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1 Introduction

We present the construction of MSSM like models in heterotic string theory. Due to time
limitations, we only discuss a small subset of the research done in this area, namely model
building on abelian heterotic orbifolds [1,2] (for a good review see e.g. [3,4]). For other model
building approaches on smooth Calabi–Yau spaces (CYs) which are not resolutions of orbifolds
see e.g. [5–8]. There are further model building approaches in other fields like free fermionic
models [9], which are dual to the Z2×Z2 orbifold discussed here at a specific point in moduli
space.

2 MSSM model building

Heterotic string theory has been very popular for particle physics beyond the standard model
for decades. One of the main reasons is probably that it has by construction a gauge group
(E8 × E8 or SO(32)) which contains popular GUT groups like SU(5) or SO(10). This is in
contrast to the (perturbative) type II string theories. There is no GUT group to begin with
and GUT model building is more challenging. In the end, this is related to the fact that it
is impossible to build exceptional gauge groups in perturbative type II theories. These are
important since one naturally gets the spinor representation 16 of SO(10) (which, as Clemens
told us, contains all the SM particles including the right-handed neutrino and whose Yukawa
couplings give rise to the MSSM terms) out of the fundamental or adjoint representation of E6.
While it is possible to build SU(5)×U(1) or SO(10) models in type II theories, they are not so
well-suited as GUT groups since on the level of SU(5) the U(1) charge forbids necessary Yukawa
couplings and on the level of SO(10) one cannot obtain spinor representations. However,
type II theories allow for more different kinds of fluxes (fluxes are vevs of field strengths), which
makes them better suited for discussions of cosmological properties and moduli stabilization
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(moduli are scalar fields without a potential in 4D; they correspond to fields that parameterize
the shape of the compactification manifold or the gauge degrees of freedom).

From now on we will focus on heterotic E8 × E8 string theory. First we would like to
mention that there is no model which has all the properties of the MSSM in all fine prints. So
let us first list the properties which we want to impose for MSSM model building:

1. The theory should have N = 1 SUSY in 4D

2. The theory should be free of anomalies

3. The theory should have the MSSM gauge group SU(3)× SU(2)×U(1), plus possibly an
additional hidden sector gauge group which can be used for SUSY breaking

4. The theory should have the MSSM particle content, i.e. three families of quarks and
leptons with one Higgs pair.

5. The theory should give rise to realistic Yukawa textures (mass hierarchies between the
families) and solve the µ-problem

We will explain in the following how these points are realized in heterotic model building
on orbifolds, using the Z2 × Z2 orbifold [10] as our working example throughout.

3 Orbifold model building

3.1 N = 1 SUSY in 4D

Toroidal abelian orbifolds are constructed by starting with a six-torus1 T 6 and modding out
a discrete Abelian symmetry group ZN or ZN × ZM . In order to be able to do so, we have
to ensure that the torus lattice is compatible with this action. This rules out some discrete
symmetries from the very start (e.g. Z5) and fixes or restricts the complex structure of the
tori for other discrete symmetries. It becomes an exercise in 6D lattice crystallography to
classify the various possibilities. For the abelian case one finds that N ∈ {2, 3, 4, 6, 8, 12} in
the case2 of ZN and that M,N ∈ {2, 3, 4, 6} in the case of ZN × ZM .

Furthermore, since we want to end up with N = 1 SUSY in 4D, this restricts how the
symmetries can act on T 6. Their action has to be such that the resulting orbifold allows
for one parallelizable spinor to survive the compactification from 10D N = 1 to 4D and
generate the N = 1 SUSY there. Spaces with this property are called CY spaces. There
are several equivalent characterizations of CYs as complex Kähler manifolds with at most
SU(3) holonomy, with vanishing first Chern class (aka Ricci-flat), or with a nowhere vanishing
homomorphic (3, 0) form (aka trivial anti-canonical bundle). The conditions we have to impose
on the orbifold action can be seen in the easiest way from the last property. Say we start with
three two-tori which are parameterized by the three complex coordinates z1, z2, z3. The ZN
orbifold action θ will now act on these coordinates by a discrete rotation:

θ : (z1, z2, z3) 7→ (e2πiv1z1, e
2πiv2z2, e

2πiv3z3) (1)

1For simplicity we discuss here factorizable torus lattices, i.e. T 6 = T 2 × T 2 × T 2

2The case N=2 does not give rise to N = 1 in 4D.
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Figure 1: The twisted sectors of T 6/Z2 × Z2

where the twist vector v = (v1, v2, v3) is quantized as 1/N . Out of these zi one can build a
holomorphic (3,0)-form by simply wedging their exterior products, Ω = dz1∧dz2∧dz3. Under
the orbifold action, this transforms as

θ : Ω 7→ e2πi(v1+v2+v3) Ω . (2)

This tells us that the resulting space is CY if v1 +v2 +v3 ∈ Z. For the case of Z2×Z2, we have
two generators θ1 and θ2, and two associated twist vectors, both of which have to fulfill the
aforementioned condition. Thus we are now in a position to write down the orbifold actions
for the Z2 × Z2 orbifold:

θ1 : (z1, z2, z3) 7→ (z1, e
2πi/2z2, e

−2πi/2z3) , θ2 : (z1, z2, z3) 7→ (e−2πi/2z1, z2, e
2πi/2z3) ,

θ3 := θ1θ2 : (z1, z2, z3) 7→ (e−2πi/2z1, e
2πi/2z2, z3) .

(3)

As Julian explained last week, such a Z2 action has 4 fixed points on a T 2. Thus we get
4 · 4 = 16 fixed points from each θi for a total of 48 fixed points (actually θi leaves the ith

torus invariant, so these are fixed tori rather than fixed points). A pictorial presentation can
be found in figure 1. Note that for this orbifold the complex structures of the tori are not
fixed. We have chosen τi = i for ease of presentation here.

3.2 Anomaly freedom

One big advantage of orbifolds is that they correspond to free superconformal field theories
(SCFTs) and thus are (at least in principle) exactly computable. This is not true for general
(smooth) CYs, where a lot of properties (like the metric) are unknown and one thus has to
rely on topological quantities and work in the limit of heterotic supergravity (which uses only
the lowest terms in the α′ expansion and truncates the massive string excitations).

Being defined as a SCFT, one can in particular write down the one-loop string partition
function. Since a closed string loop has the topology of a torus, the partition function is given
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in terms of generalized θ- and Dedekind η-functions which depend on the boundary conditions
of the worldsheet (WS) fields and the complex structure of the worldsheet torus. The orbifold
action fixes the boundary conditions for the fields that parameterize the spacetime. In addition,
we can choose the boundary conditions for the gauge degrees of freedom; however, they have
to be chosen such that the symmetries of the torus partition function are not spoiled, i.e. such
that the torus is modular invariant. For toroidal abelian orbifolds, these boundary conditions
can always be chosen such that the orbifold twist θi is accompanied by a shift (rather than
a twist) in the gauge degrees of freedom which arise from the T 16 with root lattice ΛE8×E8 .
These shifts can be parameterized in terms of the shift vectors Vi (each Vi has 16 components
specifying the shift in the 16 directions of ΛE8×E8) associated to θi. For our orbifold these
modular invariance conditions then read:

2(V 2
i − v2i ) ≡ 0 mod 2 . (4)

An obvious solution to this equation is to repeat the entries of the twist vectors vi in the shift
vectors Vi, i.e. in our case

v1 =
1

2
(0, 1,−1) , v2 =

1

2
(−1, 0, 1)

V1 =
1

2
(0, 1,−1, 05)(08), V2 =

1

2
(−1, 0, 1, 05)(08) .

This is the so-called standard embedding (albeit there’s nothing standard about it). These
modular invariance conditions, which link the gauge dofs to the spacetime dofs, correspond
to the Bianchi identities (BIs) for the three-form field-strength H of the two-form Kalb–
Ramond field B2. This field (or rather its behavior under gauge transformations) is vital
to the cancellation of anomalies via the so-called Green–Schwarz (GS) mechanism. In other
words, if the BIs for H are satisfied, all of the anomalies are cancelled via the GS mechanism.
On a generic CY these BIs are very hard to satisfy and for quite some years the only known
solution has been this standard embedding, which means identifying the gauge connection
with the spin connection. However, this choice does not give rise to the standard model gauge
group, which we will turn to in the next section.

For orbifolds, in contrast, finding solutions to (4) is not so hard, and all inequivalent
solutions have been classified in [11] for all possible 6D abelian toroidal orbifolds. However,
note that in general just choosing Vi is not enough to obtain MSSM-like models, so one has to
add in addition so-called Wilson lines, which can be thought of as constant gauge backgrounds
around the six fundamental cycles3 of the underlying T 6. If the underlying orbifold is non-
simply connected one can have, in addition to these Wilson lines, a Wilson line associated
to the non-trivial first fundamental group. All these Wilson lines correspond again to WS
boundary conditions and they have to obey similar modular invariance conditions like the
ones in (4).

3.3 MSSM gauge group

In general, in heterotic theories the primordial gauge group E8×E8 is broken to the maximal
commutant with the gauge bundle. For the standard embedding in the smooth case, the

3The Wilson lines have to descend to the orbifold and thus be compatible with the orbifold action, such
that there are usually less than six possible Wilson lines; our Z2 × Z2 example is the only one which has 6
independent Wilson lines.
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vector bundle is SU(3), and the maximal subgroup of E8 that commutes with SU(3) is E6,
so the resulting gauge group would be E6 × E8. In the orbifold standard embedding, the
holonomy (and thus the gauge shifts) are a discrete subgroup of SU(3), so the commutant
is larger than just E6. In fact, at least U(1) commutes with ZN , but there could also be
larger non-Abelian groups with center ZN ; in any case, the rank of the gauge group is not
reduced in this way. In our example, the resulting gauge group of the standard embedding
is E6 × U(1)2 × E8. Thus the name of the game is to find shift vectors and Wilson lines
that solve the modular invariance conditions and break E8 × E8 to the SM gauge group
SU(3) × SU(2) × U(1). In addition, since this breaking is rank preserving by construction,
we will find other (abelian and non-abelian) gauge groups whose ranks add up to 16. In
principle, the set of constraints can be written in terms of diophantic equations and thus be
solved in general. In practice, the resulting set of equations is too complicated, so in model
scans the shift vectors and Wilson lines are generated randomly and then checked for the
correct gauge group and particle content. Furthermore it is convenient (albeit not necessary
on orbifolds) to use the shifts and Wilson lines associated with the torus cycles ei to break
to an intermediate SU(5) GUT group (times other stuff), and to break this to the SM gauge
group using the Wilson line associated with the non-trivial fundamental group. This ensures
that the hypercharge fits into SU(5), allows for doublet-triplet splitting, and sequesters the
scales where E8 is broken to SU(5) from the scale where SU(5) breaks to the SM gauge group,
which can be advantageous for GUT threshold corrections. Furthermore, on smooth CYs
this mechanism ensures that the hypercharge remains massless and thus a good symmetry at
low energies. However, as we have seen before, in order to be able to mod out a symmetry
our space has to have the symmetry in the first place. In our case, the freely acting Z2

symmetry acts as a simultaneous shift along the direction e2, e4, e6. This means that the
Wilson lines in these directions have to be equal in such constructions. However, this does
not pose a problem, since three torus Wilson lines are already enough to break to the SU(5)
GUT group. An example for the choice of shift vectors and Wilson lines that break E8 × E8

to [SU(3)× SU(2)× U(1)Y ]SM × [SU(3)× SU(2)× SU(2)]hidden × U(1)8 is
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Figure 2: Untwisted, twisted, and massive winding strings on orbifolds.

Just to exemplify the calculation of the gauge group branching, we present the calculation of
the SU(5) standard model factor, which is then broken to SU(3)×SU(2)×U(1)Y by Wfree. As
explained above, the unbroken gauge group is given in terms of those 248 roots of E8 which
commute with the shifts and Wilson lines. A set of 24 such roots which commute with V1,2
and W1, . . . ,W6 (i.e. which has an integral inner product with the shifts and WLs) is

λ = (03, 1,−1, 03)(08) , (6)

where the underline denotes all possible permutations of the underlined entries. These (plus
the zero roots corresponding to the Cartan generators) are the 24 roots of the GUT SU(5).
If one now takes in addition the freely acting Wilson line Wfree into account, one sees that
(due to the extra factor of 1/2) some of these 24 roots do not yield integral inner products.
To be more precise, the 24 roots split into a set of 8 roots and 3 roots which are mutually
orthogonal and orthogonal to all shifts and WLs and generate the SU(3)×SU(2) gauge group
of the standard model. They are given by

λSU(3) = (03, 0, 0, 1,−1, 0)(08) ,

λSU(2) = (03, 1,−1, 0, 0, 0)(08) .
(7)

The extra U(1) within the SU(5) which is orthogonal to these roots is the usual hypercharge
generator

TU(1)Y
= (03,

1

2
,
1

2
,−1

3
,−1

3
,−1

3
)(08) . (8)

3.4 MSSM particle content

Using CFT techniques, one can compute the complete string spectrum from the boundary
conditions, i.e. from the orbifold twists, shifts, and Wilson lines. On top of the usual closed
strings of heterotic string theory, the orbifold allows for further types of strings: there can
be strings that wind around the torus cycles ei, but these are massive and thus not of our
primary interest. The other new type of strings are the so-called twisted strings which appear
to be open, but actually close under the orbifold action. Such strings necessarily wind around
orbifold fixed points and cannot be moved away from them (since they would not close then),
see figure 2 for a cartoon of these types of strings.

In order to analyze the string spectrum it is useful to define the so-called local shifts
and twists vg and Vg, where g = (θk1θ

`
2, biei) specifies how the twist in the spacetime dofs
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and the shift in the gauge dofs acts. In particular we have g = (1, 0) for untwisted strings,
g = (θ1, e4 + e5) for a twisted string at the fixed point (β = 2, γ = 3), and so on.

The masses of these strings depend on the momenta P and q of the strings (these are lattice
vectors of E8×E8 for P and of SO(8) for q, which are in addition shifted by the orbifold shifts,

Wilson lines and twists), on internal oscillations Ñ , and on a zero point energy shift δc. In
terms of this data, the massless spectrum reads

0 =
M2

L

8
=

(P + Vg)
2

2
+ Ñ + δc− 1 , 0 =

M2
R

8
=

(q + vg)
2

2
+ δc− 1

2
. (9)

To give one example, we look at the fixed point (α = 1, β = 4), which corresponds to
g = (θ1θ2, e3 + e4). The local twists and shifts are thus

vg = v1 + v2 =
1

2
(−1, 1, 0) ,

Vg = V1 + V2 +W3 +W4 =
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2
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2
,
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2
,
1

2
,−1

2
,
7

2

)
For this sector, the zero point shift is δc = 1/4, so the masslessness conditions read

3

2
= (P + Vg) + Ñ ,

1

2
= (q + vg)

2 . (10)

Using the following E8 × E8 and SO(8) lattice vectors,

P =
(
− 1, 1, 1,−3, 0, 1, 1, 0

)(
− 1

2
,−5
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2
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1

2
,−7

2

)
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,−1

2
,−1

2

)
,

we readily check that

P + Vg =
(1

4
,−1

4
,−1

4
,−3

4
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4
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1

4
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1

4
,
1

4

)(
0, 0, 0, 0, 0, 0, 0, 0

)
, p+ vg =

(1

2
,
1

2
,−1

2
,−1

2

)
solves (9) with Ñ = 0. As explained by Clemens, the irreps under which the corresponding
strings transform are obtained by calculating the Dynkin labels, which are obtained by taking
the inner product with the simple roots of the various non-abelian gauge groups. In particular,
we see that the Dynkin labels with respect to SU(5) are (0, 1, 0, 0), which means that the state
is the highest weight of the 10. By using the highest weight procedure and the branching
rules, or by calculating the Dynkin labels with respect to SU(3)×SU(2), we see that this state
becomes a singlet after breaking the SU(5). The inner product with the hypercharge generator
gives 1, which means that the state belongs to the chiral SUSY multiplet of the right-handed
electron. As can be seen from the first entry of +1/2 in p+vg, this state transforms as a target
space spinor, so it is the electron. If we take q = (0, 0, 0, 0), the first entry a 0 and we obtain
the selectron. Also note that since W1 = 0, the spectrum at α = 1 and α = 2 are the same. So
we will find the second generation at the other equivalent fixed point g = (θ1θ2, e1 + e3 + e4).
In fact, this degeneracy gives rise to a D4 flavor group, under which the two generations form
a doublet.

Let us remark that there are no known models which give just the particle content of the
MSSM and nothing else. Generically there are of the order of 100 extra fields. Some of them
are charged under the hidden sector gauge group while others are exotics, i.e. carry standard
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model charges. This shows one of the main restriction in MSSM model building on orbifolds:
from the pure string perspective, the massless spectrum is what it is, and it is not the MSSM
spectrum. However, at this point one is in general not at a vacuum of the theory, since this
does not include non-perturbative effects, which might generate a potential for some of the
fields, which in turn forces them to get a vev in the vacuum. Another condition which imposes
that some of the fields get a vev comes from SUSY D-terms. In general, some of the hidden
sector gauge fields are extra U(1)s, and one of them has an anomaly which is canceled via the
Green–Schwarz mechanism. This is in contrast to smooth CY models where generically all
U(1)s are Green–Schwarz anomalous. The reason that on the orbifold only one U(1) can be
anomalous is that there is only one axionic zero mode in B2 (which is the imaginary part of
the dilaton). In general, there are h1,1 additional axions (which are the imaginary part of the
CY Kähler moduli). However, the Kähler moduli are frozen at the orbifold point and hence
their axions do not contribute to the anomaly cancellation. Consequently, there is only one
axion and thus at most one anomalous U(1). In our example this anomalous U(1) generator
reads

TU(1)anom
= (−2,−1, 2, 1, 1, 1, 1, 1)(−1

2
,−1

2
, 0, 0, 0, 0,−1

2
,−1

2
) . (11)

Most importantly, this U(1) is orthogonal to the hypercharge (8) which means that the latter
does not get Green–Schwarz massive.

Upon canceling the anomaly via the GS mechanism, an FI term ξ is introduced for this
anomalous U(1). In order to obtain an overall vanishing D-term,∑

i

qianom|ψi|2 − ξ = 0 , (12)

some fields ψi that are charged under the anomalous U(1) have to get a vev as well. Generically,
these fields are also charged under other U(1)’s, in which case D-flatness requires other fields
to get a vev as well. All in all, this leads to a higgsing of some of the hidden sector gauge
symmetries and to mass terms for the particles. However, the vevs of the fields lead to a
backreaction on the geometry which resolves the singular orbifold into a smooth CY. But
this means that the theory is not a pure orbifold anymore and one should apply the smooth
CY analysis and consistency conditions. On the other hand, not all singularities might be
resolved and thus the supergravity approximation is not valid everywhere. In any case, all
of the following discussion has to be carried out in an effective field theory (which is derived
from either the orbifold theory or the heterotic supergravity theory; both can be matched to
one another [12, 13]).

Lastly we want to repeat here that orbifolds provide a natural and beautiful solution to
the doublet-triplet splitting problem. Since the mechanism was explained by Julian last week,
we will be very brief: In our model the shift vectors and torus Wilson lines break the E8×E8

among other things to the GUT SU(5). This SU(5) is then broken via the freely acting
Wilson line to the SM gauge group and the Higgs triplets are projected out since they are not
compatible with the action of the Wilson line.

3.5 Yukawa textures

The string couplings can also be calculated from CFT techniques. While this is in principle
doable [14], the calculations become very involved rather quickly. By studying the lowest
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n-point correlators, rules were derived that have to be fulfilled for such a correlator to be
non-vanishing [15]. They mostly correspond to classical conditions in target space like gauge
invariance and momentum conservation. However, one of the rules (aka rule 4) seems to not
have a corresponding target space symmetry.

Due to the aforementioned fact that some fields have to acquire vevs to cancel the FI
term, to decouple the extra states, and to break the extra U(1) symmetries, the discussion
is usually carried out in an effective field theory. In this approach, all couplings that comply
with the manifest target space symmetries are written down. Due to rule 4, some of these
might actually be forbidden; however, since there is no underlying symmetry in the effective
field theory that protects these couplings, it is expected that they are generated in any case.
So let us now discuss the couplings from the effective field theory point of view.

The mass hierarchies for the Yukawa couplings are generated in a Froggatt-Nielsen type
mechanism once some of the extra fields that are charged under the hidden U(1)s get a vev.
In addition, some couplings are suppressed due to the localization of the fields: as mentioned
before, twisted fields are localized at fixed points. Couplings between fields at different fixed
points are generated via non-perturbative instanton effects. These come with an exponential
suppression which is proportional to the size of the CY (or rather to the distance between the
fixed points) and are consequently small.

Lastly we want to discuss the µ-term. Since the Higgses are vector-like under the standard
model, we need a symmetry which forbids the µ-term. If the Higgses carry different charges
under the extra hidden U(1) symmetries, these can serve to forbid the µ-term4. Another
possibility is to use discrete symmetries. In orbifolds they arise from either partially higgsed
hidden U(1) symmetries or from discrete remnants of the internal Lorenz transformations (or
any combination of the two). Especially the latter can usually be found on orbifolds owing to
the high degree of symmetry of the orbifold point. In any case, there are many singlets which
might be added to the HuHd term to make it gauge invariant even under these additional
symmetries. Since the µ-term is extremely small, such singlet insertions have to be sufficiently
suppressed. Since this is hard to achieve in general, it is better to identify a symmetry which
forbids the µ-term to all orders and to generate it e.g. from the Kähler potential using a
Guidice–Masiero-like mechanism.
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