 0 at infinite volume, this immediately
shows that a large-volume minimum must exist. Here the values W0 = 20, A4 = 1
and a4 = 2π have been used.

The location and properties of the AdS minimum may be found analytically.
To capture the form of equation (48), we write

V =
λ
√
τ4e−2a4τ4

V − µ

V2
τ4e

−a4τ4 +
ν

V3
. (50)

The axion field b5 has been ignored as terms in which it appears are exponentially
suppressed.

16

Large Volume scenario (LVS):
[Kachru, Kallosh, Linde, Trivedi 03]

[Balasubramanian, 
Berglund, Conlon, 
Quevedo 05]

DiW = 0

�iV = 0

V = ek
�
Kab̄DaW DbW � 3W 2

�
= VFlux� �� �

O(V�2)

+ VNP + V��� �� �
O(V�3)



/ 14De Sitter Vacua from a D-term Generated Racetrack Uplift Markus Rummel

De Sitter uplifting
• Anti D3 branes

• Complex structure sector

• negative curvature of manifold

• D-terms via magnetic flux on D7 branes

• non-perturbative dilaton effects

5

[Kachru, Pearson, Verlinde 01],  
[Kachru, Kallosh, Linde, Trivedi 03], 
[Talks by Gautason and Junghans]

[Saltman, Silverstein 04], [Danielsson, Dibitetto 13], 
[Blaback, Roest, Zavala, 13], [Kallosh, Linde, Vercnocke, Wrase 14]

[Silverstein 07]
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[Burgess, Kallosh, Quevedo 03], [Cremades, Garcia del Moral, Quevedo 07], 
[Krippendorf, Quevedo 09]

[Cicoli, Maharana, Quevedo, Burgess 12]
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• same setup as Large Volume scenario but different 
region in parameter space

• de Sitter directly from       but upper bound on 

• Racetrack Kähler Uplift

Kähler Uplifting

6

K = � ln
�
V + �

2

�
, W = W0 + A1e�a1T1 + . . .

VF

�No upper bound
W = W0 + A1e�a1T1 + B1e�b1T1

[Balasubramanian, Berglund 04], [Westphal 06], [MR, Westphal, 11], [de Alwis, Givens 11]

[Sumitomo, Tye, Wong, 13]
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•  

•

D-term Racetrack uplift

7

�1

�2
�3W = W0 + A2e�a2T2 + A3e�a3T3

VF

W 2
0

� 3�
4V3 + O

�
e�ai�i

V2

�
+ O

�
e�2ai�i

V

�
� O

�
1

V3

�
�

LVS region

V = �3/2
1 � �3/2

2 ��3/2
3

K = �2 ln
�
V + �

2

�
,

[MR, Sumitomo 14]
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D-term Racetrack uplift

8

�1

�2
�3

D7 � FD
• Wrap divisor                 

with D7 branes

•     D-term potential

• with matter fields       and 

TD = T2 + T3

(gauge Flux       )FD

�j

VD �
��

j �j � �D

�2

�

�D = 1
V

�
DD � J � FD � �

�2 � �
�3
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D-term Racetrack uplift

8

�1

�2
�3

D7 � FD
• Wrap divisor                 

with D7 branes

•     D-term potential

• with matter fields       and 

TD = T2 + T3

(gauge Flux       )FD

�j

VD �
��

j �j � �D

�2

�

�D = 1
V

�
DD � J � FD � �

�2 � �
�3

�D = 0 � �2 = �3
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D-term Racetrack uplift

9

�1

�S �S

Resultant F-Term potential for               and                     :        �S = �2 = �3V � �3/2
1

VF

W 2
0

� �
V3 + c2e�a2�s

V2 + c2
2e�2a2�s

V + c3e�a3�s

V2 + . . .

ci = Ai
W0

with
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D-term Racetrack uplift

9

�1

�S �S

Resultant F-Term potential for               and                     :        �S = �2 = �3V � �3/2
1

VF

W 2
0

� �
V3 + c2e�a2�s

V2 + c2
2e�2a2�s

V + c3e�a3�s

V2 + . . .

ci = Ai
W0

with

Allows de Sitter for
!c2/c3 < 0, a3/a2 < 1
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D-term Racetrack uplift

9

�1

�S �S

Resultant F-Term potential for               and                     :        �S = �2 = �3V � �3/2
1

VF

W 2
0

� �
V3 + c2e�a2�s

V2 + c2
2e�2a2�s

V + c3e�a3�s

V2 + . . .

ci = Ai
W0

with

W = W0 + A2ea2TS + A3ea3TS

(cross terms in          different)c2, c3

Different from simple racetrack 

Allows de Sitter for
!c2/c3 < 0, a3/a2 < 1
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• Matter field stabilization and 

• Tension between               and 

• Stabilization inside Kähler Cone

• D7 and D3 Tadpole

• Freed-Witten Anomalies

Explicit Examples exist for D-term LVS and Kähler 
Uplifting

Explicit Examples

10

[Cicoli,Krippendorf,Mayrhofer,Quevedo,Valandro 12],[Louis,MR,Valandro,Westphal 12]

� Construct explicit models!

Constraints:

FD �= 0

[Minasian, Moore 97], [Freed, Witten 99]

[Blumenhagen, Moster, Plauschinn 07]
A2, A3 �= 0

�D = 0
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• Matter field stabilization and 

• Tension between               and 

• Stabilization inside Kähler Cone

• D7 and D3 Tadpole

• Freed-Witten Anomalies

Explicit Examples exist for D-term LVS and Kähler 
Uplifting

Explicit Examples

10

[Cicoli,Krippendorf,Mayrhofer,Quevedo,Valandro 12],[Louis,MR,Valandro,Westphal 12]

� Construct explicit models!

Constraints:

FD �= 0

[Minasian, Moore 97], [Freed, Witten 99]
[Kreuzer, Skarke 00], [Altman, 
Gray, He, Jejjala, Nelson 14]Scan toric Calabi-Yaus!�

[Blumenhagen, Moster, Plauschinn 07]
A2, A3 �= 0

�D = 0
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Matter field stabilization

• In general               leads to hidden sector matter 
fields living on       ,       and  

• For certain parameters, in particular tachyonic 
soft masses            , minima with

11

FD �= 0
D2 D3 D2 � D3

ai < 0

V = VD + Vmatter

=
1

V�

�
N�

i

qi|�i|2 � �̃

V

�2

+
1

V�

N�

i

ai|�i|2 +
1

V�

N�

i

ci|�i|4 + . . .

�|�i|� �= 0 (� A2, A3 �= 0) ,
�N

i qi�|�i|2� = 0 (� �D = 0)
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Scanning for explicit examples

• Two rigid, only self-intersecting, small divisors                
leading to two ED3 instantons, avoids Freed-Witten 
anomalies, inside Kähler cone

• Irreducible divisor       intersecting                            
generates              via                                 via 8 D7 
branes on       ,  

•

12

Checklist for simplest realization of D-term generated 
racetrack:

D2, D3

DD D2, D3

FD = f2D2 + f3D3�D = 0
DD O7 : zD �� �zD

QD3 �
�

F3 � H3 � �(DD)
2 �

�
FD � FD
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An explicit example

•  

• Choose parameters

• AdS LVS solution: 

• D-term racetrack dS:

DD = 4Db � 2D2 � 2D3

rigid
V = �3/2

b � �3/2
2 � �3/2

3

z
D

! �z
D

, these D7 branes cancel the D7 brane charge of the O7 plane located on D
D

.

The relation between the 4-cycle volumina ⌧
1

and ⌧
2

via the D-term constraint depends on

the magnetic flux, the triple intersectios and the choice of D
D

, see (1.12).3 We choose F
D

=
3

2

D
1

+ 2D
2

, such that

� = c =
9

16
. (4.3)

We are now ready to calculate the LVS AdS minimum and D-term generated racetrack uplift

minimum. Choosing

W
0

= 1 , ⇠̂ = 2 , A
1

= �0.1 , A
2

= 0 , (4.4)

the LVS minimum can be found at

hVi = 3.7 · 105 , h⌧
s

i = 2.13 , hV i = �1.1 · 10�18 . (4.5)

Choosing a non-zero value A
2

= 2 · 10�5 the D-term generated racetrack de Sitter vacuum is

found at

hVi = 5.2 · 105 , h⌧
s

i = 2.20 , hV i = 2.3 · 10�19 . (4.6)

The D3 tadpole evaluates as

Q
D3

=

Z
F
3

^H
3

� �(O7)

2
� 4

�
d
1


1

f 2

1

+ d
2


2

f 2

2

�
,

=

Z
F
3

^H
3

� 20 ,
(4.7)

where we have used �(O7) = �(D
D

) = 240.

Finally, note that the gauge kinetic function is given as

Re(f
D

) =
1

2

Z

DD

J ^ J � 1

2g
s

Z

DD

F
D

^ F
D

' 4⌧
b

⇠ V2/3 . (4.8)

This causes a suppression of the D-term potential V
D

in (1.9) relative to the case where Re(f
D

)

does not depend on the overall volume which is the case if D
D

would not intersect D
b

. This is

hard to realize (impossible?) in the h1,1 = 3 case but should not be an obstruction for higher

h1,1. The hierachy between the D-term potential and the F-term potential is thus diminished

from V�2 vs V�3 to V�8/3 vs V�3 in this example.

3Note that in order to avoid extensive tuning of the prefactor of the uplift term e��xs/V2
x

, � should not be

very di↵erent from one, � . 1. Otherwise, the uplift term, which scales as 1/V2+�

x

in the large volume limit

V
x

⇠ exs , has a di↵erent volume scaling from the LVS potential 1/V3
x

which makes tuning necessary for these

terms to be comparable for large V
x

.
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An explicit example
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An explicit example

•  

• Choose parameters
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An explicit example
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