SL(2,C) Chern-Simons Theory, Quantum Curve, and 4d Quantum Geometry

Muxin Han

IQG, Universität Erlangen-Nürnberg

Outline of Main Results:

• Classical Correspondence:

Flat connections on M_3 = Simplicial geometries on M_4

• Quantum Correspondence:

CS wave function on M_3 = Quantum geometries on M_4

relates to quantum simplicial gravity on M_4

• 3d SCFT Correspondence:

3d SCFT \longrightarrow Quantum simplicial gravity on M_4

Moduli space of flat connections on 2-surface

Cab Closed 2-surface Σ_{g} e.g. *g* = 6 Phase space: $\mathcal{M} = \mathcal{M}_{flat}(\Sigma_g, SL(2, \mathbb{C}))$ (A s.t. **F**_4=0) j k=ij - Hyper-Kahler: complex structures *i* from 2-surface from complex group - Holomorphic Symplectic structure: $\omega \sim \int_{\Sigma} tr [\delta A \wedge \delta A]$ (Atiyah-Bott-Goldman) $(x_c, y_c) \in (\mathbb{C}^{\times})^2$ **Complex Fenchel-Nielsen coordinates** $\omega = \sum d \ln y_c \wedge d \ln x_c$ Logarithmic coordinates are symplectic

Holomorphic Lagrangian submanifold

Let's consider a 3-manifold M_3 s.t. $\partial M_3 = \Sigma_g$

Dimofte 2011 Gukov, Saberi 2012 Dimofte, Gaiotto, van der Veen 2013

$$\mathcal{M}_{flat}(M_3, \mathrm{SL}(2, \mathbb{C})) \simeq \mathcal{L}_A \hookrightarrow \mathcal{M}_{flat}(\Sigma_g, \mathrm{SL}(2, \mathbb{C}))$$

Holomorphic polynomial eqns

$$A_m(x_c, y_c) = 0, \quad m = 1, \cdots, 3g - 3$$

e.g. Knot complement (g=1): A-polynomial

We focus on *graph complement 3-manifold* in 3-sphere: removing a tubular open neighborhood of a graph embedded in 3-sphere.

$$M_3 = S^3 \setminus N(\Gamma) \equiv S^3 \setminus \Gamma$$

 $\mathcal{M}_{flat}(S^3 \setminus \Gamma_5, \mathrm{SL}(2, \mathbb{C})) \simeq \mathcal{L}_A \hookrightarrow \mathcal{M}_{flat}(\Sigma_{g=6}, \mathrm{SL}(2, \mathbb{C}))$

Flat Connections in 3d v.s. Simplicial Geometry in 4d

Flat Connections in d-1 v.s. Discrete Geometry in d

$$\omega_{spin} = \omega_{flat} \circ S$$

4-holed sphere v.s. tetrahedron

Γ_5 graph complement *v.s.* 4-simplex

- $\mathfrak{l}_{14}\mathfrak{l}_{13}^{(1)}\mathfrak{l}_{12}\mathfrak{l}_{15} = 1,$ vertex 1 :
- $l_{12}^{-1} l_{24} l_{23} l_{25} = 1,$ vertex 2 :
- $\mathfrak{l}_{23}^{-1}(\mathfrak{l}_{13}^{(2)})^{-1}\mathfrak{l}_{34}\mathfrak{l}_{35}=1,$ vertex 3 :
- $l_{34}^{-1} l_{24}^{-1} l_{14}^{-1} l_{45} = 1,$ vertex 4 :
- vertex 5 :
- crossing :

 \simeq

S

 $l_{25}^{-1} l_{35}^{-1} l_{45}^{-1} l_{15}^{-1} = 1,$

 $\langle H_{ab} \in \mathrm{SO}(3,1) | \cdots$ /conjugation

$$\omega_{spin} = \omega_{flat} \circ S$$

are a set of holonomies along closed paths on 1-skeleton

For constant curvature simplex, whose 2-faces are flatly embedded surfaces:

<u>Lemma</u>: Given 2-surface flatly embedded (K=0) in constant curvature space, the holonomy of spin connection along the boundary of surface:

$$h_{\partial f}(\omega_{spin}) = \exp\left[-i\frac{\Lambda}{6}\mathbf{a}_{f}\hat{\mathbf{n}}_{f}\cdot\vec{\sigma}\right]$$
 in 3d space

replaced by normal bivector in 4d spacetime

Area and normal data determine the simplex geometry

Quantum Theory

Flat connection on $S^3 \setminus \Gamma_5 = 4$ -simplex geometry

Quantum flat connection on $S^3 \setminus \Gamma_5$ = Quantum 4-simplex geometry

Quantization of flat connections on 3-manifold

$$\mathcal{M} = \mathcal{M}_{flat}(\Sigma_g, \operatorname{SL}(2, \mathbb{C})) \qquad \qquad \omega = \sum_c \operatorname{d} \ln y_c \wedge \operatorname{d} \ln x_c$$

Holomorphic symplectic coordinates

 $u_c = \ln x_c, \quad v_c = \ln y_c$

$$\hat{u}_c f(u) = u_c f(u), \quad \hat{v}_c f(u) = -i\hbar \partial_{u_c} f(u)$$

Quantization $\mathcal{M}_{flat}(M_3, \mathrm{SL}(2, \mathbb{C})) \simeq \mathcal{L}_A \hookrightarrow \mathcal{M}_{flat}(\Sigma_g, \mathrm{SL}(2, \mathbb{C}))$ $\mathbf{A}_m(x_c, y_c) = 0$

 $\hat{\mathbf{A}}_m(e^{\hat{u}}, e^{\hat{v}}, \hbar) Z(u) = 0, \quad m = 1, \cdots, 3g - 3$ (Quantum Curve)

The holomorphic solutions Z(u) are the physical states for quantum flat connections on 3-manifold, which quantizes SL(2,C) Chern-Simons theory on 3-manifold.

Dimofte, Gukov, Lenells, Zagier 2009 Dimofte 2011 Gukov, Sułkowski 2011 Gukov, Saberi 2012

$$\mathbf{A}_{m}(x_{c}, y_{c}) = 0, \quad m = 1, \cdots, 3g - 3$$

 $\hat{\mathbf{A}}_{m}(e^{\hat{u}}, e^{\hat{v}}, \hbar) Z(u) = 0, \quad m = 1, \cdots, 3g - 3$

Solution: holomorphic 3d block

Witten 2010

3

2

$$Z^{(\alpha)}\left(M_{3}|u\right) = \int_{\mathcal{J}_{\alpha}} e^{\frac{i}{\hbar}\int_{M_{3}}AdA + \frac{2}{3}A^{3}} DA$$

Analytic continued CS along the integration cycle (Lefschetz thimble) labeled by α

Semiclassical expansion

Dimofte, Gukov, Lenells, Zagier 2009

$$Z^{(\alpha)}(M_3|u) = \exp\left[\frac{i}{\hbar}\int_{\substack{(u_0,v_0)\\\mathfrak{C}\subset\mathcal{L}_{\mathbf{A}}}}^{(u,v^{(\alpha)})}\vartheta + o(\log\hbar)\right]$$

 $\omega = \mathrm{d}\vartheta$

Liouville 1-form

 α labels the branch of Lagrangian submanifold.

Wave function of 4-geometry

Recall:

A class of SL(2,
$$\mathbb{C}$$
)
flat connetion on $S^3 \setminus \Gamma_5$

curvature 4-simplex geometries

Quantize $\mathcal{L}_A \simeq \mathcal{M}_{flat}(S^3 \setminus \Gamma_5, SL(2, \mathbb{C}))$

pick the branch α corresponding to constant

(A subset of branches in Lagrangian submanifold)

We propose:

Holomorphic block at the branch lpha is a state for 4d quantum simplicial geometry

Holomorphic block at the branch lpha is a state for 4d quantum simplicial geometry

Semiclassical limit:

$$Z^{(\alpha)}\left(S^{3} \setminus \Gamma_{5} \middle| u\right) \sim \exp\left[\frac{\imath}{\hbar}S^{(\alpha)}(u) + o(\log \hbar)\right]$$

classical action for 4-dimensional geometry
(dynamics of 4-dimensional geometry)

Holomorphic block at the branch lpha is a state for 4d quantum simplicial geometry

Semiclassical limit:

$$Z^{(\alpha)}\left(S^{3} \setminus \Gamma_{5} \middle| u\right) \sim \exp\left[\frac{i}{\hbar}S^{(\alpha)}(u) + o(\log \hbar)\right]$$

classical action for 4-dimensional geometry

(dynamics of 4-dimensional geometry)

$$S^{(\alpha)}(u) = S_{\rm EH}[g_{\mu\nu},\Lambda]$$

4-dimensional Einstein-Hilbert action on a constant curvature 4-simplex:

$$S_{\rm EH}[g_{\mu\nu},\Lambda] = \sum_{a < b} \mathbf{a}_{ab} \Theta^{\Lambda}_{ab} - \Lambda \mathrm{Vol}_4^{\Lambda}$$

also known as Regge action.

 $Z^{(\alpha)}\left(S^{3} \setminus \Gamma_{5} \mid u\right)$ is a wave function for 4d Einstein gravity

Equivalence of Semiclassical Wave Functions

 $Z_{\text{Simplicial Gravity}}^{(4\text{-geometry})} \left(M_4 | h_{ab} \right) = Z^{(\alpha)} \left(M_3 | u \right)$

Simplicial gravity on 4-manifold

SL(2,C) CS on 3-manifold

3d-3d correspondence

M-theory in 11d:

•
$$Z_{CS}(M_3) = Z_{T_{M_3}}^{\mathcal{N}=2}(S_b^3)$$

Dimofte, Gaiotto, Gukov 2011 C. Beem, T. Dimofte, S. Pasquetti 2012 Cordova, Jafferis 2013 Lee, Yamazaki 2013 Chung, Dimofte, Gukov, Sułkowski 2014

•
$$\mathcal{M}_{flat}(M_3, \mathbb{G}_{\mathbb{C}}) \simeq \mathcal{M}_{SUSY}(T_{M_3})$$

•
$$Z^{(\alpha)}(M_3) = Z^{\mathcal{N}=2}_{T_{M_3}}(\mathbb{R}^2 \times_q S^1)$$
 with boundary SUSY ground state α

Dimofte-Gaiotto-Gukov (DGG) Construction

 $T_{DGG.M_3}$ 3d \mathcal{N} = 2 SCFT with Abelian gauge group U(1)^{*n*} Dimofte, Gaiotto, Gukov 2011 (Gauge theories labelled by 3-manifolds) $M_3 \xrightarrow{\text{Ideal triangulation}} \left\{ \underbrace{\swarrow} \\ \underbrace{\frown} \\ \underbrace{\bullet} \\ \underbrace{\frown} \\ \underbrace{\bullet} \\ \underbrace{$ $T_{\Delta} = 3d \mathcal{N} = 2$ chiral multiplet ; gluing \rightarrow gauging + superpotential **Pachner move = 3d mirror symmetry** SQED XYZ **SCFT**IR $\mathcal{M}_{flat}(M_3, \mathrm{SL}(2, \mathbb{C})) \hookrightarrow \mathcal{M}_{SUSY}(T_{DGG, M_3})$

• $Z'_{CS}(M_3) = Z_{DGG,M_3}(S^3_b)$

Dimofte, Gaiotto, Gukov 2011 C. Beem, T. Dimofte, S. Pasquetti 2012

• $Z^{(\alpha)}(M_3) = Z_{DGG,M_3}(\mathbb{R}^2 \times_q S^1)$ with boundary SUSY ground state α

4d Simplicial Gravity and 3d SCFT

4d simplicial geometries $\hookrightarrow \mathcal{M}_{SUSY}$

Effective twisted superpotential $\widetilde{W}_{eff}(\sigma) = \text{Einstein-Hilbert action in 4d}$

4d Simplicial Gravity and 3d SCFT

4d simplicial geometries $\hookrightarrow \mathcal{M}_{SUSY}$

Effective twisted superpotential $\widetilde{W}_{eff}(\sigma) = \text{Einstein-Hilbert action in 4d}$

The end

Thanks for your attention !