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Theoretical uncertainties: fixed order
For fixed-order calculations we have two natural handles to evaluate 
theoretical uncertainties, the renormalisation and factorisation scales       and 

By varying these scales we generate a higher-order contribution 

The relevant questions here are 

• What are the default choices of       and      ? 

• What is the range over which we should vary these scales? 

• How should we add uncertainties? 
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Theoretical uncertainties: fixed order
For fixed-order calculations we have two natural handles to evaluate 
theoretical uncertainties, the renormalisation and factorisation scales       and 

By varying these scales we generate a higher-order contribution 

The relevant questions here are 

• What are the default choices of       and      ? 

• What is the range over which we should vary these scales? 

• How should we add uncertainties? 

Unfortunately, there is no theoretically sound answer to any of these questions 
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Short-distance observables
Consider a simple counting observable in          annihilation e+e�

R =

�(e+e� ! hadrons)

�(e+e� ! µ+µ�
)

Short-distance observables

Consider a simple counting observable in e+ e- annihilation, the ratio



Renormalisation group analysis
Since the ratio     is IRC and collinear safe, it admits a massless limit 

The massless limit      does not depend on            renormalisation group 

The formal solution of this equation is  

Renormalisation group, and the fact that      depends on a single hard scale 
provide enough condition to determine the default value of  
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Theoretical uncertainties: central value
For an observable characterised by a single scale, the dependence on the 
renormalisation scale appears in virtual corrections as follows 

Choosing                resums all terms                    in µ2
R = Q2 ln(µ2

R/Q
2)

Short-distance observables

Perturbation theory really works, except close to hadronic resonances, where local 
parton-hadron duality is not a reasonable assumption 
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Theoretical uncertainties: central value
For an observable characterised by multiple scales at leading order 

1. The choices that cancels the logarithm is 

2. It is not guaranteed that choosing that scale leads to a series that behaves 
better perturbatively. There might be for instance further scales coming 
from jet resolution parameters, kinematical cuts, etc. 

3. The similarity is however deceiving: the extra power of the coupling 
accounts for the emission of an extra gluon, which might have nothing to do 
with the physics responsible for the tree-level process
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Theoretical uncertainties: central scale
Since for one emission                     , a good practice is to try to estimate the 
typical scale for gluon radiation: this might depend on the observable  

One can find an “optimal” scale for the fixed order by requiring that K-factors 
are minimised, this gives the choice 

A more systematic approach is given by the MiNLO procedure

↵s = ↵s(kt)

Theoretical uncertainties: central scale

NNLL threshold resummation 
central scale  

NNLO fixed order 
central scale  

One can find an "optimal" scale for the fixed order by requiring that the K-factors are 
minimised, this gives the choice 

Since for one emission                     , a good practice is to try to estimate the typical 
scale for gluon radiation: this might depend on the observable 

mH/2

[Hamilton Nason Oleari Zanderighi]



Theoretical uncertainties: scale variation
Only after one has identified a central scale does it make sense to take 
variations of factors of two, so as not to generate large logarithms  

This works as soon as you reach the first non-trivial order in 
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Theoretical uncertainties: scale variation

Only after one has identified a "central" scale does it make sense to take scale 
variations of a factor of two, so as not to generate large logarithms

Is it a robust method? It is if the prediction at the next order overlaps with the 
uncertainty band at the previous order. This is not always the case, especially with 
large K-factors. This is why having higher orders is so important

↵s



Theoretical uncertainties: scale variations
Scale variations are able to highlight pathological behaviours of cross 
sections, for instance infrared sensitivity 

The cancellation of two large effects gives a spurious vanishing of scale 
uncertainties at low values of the jet-veto resolution 

A vanishing scale uncertainty is clearly not a good estimate of missing higher 
orders…

Theoretical uncertainties: scale variation

Scale uncertainties are however able to highlight pathological behaviours of cross 
sections, for instance infrared sensitivity

large K-factor large logarithms

The cancellation of two large effects gives a spurious vanishing of scale uncertainties at 
low values of the jet-veto resolution 

Stewart-Tackmann

A vanishing scale uncertainty is clearly not a good estimate of missing higher orders...
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Higgs production with a jet-veto
The main interest in jet-veto cross sections is to establish whether the boson 
found at the LHC is compatible with the Standard Model Higgs 

Higgs production with a jet-veto

The main interest in jet-veto cross sections is to establish whether the new boson found at the 
LHC is the Standard Model Higgs



Higgs production with a jet-veto
In order to suppress the large top-antitop background to                    we 
require that all jets have a transverse momentum below a threshold 

This works: the zero-jet cross section            is least contaminated by the huge 
(yellow) top-antitop background  

H ! WW

p
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Higgs production with a jet-veto

In order to suppress the large top-antitop background to                     we require that all jets 
have a transverse momentum less that a threshold value  

This works: the zero-jet cross section             is least contaminated by the huge 
(yellow) top-antitop background

�0�jet



Jet-veto as a two-scale problem
The zero-jet cross section is characterised by two scales, the Higgs mass        
and the jet resolution 

The jet-veto condition restricts the phase space available to gluons, so we 
expect logarithmically enhanced contributions                          at all orders 

Does a resummation of large logarithms help solve the problem of the weird 
behaviour of scale uncertainties?  

mH

p
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Jet-veto as a two-scale problem

The 0-jet cross section is characterised by two scales, the Higgs mass         and the jet 
resolution 

The jet-veto condition restricts the phase space available to gluons, so we expect 
logarithmically enhanced contributions                           at all orders

Does a resummation of large logarithms help solve the problem of the weird 
behaviour of scale-uncertainties?

ln(mH/p
t,veto)



Resummation uncertainties
Resummation has more handles to assess theoretical uncertainties 

Resummation uncertainties

Resummation has more handles to assess theoretical uncertainties



Resummation uncertainties
Resummation has more handles to assess theoretical uncertainties 

1. “Traditional” variation of renormalisation 
and factorisation scales in the range
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Resummation uncertainties
Resummation has more handles to assess theoretical uncertainties 

1. “Traditional” variation of renormalisation 
and factorisation scales in the range 

2. Resummation scale: change in the logs 
to be resummed, giving an idea of 
higher logarithmic corrections
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1. "Traditional" variation of renormalisation 
and factorisation scale in the range

2. Resummation scale: change in the logs 
to be resummed, giving an idea of higher 
logarithmic corrections
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Resummation uncertainties
Resummation has more handles to assess theoretical uncertainties 

1. “Traditional” variation of renormalisation 
and factorisation scales in the range 

2. Resummation scale: change in the logs 
to be resummed, giving an idea of 
higher logarithmic corrections 

3. Variation of the scheme with which 
resummation is matched to exact fixed 
order
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Resummation uncertainties
Resummation has more handles to assess theoretical uncertainties 

Total uncertainty: envelope of all these curves

1. “Traditional” variation of renormalisation 
and factorisation scales in the range 

2. Resummation scale: change in the logs 
to be resummed, giving an idea of 
higher logarithmic corrections 

3. Variation of the scheme with which 
resummation is matched to exact fixed 
order

Resummation uncertainties

1. "Traditional" variation of renormalisation 
and factorisation scale in the range

2. Resummation scale: change in the logs 
to be resummed, giving an idea of higher 
logarithmic corrections

3. Variation of the scheme with which 
resummation is matched to exact fixed-
order

Resummation has more handles to assess theoretical uncertainties

Total uncertainty: envelope of all these curves
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Resummation uncertainties
Other resummed predictions have different central scales, a wider range of 
resummation scales, and the range of scale variation is a function of 

Each scale corresponds to a different tower of logarithms to be resummed 

Scales are small when the resummation is important, and large where the 
fixed-order is OK      smooth matching between resummation and NNLO 

p
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Resummation uncertainties

Other resummed predictions have different central scales, a wider range of resummation 
scales, and the range of scale variation varies as a function of 

These scales correspond to towers of logarithms to be resummed: they are small in 
the region where the resummation is important, and large in the region where the 
fixed-order is well behaved       smooth matching between resummation and NNLO 

Stewart Tackmann Walsh Zuberi

)



Resummation uncertainties
In all resummed calculations for the zero-jet cross section, uncertainties 
reduce consistently when increasing the resummation accuracy

Resummation uncertainties

In all resummed calculations for the jet-veto cross section, uncertainties reduce 
consistently when increasing the resummation order

Banfi Monni Salam Zanderighi

Stewart Tackmann Walsh Zuberi

Becher Neubert Rothen



Resummation vs fixed-order uncertainties
At fixed-order, due to infrared sensitivity, different methods to assess 
uncertainties, all compatible within perturbative accuracy, give different results

Resummation vs fixed order uncertainties

At fixed-order, due to infrared sensitivity, different methods to assess uncertainties, 
all compatible within perturbative accuracy, give very different results



Resummation vs fixed-order uncertainties
At fixed-order, due to infrared sensitivity, different methods to assess 
uncertainties, all compatible within perturbative accuracy, give different results 

After resummation of large logarithms, also naive scale variations are a 
sensible way to estimate theoretical uncertainties, at NNLL around 10-12% 

The main message is: if you feel you have to resum logs, just do it! 
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Resummation vs fixed order uncertainties

At fixed-order, due to infrared sensitivity, different methods to assess uncertainties, 
all compatible within perturbative accuracy, give very different results



Summary
In this lecture we have learnt 

1. variation of renormalisation and factorisation scales is a theoretically sound 
procedure for sufficiently inclusive observables 

2. for less inclusive observables, problems in scale variations might give an 
indication of their infrared sensitivity 

3. methods to assess uncertainties for resummed predictions


