SL(2,C) Chern-Simons Theory, Quantum Curve, and 4d Quantum Geometry

Muxin Han

IQG, Universität Erlangen-Nürnberg

Outline of Main Results:

- Classical Correspondence:

Flat connections on M3 = Simplicial geometries on M4

- Quantum Correspondence:

CS wave function on $M 3=$ Quantum geometries on $M 4$ relates to quantum simplicial gravity on M4

- 3d SCFT Correspondence:

3d SCFT \rightarrow Quantum simplicial gravity on M4

Moduli space of flat connections on 2-surface

Closed 2-surface Σ_{g} e.g.

Phase space: $\quad \mathcal{M}=\mathcal{M}_{f l a t}\left(\Sigma_{g}, \operatorname{SL}(2, \mathbb{C})\right) \quad\left(A\right.$ s.t. $\left.F_{t}=0\right)$

- Hyper-Kahler: complex structures

from 2-surface
from complex group
- Holomorphic Symplectic structure: $\quad \omega \sim \int_{\Sigma_{g}} \operatorname{tr}[\delta A \wedge \delta A] \quad$ (Atiyah-Bott-Goldman)

Complex Fenchel-Nielsen coordinates

$$
\left(x_{c}, y_{c}\right) \in\left(\mathbb{C}^{\times}\right)^{2}
$$

Logarithmic coordinates are symplectic

$$
\omega=\sum_{c} \mathrm{~d} \ln y_{c} \wedge \mathrm{~d} \ln x_{c}
$$

Holomorphic Lagrangian submanifold

Let's consider a 3-manifold M_{3} s.t. $\partial M_{3}=\Sigma_{g}$

$$
\mathcal{M}_{f l a t}\left(M_{3}, \operatorname{SL}(2, \mathbb{C})\right) \simeq \mathcal{L}_{A} \hookrightarrow \mathcal{M}_{f l a t}\left(\Sigma_{g}, \operatorname{SL}(2, \mathbb{C})\right)
$$

Holomorphic polynomial eqns

$$
\mathbf{A}_{m}\left(x_{c}, y_{c}\right)=0, \quad m=1, \cdots, 3 g-3
$$

e.g. Knot complement ($\mathrm{g}=1$): A-polynomial

We focus on graph complement 3-manifold in 3-sphere: removing a tubular open neighborhood of a graph embedded in 3-sphere.

$$
M_{3}=S^{3} \backslash N(\Gamma) \equiv S^{3} \backslash \Gamma
$$

$$
\mathcal{M}_{f l a t}\left(S^{3} \backslash \Gamma_{5}, \mathrm{SL}(2, \mathbb{C})\right) \simeq \mathcal{L}_{A} \hookrightarrow \mathcal{M}_{f l a t}\left(\Sigma_{g=6}, \mathrm{SL}(2, \mathbb{C})\right)
$$

Flat Connections in 3d v.s. Simplicial Geometry in 4d

Γ_{5} graph complement

4-simplex

A class of $\operatorname{SL}(2, \mathbb{C})$ flat connetion on $S^{3} \backslash \Gamma_{5}$

Lorentzian 4-simplex geometries with constant curvature Λ

A subset of branches in Lagrangian submanifold

Flat Connections in d-1 v.s. Discrete Geometry in d

4-holed sphere v.s. tetrahedron

$$
S
$$

$$
=\frac{\pi_{1}(4 \text {-holed sphere })}{\left\langle\mathfrak{l}_{1}, \cdots, \mathfrak{l}_{4} \mid \mathfrak{I}_{4} \mathfrak{I}_{3} I_{2} \mathfrak{l}_{1}=e\right\rangle} \simeq=\begin{aligned}
& \pi_{1}(\operatorname{sk}(\text { Tetra })) \\
& \left\langle p_{1}, \cdots, p_{4} \mid p_{4} p_{3} p_{2} p_{1}=e\right\rangle \\
& \left\langle H_{1}, \cdots, H_{4} \in \mathrm{SO}(3) \mid H_{4} H_{3} H_{2} H_{1}=1\right\rangle / \text { conjugation }
\end{aligned}
$$

Γ_{5} graph complement v.s. 4-simplex

$$
\begin{aligned}
& \text { vertex 1: } \quad \mathfrak{l}_{14}{ }_{13}^{(1)} \mathfrak{l}_{12} \mathfrak{l}_{15}=1 \text {, } \\
& \text { vertex 2: } \quad \mathfrak{l}_{12}^{-1} \mathfrak{l}_{24} \mathrm{l}_{23} \mathrm{l}_{25}=1 \text {, } \\
& \text { vertex 3: } \quad \mathfrak{r}_{23}^{-1}\left(I_{13}^{(2)}\right)^{-1} \mathfrak{l}_{34} \mathrm{I}_{35}=1 \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { vertex } 5 \text { : } \quad \Gamma_{25}^{-1}{ }_{35}^{-1}{ }_{45}^{-1} \Gamma_{15}^{-1}=1 \text {, } \\
& \text { crossing : } \quad \mathfrak{l}_{13}^{(1)}=\mathfrak{I}_{24}{ }_{13}^{(2)} \mathfrak{l}_{24}^{-1} \text {. }
\end{aligned}
$$

$\left\langle H_{a b} \in \operatorname{SO}(3,1) \mid \quad \cdots \quad\right\rangle /$ conjugation

tetra 1: $\quad p_{14} p_{13}^{(1)} p_{12} p_{15}=1$,
tetra 2: $\quad p_{12}^{-1} p_{24} p_{23} p_{25}=1$,
tetra 3: $\quad p_{23}^{-1}\left(p_{13}^{(2)}\right)^{-1} p_{34} p_{35}=1$,
tetra 4: $\quad p_{34}^{-1} p_{24}^{-1} p_{14}^{-1} p_{45}=1$,
tetra 5 : $\quad p_{25}^{-1} p_{35}^{-1} p_{45}^{-1} p_{15}^{-1}=1$,
"crossing" : $\quad p_{13}^{(1)}=p_{24} p_{13}^{(2)} p_{24}^{-1}$.

$$
\omega_{\text {spin }}=\omega_{\text {flat }} \circ S
$$

are a set of holonomies along closed paths on 1-skeleton

For constant curvature simplex, whose 2-faces are flatly embedded surfaces:

Lemma: Given 2-surface flatly embedded ($K=0$) in constant curvature space, the holonomy of spin connection along the boundary of surface:

in 3d space

> replaced by normal bivector in 4d spacetime

Area and normal data determine the simplex geometry

Quantum Theory

Flat connection on $S^{3} \backslash \Gamma_{5}=$ 4-simplex geometry
Quantum flat connection on $S^{3} \backslash \Gamma_{5}=$ Quantum 4-simplex geometry

Quantization of 4d geometry

Quantization of flat connection on 3-manifold

Quantization of flat connections on 3-manifold

$$
\mathcal{M}=\mathcal{M}_{f l a t}\left(\Sigma_{g}, \operatorname{SL}(2, \mathbb{C})\right)
$$

$$
\omega=\sum_{c} \mathrm{~d} \ln y_{c} \wedge \mathrm{~d} \ln x_{c}
$$

Holomorphic symplectic coordinates

$$
u_{c}=\ln x_{c}, \quad v_{c}=\ln y_{c}
$$

$$
\hat{u}_{c} f(u)=u_{c} f(u), \quad \hat{v}_{c} f(u)=-i \hbar \partial_{u_{c}} f(u)
$$

Quantization $\mathcal{M}_{f l a t}\left(M_{3}, \mathrm{SL}(2, \mathbb{C})\right) \simeq \mathcal{L}_{A} \hookrightarrow \mathcal{M}_{f l a t}\left(\Sigma_{g}, \mathrm{SL}(2, \mathbb{C})\right) \quad \mathbf{A}_{m}\left(x_{c}, y_{c}\right)=0$

$$
\hat{\mathbf{A}}_{m}\left(e^{\hat{u}}, e^{\hat{v}}, \hbar\right) Z(u)=0, \quad m=1, \cdots, 3 g-3
$$

(Quantum Curve)

The holomorphic solutions $Z(u)$ are the physical states for quantum flat connections on 3-manifold, which quantizes SL(2,C) Chern-Simons theory on 3manifold.

$$
\mathcal{M}_{\text {flat }}\left(\Sigma_{g=6}, \mathrm{SL}(2, \mathbb{C})\right)
$$

$$
\begin{aligned}
& \mathbf{A}_{m}\left(x_{c}, y_{c}\right)=0, \quad m=1, \cdots, 3 g-3 \\
& \hat{\mathbf{A}}_{m}\left(e^{\hat{u}}, e^{\hat{v}}, \hbar\right) Z(u)=0, \quad m=1, \cdots, 3 g-3
\end{aligned}
$$

Solution: holomorphic 3d block

$$
Z^{(\alpha)}\left(M_{3} \mid u\right)=\int_{\mathcal{J}_{\alpha}} e^{\frac{i}{\hbar} \int_{M_{3}} A \mathrm{~d} A+\frac{2}{3} A^{3}} D A
$$

Analytic continued CS along the integration cycle (Lefschetz thimble) labeled by $\boldsymbol{\alpha}$

Semiclassical expansion

$$
Z^{(\alpha)}\left(M_{3} \mid u\right)=\exp \left[\frac{i}{\hbar} \int_{\substack{\left(u_{0}, v_{0}\right) \\ \mathbb{C} \mathcal{C}_{\mathbf{A}}}}^{\left(u, v^{(\alpha)}\right)} \vartheta+o(\log \hbar)\right]
$$

$\boldsymbol{\alpha}$ labels the branch of Lagrangian submanifold.

Wave function of 4-geometry

Recall:

A class of $\operatorname{SL}(2, \mathbb{C})$ flat connetion on $S^{3} \backslash \Gamma_{5}$

Lorentzian 4-simplex geometries with constant curvature Λ
(A subset of branches in Lagrangian submanifold)

$=\quad$| Lorentzian 4-simplex geometries |
| :--- |
| with constant curvature Λ |

$$
\mathcal{M}_{f l a t}\left(\Sigma_{g=6}, \mathrm{SL}(2, \mathbb{C})\right)
$$

- Quantize $\mathcal{L}_{A} \simeq \mathcal{M}_{f l a t}\left(S^{3} \backslash \Gamma_{5}, \operatorname{SL}(2, \mathbb{C})\right)$
- pick the branch $\boldsymbol{\alpha}$ corresponding to constant curvature 4-simplex geometries

We propose:
Holomorphic block at the branch α is a state for 4d quantum simplicial geometry

Holomorphic block at the branch α is a state for 4d quantum simplicial geometry

Semiclassical limit:

$$
Z^{(\alpha)}\left(S^{3} \backslash \Gamma_{5} \mid u\right) \sim \exp \left[\frac{i}{\hbar} S^{(\alpha)}(u)+o(\log \hbar)\right]
$$

classical action for 4-dimensional geometry
(dynamics of 4-dimensional geometry)

Holomorphic block at the branch α is a state for 4d quantum simplicial geometry

Semiclassical limit:

$$
Z^{(\alpha)}\left(S^{3} \backslash \Gamma_{5} \mid u\right) \sim \exp \left[\frac{i}{\hbar} S^{(\alpha)}(u)+o(\log \hbar)\right]
$$

classical action for 4-dimensional geometry
(dynamics of 4-dimensional geometry)

$$
S^{(\alpha)}(u)=S_{\mathrm{EH}}\left[g_{\mu \nu}, \Lambda\right]
$$

4-dimensional Einstein-Hilbert action on a constant curvature 4-simplex:

$$
S_{\mathrm{EH}}\left[g_{\mu \nu}, \Lambda\right]=\sum_{a<b} \mathbf{a}_{a b} \Theta_{a b}^{\Lambda}-\Lambda \mathrm{Vol}_{4}^{\Lambda}
$$

$Z^{(\alpha)}\left(S^{3} \backslash \Gamma_{5} \mid u\right)$ is a wave function for 4d Einstein gravity

Equivalence of Semiclassical Wave Functions

Simplicial gravity on 4-manifold
SL(2,C) CS on 3-manifold

3d-3d correspondence

M-theory in 11d:

M5-brane \longrightarrow IR dynamics: 6d $(2,0)$ SCFT with gauge group G

Compactify M5 on $M_{3} \times S_{b}^{3}$ 3d ellipsoid

$$
\mathrm{G}_{\mathbb{C}} \mathrm{CS} \text { on } M_{3}
$$

3d $\mathcal{N}=2$ SUSY gauge theory $T_{M_{3}}$ (SCFT with 4 Q's)

- $Z_{C S}\left(M_{3}\right)=Z_{T_{M_{3}}}^{N=2}\left(S_{b}^{3}\right)$
- $\mathcal{M}_{\text {flat }}\left(M_{3}, \mathrm{G}_{\mathbb{C}}\right) \simeq \mathcal{M}_{S U S Y}\left(T_{M_{3}}\right)$
- $Z^{(\alpha)}\left(M_{3}\right)=Z_{T_{M_{3}}}^{N=2}\left(\mathbb{R}^{2} \times_{q} S^{1}\right)$ with boundary SUSY ground state α

Dimofte-Gaiotto-Gukov (DGG) Construction

$T_{D G G, M_{3}} \quad$ 3d $\mathcal{N}=\mathbf{2}$ SCFT with Abelian gauge group $\mathrm{U}(1)^{n} \quad$ Dimofte, Gaiotto, Gukov 2011 (Gauge theories labelled by 3-manifolds)

$T_{\Delta}=3 d \mathscr{N}=2$ chiral multiplet $; \quad$ gluing \rightarrow gauging + superpotential
\longrightarrow Pachner move = 3d mirror symmetry

Dimofte, Gaiotto, Gukov 2011
C. Beem, T. Dimofte, S. Pasquetti 2012

- $\quad Z_{C S}^{\prime}\left(M_{3}\right)=Z_{D G G, M_{3}}\left(S_{b}^{3}\right)$
- $\quad Z^{(\alpha)}\left(M_{3}\right)=Z_{D G G, M_{3}}\left(\mathbb{R}^{2} \times_{q} S^{1}\right)$ with boundary SUSY ground state α

4d Simplicial Gravity and 3d SCFT

$$
Z_{\text {Simplicial Gravity }}^{(4 \text {-geometry })}\left(M_{4}\right)=Z^{(\alpha)}\left(M_{3}\right)=Z_{T_{M_{3}}}^{N=2}\left(\mathbb{R}^{2} \times_{q} S^{1}\right)
$$

Simplicial gravity on
4-manifold

SL(2,C) CS on
3-manifold

3d
SCFT

$$
\text { 4d simplicial geometries } \hookrightarrow \mathcal{M}_{S U S Y}
$$

Effective twisted superpotential $\widetilde{\mathcal{W}}_{\text {eff }}(\sigma)=$ Einstein-Hilbert action in 4 d

4d Simplicial Gravity and 3d SCFT

$$
Z_{\text {Simplicial Gravity }}^{(4 \text {-geometry })}\left(M_{4}\right)=Z^{(\alpha)}\left(M_{3}\right)=Z_{T_{M_{3}}}^{N=2}\left(\mathbb{R}^{2} \times_{q} S^{1}\right)
$$

Simplicial gravity on
4-manifold

SL(2,C) CS on
3-manifold

3d
SCFT

$$
\text { 4d simplicial geometries } \hookrightarrow \mathcal{M}_{S U S Y}
$$

Effective twisted superpotential $\widetilde{\mathcal{W}}_{\text {eff }}(\sigma)=$ Einstein-Hilbert action in 4 d

The end

Thanks for your attention!

