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The decoupling properties of the one-loop corrected Higgs couplings to bb̄

in the MSSM are examined:

at O(αs) in:

H.E. Haber, M.J. Herrero, H.E. Logan, S. Peñaranda, S. Rigonlin and

D. Temes, Phys. Rev. D63, 055004 (2001) [arXiv: hep-ph/0007006];

at O(h2
t ) in:

H.E. Haber, H.E. Logan, S. Peñaranda and D. Temes, SCIPP-08/01 (2008),

to appear shortly on the arXiv.

Note: Recent work by I. Antoniadis, E. Dudas, D. Ghilencea and

P. Tziveloglou (unpublished) obtains wrong-Higgs Yukawa interactions from

a general analysis of higher dimensional operators in the MSSM.
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Introduction

Realistic supersymmetric models of nature require that supersymmetry is

broken. The most common framework for SUSY breaking consists of three

sectors:

• Visible sector: the fields of the (extended) Standard Model (SM) and

their superpartners

• Hidden sector: SU(3)×SU(2)×U(1) neutral fields, where fundamental

SUSY-breaking resides

• Messenger sector: messenger fields that communicate the SUSY-breaking

of the hidden sector to the visible sector
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Let X be a hidden sector superfield. Integrating out the messenger fields

(at the mass scale M � mZ) results in operators that couple X to SM

superfields. The most important operators are:

−L 3
(

1

M
[XW aW a]F +

1

M

[
XΦ3

]
F

+
µ

M

[
XΦ2

]
F

+ h.c

)
+

1

M2

[
X†XΦ†Φ

]
D
,

where Φ is some SM chiral superfield, and Wα is the gauge spinor superfield.

Parameterizing the SUSY-breaking by taking 〈X〉 = θθF , then yields:

−L 3
(
F

M
λaλa +

F

M
φ3 +

µF

M
φ2 + h.c.

)
+

|F |2
M2

φ†φ ,

where φ is the lowest scalar component of Φ. This corresponds to the

standard list of soft-SUSY-breaking operators. If we choose:

F

M
≡MSUSY ∼ 100 GeV—1 TeV ,

and µ ∼MSUSY, then the MSSM sparticle masses are of the expected size.
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Hard SUSY-breaking operators

Many more effective operators that couple X to SM superfields can be

written that exhibit additionalM−1 suppressions. These have been classified

by S.P. Martin [PRD61 (2000) 035004]. Two of interest for this work are:

−L 3 hijk
M4

[
XX†Φ†

iD
αΦjDαΦk

]
D

+
gaij
M4

[
XX†ΦiD

αΦjW
a
α

]
D

+ h.c.

3 |F |2
M4

[
hijkφ

†
iψjψk + gaijφiψjλ

a + h.c.
]
,

after putting 〈X〉 = θθF . Thus, we expect the coefficients of these

SUSY-breaking operators to be suppressed by M 2
SUSY/M

2 � 1. If one

of the Φ’s above is the Higgs superfields, then we call the corresponding

SUSY-breaking terms above the “wrong-Higgs” couplings to contrast with

the supersymmetric Higgs interactions derived from:

LSUSY = − d2W

dφidφj
ψiψj + i

√
2gaφ

∗
iT

a
ijψjλ

a + h.c.
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A case study: the wrong-Higgs Yukawa couplings

In the MSSM, the tree-level Higgs–quark Yukawa Lagrangian is

supersymmetry-conserving and is given by:

Ltree
yuk = −εijhbHi

dψ
j
QψD + εijhtH

i
uψ

j
QψU + h.c.

Two other possible dimension-four gauge-invariant non-holomorphic Higgs-

quark interactions terms, the so-called wrong-Higgs interactions,

Hk∗
u ψdψ

k
Q and Hk∗

d ψuψ
k
Q ,

are not supersymmetric (since the dimension-four supersymmetric Yukawa

interactions must be holomorphic), and hence are absent from the tree-level

Yukawa Lagrangian.
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Nevertheless, the wrong-Higgs interactions can be generated in the effective

low-energy theory below the scale of SUSY-breaking. In particular, one-loop

radiative corrections, in which supersymmetric particles (squarks, higgsinos

and gauginos) propagate inside the loop can generate the wrong-Higgs

interactions.

Hi∗u

eQi∗
eQi

eD∗
eD

×
egaψiQ ψD

(a)

Hi∗u

eU
eU∗

eQi
eQi∗

×
ψHu

ψHdψiQ ψD

(b)

One-loop diagrams contributing to the wrong-Higgs Yukawa effective operators. In (a), the cross (×) corresponds to a factor of

the gluino mass M3. In (b), the cross corresponds to a factor of the higgsino Majorana mass parameter µ. Field labels correspond

to annihilation of the corresponding particle at each vertex of the triangle.

If the superpartners are heavy, then one can derive an effective field theory

description of the Higgs-quark Yukawa couplings below the scale of SUSY-

breaking (MSUSY), where one has integrated out the heavy SUSY particles

propagating in the loops.
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The resulting effective Lagrangian is:

Leff
yuk = −εij(hb + δhb)ψbH

i
dψ

j
Q + ∆hbψbH

k∗
u ψkQ

+εij(ht + δht)ψtH
i
uψ

j
Q + ∆htψtH

k∗
d ψkQ + h.c.

In the limit of MSUSY � mZ,

∆hb = hb

[
2αs
3π

µM3I(M2
b̃1
,M2

b̃2
,M2

g ) +
h2
t

16π2
µAtI(M2

t̃1
,M2

t̃2
, µ2)

]
,

where, M3 is the Majorana gluino mass, µ is the supersymmetric Higgs-mass

parameter, and b̃1,2 and t̃1,2 are the mass-eigenstate bottom squarks and

top squarks, respectively. The loop integral I(a, b, c) ∼ 1/max(a2, b2, c2)

in the limit where at least one of the arguments of I(a, b, c) is large.∗

Thus, in the limit where M3 ∼ µ ∼ At ∼ Mb̃ ∼ Mt̃ ∼ MSUSY � mZ, the

one-loop contributions to ∆hb do not decouple.
∗I(a, b, c) =

h
a2b2 ln (a2/b2) + b2c2 ln (b2/c2) + c2a2 ln (c2/a2)

i
/[(a2 − b2)(b2 − c2)(a2 − c2)].
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Phenomenological consequences of the wrong-Higgs Yukawas

The effect of the wrong-Higgs couplings is a tanβ-enhanced modification

of a physical observable. To see this, rewrite the Higgs fields in terms of

the physical mass-eigenstates (and the Goldstone bosons):

H1
d =

1√
2
(v cosβ +H0 cosα− h0 sinα+ iA0 sinβ − iG0 cosβ) ,

H2
u =

1√
2
(v sinβ +H0 sinα+ h0 cosα+ iA0 cosβ + iG0 sinβ) ,

H2
d = H− sinβ −G− cosβ ,

H1
u = H+ cosβ +G+ sinβ ,

with v2 ≡ v2
u + v2

d = (246 GeV)2 and tanβ ≡ vu/vd. The b-quark mass is:

mb =
hbv√

2
cosβ

(
1 +

δhb
hb

+
∆hbtanβ

hb

)
≡ hbv√

2
cosβ(1 + ∆b) ,

which defines the quantity ∆b.
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In the limit of large tanβ the term proportional to δhb can be neglected, in

which case,

∆b ' (∆hb/hb)tanβ .

Thus, ∆b is tanβ–enhanced if tanβ � 1. As previously noted, ∆b survives

in the limit of large MSUSY; this effect does not decouple. It can generate

measurable shifts in the decay rate for h0 → bb̄:

gh◦bb̄ = −mb

v

sinα

cosβ

[
1 +

1

1 + ∆b

(
δhb
hb

− ∆b

)
(1 + cotα cotβ)

]
.

At large tanβ ∼ 20—50, ∆b can be as large as 0.5 in magnitude and of

either sign, leading to a significant enhancement or suppression of the Higgs

decay rate to bb̄.

Thus, the effect of the wrong-Higgs SUSY-breaking operators can be

non-negligible. In the low-energy effective theory, we essentially have

M = MSUSY, and there is no suppression.
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Non-decoupling effects in h0 → bb̄: a closer look

Working consistently to one-loop order, under the assumption that µ and all SUSY masses

are significantly larger than mZ , a complete diagrammatic computation yields:

gh◦bb̄ = [gh◦bb̄]tree


1 − ∆hb

hb
(tan β + cotα)

ff
+ O

 
m2
Z

M2
SUSY

!
,

where

[gh◦bb̄]tree = [gh◦bb̄]SM {sin(β − α) − tan β cos(β − α)} .
If mA � mZ , then the low-energy theory is an effective one-doublet theory that must

coincide with the SM. In this limit,

cos(β − α) =
m2
Z sin 4β

2m2
A

+ O
 
m4
Z

m4
A

!
,

tan β + cotα = −2m2
Z

m2
A

tan β cos 2β + O
 
m4
Z

m4
A

!
.

In fact, decoupling is delayed—one must havem2
A � m2

Z tan β (even ifMSUSY → ∞).
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For mA ∼ O(mZ), the effective low-energy theory is the most general two-

Higgs doublet model (which includes the wrong-Higgs Yukawa couplings).

Thus, non-trivial radiative corrections can persist even if MSUSY � mZ.
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(a) MA = 3000 GeV, M = MSUSY

(b) MSUSY = 3000 GeV, M = MA

tan β = 50
exact formula

analytic formula

The super-QCD correction, ∆SQCD [i.e., the O(αs) correction to the h0bb̄ coupling], as a function of particle mass for

tan β = 50 and MSUSY = Mg̃ = µ = Ab. The curves (a) are plotted vs. MSUSY, with mA = 3000 GeV; whereas the

curves (b) are plotted vs. mA, with MSUSY = 3000 GeV. Solid lines are based on the exact one-loop formula and dashed

lines are based on an analytic approximation given in Haber, Herrero et al.
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The decoupling behavior is of the form: gh◦bb̄ = [gh◦bb̄]tree {1 + ∆SM + ∆SUSY}, where

∆SUSY ∼ C1

m2
Z

m2
A

tan β + C2

m2
Z

M2
SUSY

.

Integrating out the heavy SUSY spectrum still leaves a contribution proportional to C1

that is unsuppressed when mA ∼ mZ . At large tan β, C1 tan β ∼ O(1) if the heavy

SUSY spectrum is roughly degenerate, and corresponds to the effects of the wrong-Higgs

Yukawa couplings. If there are non-degeneracies within the heavy SUSY spectrum, then

contributions to C1 may be additionally suppressed by small ratios of SUSY masses.

Example: super-massive squarks

If squarks are significantly heavier than all other SUSY mass parameters, then

∆SUSY ' −(tanβ + cotα)

8
<
:

2αs

3π

µMg̃

M2
b̃1

−M2
b̃2

ln

0
@
M2
b̃1

M2
b̃2

1
A+

h2
t

16π2

µAt

M2
t̃1

−M2
t̃2

ln

0
@
M2
t̃1

M2
t̃2

1
A

9
=
;

' −
 

tanβ + cotα

M2
q̃

!"
2αs

3π
µMg̃ +

h2
t

16π2
µAt

#
,

if all squarks are roughly degenerate with mass Mq̃.
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Wrong Higgs gaugino–higgsino operators

In a supersymmetric field theory, the tree-level supersymmetric gaugino–

fermion–sfermion interactions originate from the Kähler term:

LK =

∫
d4θΦ†

i(e
2gV )ijΦj 3 i

√
2ga(φ

∗
iT

a
ijψjλ

a − λ̄aψ̄iT
a
ijφj) .

We catalog all possible dimension-four gauge-invariant operators in the

gaugino–higgsino–Higgs boson sector that violate supersymmetry. One

class of operators includes:

igu√
2
λaτaijψ

j
Hu
H∗i
u +

igd√
2
λaτaijψ

j
Hd
H∗i
d +

ig′u√
2
λ′ψiHuH

∗i
u − ig′d√

2
λ′ψiHdH

∗i
d +h.c. ,

where the coupling gu, gd, g
′
u and g′d deviate from their supersymmetric

values given by the SU(2) and U(1)Y gauge couplings, g and g′, respectively.

Such effects are generated by one-loop corrections and have been studied

in detail by Katz et al. and by Kiyoura et al.
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Here, we focus on a second class of supersymmetric violating operators:

ik1λ
aτaijψ

j
Hu
εkiH

k
d , ik2λ

′ψkHuεkiH
i
d ,

ik3λ
aτaijψ

j
Hd
εkiH

k
u , ik4λ

′ψiHdεkiH
k
u .

Integrating out a subset of heavy MSSM fields

Suppose we try to generate these operators in the limit where the squarks are much heavier

than the gauginos. Graphs (a), (b) and graph (c) are suppressed by O(mtmb/M
2
SUSY)

and O(m2
b/M

2
SUSY), respectively, and hence decouple when MSUSY � mZ .

Hiu

ψQ

ψU
ψD

ψQ
++

eQi∗ eQiλa ψHd

(a)

Hiu

eQi∗
eQi

eQi
eU

×
ψQ ψDλa ψHd

(b)

Hiu

eQi∗
eD∗

eQi
eQi∗

×
ψQ ψDλa ψHd

(c)

One-loop diagrams contributing to the wrong-Higgs gaugino operators. The cross (×) indicates the two-component fermion

propagator that is proportional to the corresponding Dirac mass. In (b) and (c) the solid dot indicates an insertion of the Higgs

vacuum expectation value (vev). Field labels correspond to annihilation at each vertex of the triangle. Replacing the Higgs vev by

the appropriate Higgs field, these diagrams actually correspond to dimension-six operators with the expected decoupling behavior.
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Gauge-mediated supersymmetry-breaking (GMSB)

Consider a typical GMSB model. SUSY is broken in the hidden sector that

is parameterized by the vacuum expectation value of some hidden sector

spurion superfield Ẑ

Ẑ = 〈Z〉 + θθFZ .

We also introduce messenger superfields Φ̂ and Φ̂, which transform as

complete SU(5) multiplets (e.g. 5 ⊕ 5
∗), and embed the SM gauge group

inside SU(5) in the usual way. The superpotential connecting the messengers

to the hidden sector is:

W = γẐΦ̂ Φ̂ ,

where the messenger-Yukawa coupling γ ∼ O(1). Inserting the spurion

form for Ẑ, SUSY-breaking mass-splittings are generated among messenger

fermions and their scalar superpartners. Messengers can appear in loop

corrections to propagators and vertices involving external MSSM fields.

Thus, SUSY-breaking is transmitted to the visible sector.
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General expectations for GMSB models

• Gaugino masses are generated at one loop. Squark and slepton (sfermion)

masses are generated at two loops:

mλ ∼ g2

16π2

FZ
〈Z〉 , m2

f̃
∼
(

g2

16π2

)2
FZF

†
Z

〈Z〉2 .

where g is the appropriate gauge coupling.

• In order that the effective SUSY-breaking scale of the MSSM,

MSUSY <∼ O(1 TeV), one usually takes FZ/〈Z〉 ∼ 100 TeV.

• 〈Z〉 sets the messenger mass scale. If FZ >∼ 〈Z〉2, the squared-mass

splitting between scalar messenger pairs is so large that the smallest

scalar squared-mass is driven negative. Thus, two limits are of interest:

– low-scale messengers: FZ/〈Z〉2 ∼ 1,

– high-scale messengers: FZ/〈Z〉2 � 1.
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Feynman diagrams contributing to SUSY-breaking gaugino (λ) and sfermion ( ef) masses. The scalar and fermionic components

of the messenger fields Φ are denoted by dashed and solid lines, respectively; ordinary gauge bosons are denoted by wavy lines.

Taken from G.F. Giudice and R. Rattazzi, Phys. Rept. 322, 419 (1999).
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Issues for GMSB model building

• The µ and Bµ parameters do not naturally emerge at the correct mass

scale. Another mechanism must be invoked.

• It is desirable to have a more fundamental description of SUSY-breaking

in the hidden sector. The possible use of metastable vacua [inspired by

the paper of Intriligator, Seiberg and Shih (2007)] has spawned a revival

of GMSB model-building.

• There is much freedom in the construction of messenger sectors. No

single compelling model exists.

• Typically, the messengers only couple to the MSSM via gauge

interactions. However, the gauge quantum numbers permit the coupling

of (some of the) messengers to the Higgs superfields. Viable models are

possible with appropriately chosen messenger and hidden sectors.
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Integrating out the messengers in a model of gauge-mediated SUSY-breaking

In models of gauge-mediated SUSY-breaking (GMSB) in which the Higgs

fields couple directly to messenger fields, it is possible to generate wrong-

Higgs operators by integrating out the messenger fields. Consider the

following sector of uncolored messenger fields:

Superfield SU(3) SU(2) U(1)Y

Ĥd 1 2 −1

Ĥu 1 2 1

M̂1 1 2 1

M̂1 1 2 −1

M̂2 1 1 −2

M̂2 1 1 2

Gauge quantum numbers of the Higgs and messenger superfields.
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The hidden sector dynamics is governed by a spurion chiral superfield

Ẑ = 〈Z〉+θθFZ. In our model, Ẑ couples to the four messenger superfields:

W = γ1εijẐM̂
i
1M̂

j
1 + γ2ẐM̂2M̂2 + αεijĤ

i
uM̂

j
1M̂2 + βεijĤ

i
dM̂

j
1M̂2 .

To avoid tachyonic messengers, we must take FZ <∼ 〈Z〉2.

In this model, soft Higgs squared-mass terms are generated at one-loop. To

avoid significant fine-tuning, we must take FZ/〈Z〉 ∼ 20 TeV. However, the

corresponding two-loop contributions to squark and slepton squared-masses

are too small. One must therefore add another source of SUSY-breaking,

e.g. additional messenger fields that couple to a different spurion X̂ such

that FX/〈X〉 ∼ 100 TeV, in order to raise SUSY masses above their

experimental bounds.

Inserting the form of the spurion field into W yields the the messenger mass-eigenstates

and their couplings to the Higgs and higgsinos. The SUSY-couplings of the gauginos to

the scalar/fermionic messenger pairs are also easily obtained.
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Messenger mass-eigenstates and masses

scalar mass-eigenstates: scalar squared-masses

M i
±1R = Re(M i

1 ± εijM
j
1) m±

1R ≡ γ2
1〈Z〉 ± γ1FZ

M i
±1I = Im(M i

1 ± εijM
j
1) m±

1I ≡ γ2
1〈Z〉 ∓ γ1FZ

M i
±2R = Re(M2 ±M2) m±

2R ≡ γ2
2〈Z〉 ± γ2FZ

M i
±2I = Im(M2 ±M2) m±

2I ≡ γ2
2〈Z〉 ∓ γ2FZ

fermion Dirac mass-eigenstates: fermion masses

Ψ1 =

(
ψM1

ψM̄1

)
m1 ≡ γ1〈Z〉

Ψ2 =

(
ψM2

ψM̄2

)
m2 ≡ γ2〈Z〉
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If FZ � 〈Z〉2, then we can employ the mass insertion approximation to

compute the coefficients of the wrong-Higgs gaugino/higgsino operators, ki.

Hu

×
λa ψHd

Hu

×
λa ψHd

Hu

×
λa ψHd

Hu

+ +

λa ψHd

One-loop diagrams with internal lines consisting of scalar and fermionic messenger fields. The cross (×) indicates the
two-component fermion propagator that is proportional to the corresponding fermion mass. The solid dot indicates an FZ
mass-insertion on the scalar messenger line.

For example,

k3 ∼ g

16π2

(
FZ
〈Z〉2

)2

,

whose decoupling properties follow the expected M 2
SUSY/M

2 behavior

identified earlier.

If FZ ∼ 〈Z〉2, then messengers are rather “light.” In this case, we

evaluate the one-loop diagrams employing the exact scalar messenger mass-

eigenstates in the loops.
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In the limit where the internal particle masses are much greater than the

external momenta,

k3

g
=
αβ(γ2 + γ1)

128
√

2π2
m1〈Z〉

»
I(m1,m

+
1R,m

+
2R) + I(m1,m

+
1I,m

+
2I) + I(m1,m

+
1R,m

−
2I)

+I(m1,m
−
1I,m

+
2R) + I(m1,m

−
1R,m

−
2R) + I(m1,m

−
1I,m

−
2I)

+I(m1,m
+
1I,m

−
2R) + I(m1,m

−
1R,m

+
2I)

–

+
αβ(γ2 − γ1)

128
√

2π2
m1〈Z〉

»
I(m1,m

−
1R,m

+
2R) + I(m1,m

+
1R,m

−
2R) + I(m1,m

+
1I,m

+
2R)

+I(m1,m
−
1I,m

−
2R) + I(m1,m

+
1R,m

+
2I) + I(m1,m

−
1R,m

−
2I)

+I(m1,m
−
1I,m

+
2I) + I(m1,m

+
1I,m

−
2I)

–

− αβm1m2

32
√

2π2

»
I(m1,m2,m

+
1R) + I(m1,m2,m

+
1I) + I(m1,m2,m

−
1R) + I(m1,m2,m

−
1I)

–
,

where the triangle integral I has been defined previously.
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For example, for γ1 = γ2 ≡ γ, we find:

k3

g
=

√
2αβ

32π2
f(x) , x ≡ FZ

γ〈Z〉2 ,

where f(x) ≡ [(x− 2) ln(1 − x) − (x+ 2) ln(1 + x)]/x2.

For small x, f(x) = x2

3 + O(x4), and we recover the behavior of k3 for

x � 1 given previously. Note that f(x) → ∞ as x → 1, which reflects the

fact that some of the messenger masses are approaching zero. Thus, we

cannot take x as large as 1.

γ1 γ2 FZ M− 16π2k3/g

1 1 (19.8 TeV)2 2.8 TeV 1.44

0.9 1 (18.8 TeV)2 2.4 TeV 1.38

1 1 (16.8 TeV)2 10.9 TeV 0.19

0.75 1 (14 TeV)2 8.8 TeV 0.15

Sample points in the messenger parameter space. We have fixed 〈Z〉 = 20 TeV and α = β = 1. The mass of the lightest

messenger state is denoted by M−.
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Renormalization group (RG) improvement

We have identified a parameter regime in which

k3 ∼ (0.1–1.4)
g

16π2
.

This is the value of k3 at an energy scale just below the scale of fundamental

SUSY-breaking, i.e. the threshold scale of the messengers, µM ∼ 〈Z〉. One

must then use the RG to run down to the electroweak scale. Keeping only

the largest terms in the RG equation for k3, we find:

16π2 dk3

dt
= 3k3(h

2
t + h2

b) .

As an example, for tanβ = 50, we obtain

k3(µ = 500 GeV) ' 0.86 k3(µM = 20 TeV) .

Typically, we expect the threshold values of the ki to be reduced by roughly

10% due to RG running.
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Implications for chargino observables

After the neutral Higgs bosons acquire their vacuum expectation values,

〈H0
u〉 = vu/

√
2 and 〈H0

d〉 = vd/
√

2, the quadratic terms of the effective

gaugino Lagrangian are given by:

Lmass =
iguvu

2
λaτa2jψ

j
Hu

+
igdvd

2
λaτa1jψ

j
Hd

+
ig′uvu

2
λ′ψ2

Hu −
ig′dvd

2
λ′ψ1

Hd

−Mλaλa −M ′λ′λ′ − µεijψ
i
Huψ

j
Hd

+
ik1vd√

2
λaτa2jψ

j
Hu

− ik2vd√
2
λ′ψ2

Hu −
ik3vu√

2
λaτa1jψ

j
Hd

− ik4vu√
2
λ′ψ1

Hd
+ h.c.

The parameters appearing above are effective parameters below the TeV-scale. For

example, gu = g + δgu, gd = g + δgd, g
′
u = g′ + δg′u, and g′d = g′ + δg′d, where the

δg′s include threshold and renormalization group effects from SUSY breaking below the

fundamental SUSY-breaking scale. For M ′, M , and µ we simply absorb renormalization

and threshold corrections into these coefficients.
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Isolating the terms that contribute to the chargino matrix, we introduce

ψ+
i =

(
−iλ+

ψ1
Hu

)
, ψ−

i =

(
−iλ−
ψ2
Hd

)
,

where λ± = 1√
2
(λ1 ∓ iλ2). Then, the chargino mass terms are given by:

Lmass = −1

2

(
ψ+ ψ−

)( 0 (Xeff)T

Xeff 0

)(
ψ+

ψ−

)
+ h.c. ,

where

Xeff =

0
BBBB@

M (g + δgu)
vu√
2

 
1 −

√
2k1 cot β

g + δgu

!

(g + δgd)
vd√
2

 
1 +

√
2k3 tan β

g + δgd

!
µ

1
CCCCA

with vu ≡ v sinβ and vd ≡ v cosβ.

We wish to identify the leading effect at large tanβ. We can neglect the

effects of δgd as these are one-loop effects with no tanβ-enhancements.
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We shall write:

Xeff
12 =

√
2mW sinβ (1 + δ12) , Xeff

21 =
√

2mW cosβ (1 + δ21) .

In the large tanβ limit, δ21 is tanβ-enhanced, and provides parametrically

the largest of the one-loop corrections to Xeff.

δ21 '
√

2k3 tanβ

g
.

The correction to the supersymmetric relation, X21 = gv cosβ/
√

2 can be

as large as 7%—56% for tanβ = 50 as
√
FZ varies between 14—20 TeV.
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Extracting δ21 from precision chargino data

Given the effective chargino matrix Xeff, the chargino masses and mixing

angles are obtained from:

U∗XV −1 = MD ≡ diag(mχ+
1
,mχ+

2
) ,

for some suitably chosen unitary matrices U and V , where the elements of

the diagonal matrix MD are real and non-negative.

Let Φµ be the relative phase between µ and M (and assume the phases

of X12 and X21 are negligible). Then, the chargino squared-masses and

mixing angles θL and θR are:†

m2
χ±

1,2
= 1

2

(
M2 + |µ|2 +X2

12 +X2
21 ∓ ∆

)
,

cos 2θR,L = ∆−1
[
|µ|2 −M2 ± (X2

12 −X2
21)
]
,

†One can also derive equations for the physical phases that appear in U and V , but these are not needed

here.
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where the quantity ∆ is defined by:

∆ ≡
[
(M2 − |µ|2 −X2

12 +X2
21)

2 + 4(M2X2
12 + |µ|2X2

21 + 2M |µ|X12X21 cosΦµ)
]1/2

.

Taking δ12 and δ21 small, and working to first order in these quantities, one

obtains two equations for the two unknown δ’s. We find:

δ21 =
2s2βf

1/2(∆ − f1/2) − 1
2h
{
c2β + 1

4m2
W

[
(cos 2θR − cos 2θL)(m2

χ±
2

−m2
χ±

1

)
]}

hc2β + gs2β
,

where f , g and h are complicated (but known) expressions that depend

on the two chargino masses, mW , tanβ, cos 2θL,R, and cosΦµ. These

quantities can in principle be determined at the ILC using precision chargino

data [cf. S.Y. Choi et al., EPJC 14 (2000) 535], using measurements of the

total production cross-sections for e+e− → χ̃±
i χ̃

∓
j and asymmetries with

polarized beams.
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For the morbidly curious

It is convenient to define:

C+
RL ≡ −(cos 2θR + cos 2θL) , C−

RL ≡ cos 2θR − cos 2θL .

Then,

f = (1
2C

+
RL∆ + 2m2

Wc2β)
2 + 4m2

W (m2

χ±2
+m2

χ±1
− 2m2

W ) − 2m2
WC

+
RL∆c2β

+4m
2
WΓs2β cos Φ ,

g = 2m
2
Wc

2
β

»
4(m

2

χ±2
+m

2

χ±1
) + 4m

2
Wc2β − 16m

2
W − C

+
RL∆ + 4Γ tan β cos Φ

−8m2
W

Γ
(m

2

χ±2
+m

2

χ±1
− 2m

2
W )s2β cos Φ

–
,

h = 2m2
Ws

2
β

»
4(m2

χ±2
+m2

χ±1
) − 4m2

Wc2β − 16m2
W + C+

RL∆ + 4Γ tan β cos Φ

−8m2
W

Γ
(m2

χ±2
+m2

χ±1
− 2m2

W )s2β cos Φ

–
,

where

Γ ≡
»
(m

2

χ±1
+m

2

χ±2
− 2m

2
W )

2 − 1
4(C

+
RL∆)

2

–1/2

.
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The sub-dominance of non-local effects

Chargino masses and mixing angles are also modified at one-loop due to momentum-

dependent radiative corrections in which the MSSM fields propagate in the loop. These

“non-local” effects can compete with the local effects of the hard-SUSY-breaking operators

in certain regimes of parameter space, and have not been explicitly included in our analysis.

• Virtual squark exchange at one-loop is not competitive in typical GMSB scenarios

where m
ẽ±
R
/mq̃ ∼ g′2/g2

3. The experimental lower bound on m
ẽ±
R

implies that

mq̃ >∼ 800 GeV, and hence the squark-exchange contributions are sub-dominant.

• Virtual slepton, chargino and neutralino exchange can compete with the wrong-Higgs

operators of interest. However, these effects enter with at least two factors of g, g ′

(for chargino/neutralino exchange) or lepton Yukawa couplings (for slepton exchange).

Assuming that the product of messenger-Higgs Yukawa couplings, αβ > g2, g′ 2, the

messenger effects will always be parametrically larger than the non-local corrections.

Thus, with the assumptions stated above, a measurement of a significant deviation of δ21

from zero means that the measured deviation is coming from effects beyond the MSSM.
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Conclusions and future directions

• Hard, dimension-four supersymmetry-breaking wrong-Higgs interactions

can modify the expected behavior of certain MSSM masses and couplings.

• At large tanβ, the presence of wrong-Higgs interactions can be

phenomenologically relevant for precision MSSM studies.

• The most dramatic effect of the wrong-Higgs couplings is the shift of

the h0bb̄ coupling at large tanβ.

• We have identified an analogous tanβ-enhanced effect that modifies the

tree-level chargino mass matrix. A similar effect (not yet computed) also

modifies the tree-level neutralino mass matrix.

• Previous studies that derive the MSSM chargino/neutralino parameters

from precision MSSM data need to be modified to allow for the possible

effects of the wrong-Higgs gaugino/higgsino operators.
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