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..

Outline

Introduction

⋄ Short parton shower introduction
⋄ Why do we need matching and merging?

ME+PS calculations (on the blackboard)
⋄ Towards differential event descriptions.

⋄ Matching (at NLO) and merging (at LO).
Resources:
montecarlonet.org and http://users.phys.psu.edu/∼cteq

…let’s see how far we get!



Parton showers

3 / 57



Factorisation: Divide and conquer

Every cross section containing an additional collinear gluon can be
factorised as

dσ(pp → Y + g + X) = dσ(pp → Y + X)
∫

dp2⊥
p2⊥

dz
z

αs

2π

f( xa
z , t)

fa(xa, t)
P(z)

with the splitting kernels P(z). This is independent of the process
pp → Y + X.

Multi-parton cross sections can be approximated by “dressing up”
low-multiplicity results with many collinear partons.

The splitting kernels have a probabilistic interpretation:

∫ p2⊥max

p2⊥min

dp2⊥
p2⊥

∫ zmax

zmin

dz
αs

2π
P(z) ≡

aa
Probability of emitting a gluon with
momentum fraction 1 − z ∈ [zmin, zmax] and
transverse momentum p⊥ ∈ [p⊥min, p⊥max].
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Logarithms

Integrating the splitting probability, we get∫ p2⊥max

p2⊥min

dp2⊥
p2⊥

∫ zmax

zmin

dz
αs

2π
P(z) ≈

∫ p2⊥max

p2⊥min

dp2⊥
p2⊥

∫ zmax

zmin

dz
αs

2π

2CF/A
(1 − z)

≈ αs ln
(
p2⊥max
p2⊥min

)
ln

(
zmax

zmin

)

More generally, we find

dσ(pp → Y + ng) = ..dσ(pp → Y) ⊗ αn
s (c2nL2n + c2n−1L2n−1 + · · · + c0)

with L = ln (Q2/p2⊥min), Q2 = O(p2⊥max), p2⊥min = O(ΛQCD).

⇒ Multi-parton cross sections can be approximated by leading (double)
log. But logs diverge and we need to do something about that!
⇒ Need something to tame this.
⇒ Resummation of large logarithms!
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Generating resummed form factors numerically
Think about nuclear decay. With the ”decay constant” P(z), the
”naive” probability of a decay between two evolution times [t, t+ δt]

δt
∫ 1

0
dzP(z)

Probability of no decay between two times

1 − δt
∫

dzP(z)

Probability of not having any decays in n intervals of step size δt/n:[
1 − δt

n

∫
dzP(z)

]n
which, for continuous intervals δt

n → dt becomes

exp

−
t+δt∫
t

dt
∫

dzP(z)

 ⇒ Π(t + δt, t) = exp

−
t+δt∫
t

dt [A ln(t) + B]


6 / 57



Parton shower resummation

Parton showers attempt to resum, starting from an input state:

F0(ρ0, ρc)
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Parton shower resummation

Parton shower can produce no hard splitting, or a hardest splitting

+

F0(ρ0, ρc)

F1(ρ1, ρc)

Π0(ρ0, ρc)O0 Π0(ρ0, ρ1)P0(ρ1)
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Parton shower resummation

…and then no further splitting, or a second hardest splitting

+

F0(ρ0, ρc)

F1(ρ1, ρc)

F2(ρ2, ρc)

Π0(ρ0, ρc)O0 Π0(ρ0, ρ1)P0(ρ1)

Π0(ρ0, ρ1)P0(ρ1)Π1(ρ1, ρc)O1 Π0(ρ0, ρ1)P0(ρ1)Π1(ρ1, ρ2)P1(ρ2)

+

There is only one hardest splitting, only one 2nd hardest splitting…
⇒ PS results never overlap because of no-emission probabilities.
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Parton shower resummation

Parton showers are unitary: The probabilities add one.

+

Π0(ρ0, ρc) Π0(ρ0, ρ1)P0(ρ1)
ρc

Π0(ρ0, ρc)

−

Π0(ρ0, ρ1)P0(ρ1)1

1

No-emission probability = 1 – Emission probability = Sudakov
Showering will never change inclusive cross sections.
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Parton showers vs. fixed order

We know two ways how to calculate multi-emission states:
• Fixed-order perturbation theory:

+ Contains all terms at one order.
+ Good for high relative p⊥.
− Only feasible for few emissions.

• All-order parton showers:
+ Is always finite.
+ Good for any number of emissions.
− Only valid for very small relative p⊥.

Experiments at the LHC measure both low-p⊥ and high-p⊥ phenomena
(e.g. in p⊥,Z or HT).

To describe data, we need to combine the strengths of showers and
matrix elements.
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Where do we start?

1. Where do we trust the PS, where do we trust the ME?

..Trust the PS only in the soft- and collinear region.
..Trust the ME for normalisation, and for well-separated jets.

2. How can we add fixed-order calculations?

..ME calculations are inclusive. Remove overlaps!

3. What are the requirements on a PS?

..Ability to stop/restart → Sudakov extracted without problems.

4. How can we replace approximate PS terms with full fixed order?

..Develop PS improvements and/or include explicit subtractions.

5. How do we minimise our footprint?

..Keep previous improvements. Control technical parameters!
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Improvement schemes

• Matrix element corrections. Old, but still very good.
• Matrix element matching.

• Typically combined with NLO corrections.
• Very hard to iterate.

• Matrix element merging.
• Combine many MEs. Historically: Slice phase space in two,

use ME for hard jets, PS for soft jets. Introduces resolution
criterion.

• Very easy to iterate.

We will concentrate on matching and merging in this school.
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…blackboard from here on!

Shorthands:

On: Observable evaluated on an n-parton configuration

Bn: Differential n-parton cross section∑
a,b

dxbxa fa/A(xa, µF)fb/B(xb, µF) 1

4

√(
papb

)2
−M2

aM
2
b

|M (a + b → c1 + · · · + cn)|2 d3p1
(2π)32Ep1

· · · d3pn
(2π)32Epn

(2π)4 δ(4)
(
pa + pb −

∑n
i=1

pi
)

∫
n

: Integrate over the n-parton phase space.

Π(t0, t1): Probability of not having an emission between two
evolution times (i.e. resolution scales). We will frequently drop the
arguments, meaning that these scales are set as in a parton shower.
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Problem: Getting a few distributions right - rapidity and
transverse momentum
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Start with the simplest
case: pp → e+e−.
A
Now we can describe the
rapidity of a e+e− pair
with zero p⊥.

p⊥Z

B0O0 −
∫
1

B1O0Π0 +
∫
1

B1O1Π0

= B0O0

 1 −
∫
1

B1
B0

O0Π0

 +
∫
1

B1O1Π0

= B0O0Π0 +
∫
1

B1O1Π0 = B0

O0Π0 +
∫
1

B1
B0

O1Π0





Non-zero p⊥s are gener-
ated by
pp → e+e−+ parton.
A
But now the rapidity di-
verges because B1 → ∞
for p⊥ → 0.

p⊥Z

+∞

B0O0 −
∫
1

B1O0Π0 +
∫
1

B1O1Π0

= B0O0

 1 −
∫
1

B1
B0

O0Π0

 +
∫
1

B1O1Π0

= B0O0Π0 +
∫
1

B1O1Π0 = B0

O0Π0 +
∫
1

B1
B0

O1Π0





As a fix, we can subtract
what we have added (up to
finite terms, this is an NLO
calculation).
A
But this does not give a
very physical prediction.

p⊥Z

+∞

−∞

B0O0 −
∫
1

B1O0Π0 +
∫
1

B1O1Π0

= B0O0

 1 −
∫
1

B1
B0

O0Π0

 +
∫
1

B1O1Π0

= B0O0Π0 +
∫
1

B1O1Π0 = B0

O0Π0 +
∫
1

B1
B0

O1Π0





The divergence in B1
can be regularized by a
Sudakov factor.
Don’t forget to subtract
what we have added! p⊥Z

B0O0 −
∫
1

B1O0Π0 +
∫
1

B1O1Π0

= B0O0

 1 −
∫
1

B1
B0

O0Π0

 +
∫
1

B1O1Π0

= B0O0Π0 +
∫
1

B1O1Π0 = B0

O0Π0 +
∫
1

B1
B0

O1Π0





Now using Π0 =
exp

{
−

∫
1

B1/B0

}
we

can massage this a bit.
The last term is just what
showering B0 gives.

p⊥Z

B0O0 −
∫
1

B1O0Π0 +
∫
1

B1O1Π0

= B0O0

 1 −
∫
1

B1
B0

O0Π0

 +
∫
1

B1O1Π0

= B0O0Π0 +
∫
1

B1O1Π0 = B0

O0Π0 +
∫
1

B1
B0

O1Π0





Note that there will al-
ways be a kink at ≈ 1
GeV, since some events just
won’t branch. This is
smoothed out by primor-
dial k⊥ (non-perturbative
effect)

p⊥Z

B0

O0Π0 +
∫
1

B1
B0

O1Π0





Note that there will al-
ways be a kink at ≈ 1
GeV, since some events just
won’t branch. This is
smoothed out by primor-
dial k⊥ (non-perturbative
effect)

p⊥Z

B0

O0Π0 +
∫
1

B1
B0

O1Π0





By assumption, the p⊥
spectrum is given by B1 +
higher orders.
The rapidity spectrum is
given by B0.
We can promote this to
NLO accuracy by replacing
the prefactor B0 → full
NLO result.

p⊥Z

B0O0 −
∫
1

B1O0Π0 +
∫
1

B1O1Π0

= B0O0

 1 −
∫
1

B1
B0

O0Π0

 +
∫
1

B1O1Π0

= B0O0Π0 +
∫
1

B1O1Π0 = B0

O0Π0 +
∫
1

B1
B0

O1Π0





Many such NLO + PS
matchings exist, as we can
”freely” choose the higher
orders. For example, an
different B′

1 can be accom-
modated by a subtraction.

p⊥Z

B0O0 −
∫
1

B1O0Π0 +
∫
1

B1O1Π0

= B0

O0Π0 +
∫
1

B1
B0

O1Π0


= B′

0

O0Π′
0 +

∫
1

B′
1

B0
O1Π0

′

 +
∫
1

(
B1 − B′

1
)

+ O(α2
s)



NLO matching summary

NLO matching can be obtained by showering the seed cross section

B′
n =

[
Bn + Vn + In +

∫
dΦrad

(
B′

n+1 − Dn+1
)]

On+0 +
∫

dΦrad
(

Bn+1 − B′
n+1

)
On+1

NLO matching methods differ in the choice of B′
n+1:

POWHEG uses B′
n+1 = Bn+1 or B′

n+1 = Bn+1F(Φ)
MC@NLO uses B′

n+1 = Bn ⊗ P(z)Θ(µQ − ρ)

Parton showers supply the all-order Sudakov factors.
…this calculation can only describe a very limited set of observables.
…all other observables are produced by parton showering.
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Problem: Getting many distributions ”right” – what is ”right”?
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What is NLO accuracy?
NLO accuracy is achieved when we calculate corrections to an
observable that was already defined at a lower order.

e
+

real emission
e
+
e
−-pair rapidity

e
++

+

NLO accurate
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What is NLO accuracy?
…not all outcomes of an NLO calculation are ”NLO accurate”

e
+

real emission
e
+
e
−-pair transverse momentum

e
++

+

LO accurate
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What is NLO accuracy?
NLO up to 45 GeV, LO beyond!

e
+

real emission
e
− transverse momentum

e
++

+

NLO

LO
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What is NLO accuracy?
How many ”next-to’s” do you need to describe this at least to
lowesr order everywhere?

Z

2nd jet

∆φ(e+e−-pair, hardest jet)

1st jet

3rd jet

180◦120◦60◦

1st jet

1st jet

2nd jet
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Problem: Getting many distributions ”right”
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We could equally well have
started from B1, and ex-
tended this calculation to
describe the p⊥ spectrum
of the e+e−parton-system.

p⊥Z

B1O1 −→ B1O1 −
∫
1

B2O1Π1 +
∫
1

B2O2Π1

= B1

O1Π1 +
∫
1

B2
B1

O2Π1


= B0O0Π0 +

∫
1

B1O1Π0 = B0

O0Π0 +
∫
1

B1
B0

O1Π0


Again, B2 diverges, and Sudakov factors are needed.



But we can’t add this to
B0, since this again gives a
divergent e+e− pair rapid-
ity.
Do the same as before:
Multiply Sudakov.

p⊥Z

B1O1 −→ Π0B1O1 −
∫
1

B2O1Π0Π1 +
∫
1

B2O2Π0Π1

= B1

O1Π1 +
∫
1

B2
B1

O2Π1


= B0O0Π0 +

∫
1

B1O1Π0 = B0

O0Π0 +
∫
1

B1
B0

O1Π0





Now we can add everything
and get

p⊥Z

B0O0

→ B0O0 −
∫
1

B1O0Π0 +
∫
1

B1O1Π0

−
∫
2

B2O1Π0Π1 +
∫
2

B2O2Π0Π1



…and we can keep merging
more calculations

p⊥Z

B0O0

→ B0O0 −
∫
1

B1O0Π0 +
∫
1

B1O1Π0

−
∫
2

B2O1Π0Π1 +
∫
2

B2O2Π0Π1

−
∫
3

B3O2Π0Π1Π2 +
∫
3

B3O3Π0Π1Π2



There are again many
choices that can be made
…CKKW approximates this
as p⊥Z

B0O0

→ B0O0Π0 −
∫
1

B1O0Π0 +
∫
1

B1O1Π0Π1

−
∫
2

B2O1Π0Π1 +
∫
2

B2O2Π0Π1Π2

−
∫
3

B3O2Π0Π1Π2 +
∫
3

B3O3Π0Π1Π2



CKKW(-L)

• Only as good as Sudakov factors. If Sudakov factors do not
contain (i.e. can damp) all divergences of the ME, then there
are left-over divergences that need to be removed

• Solutions:
• make PS better
• keep add-subtract scheme
• remove divergent phase space regions by cut-off.

• For the latter, we have ”holes” in some observables.
=⇒ Cut-off (merging scale) dependence.

• Fill up the ”holes” left by cut-off with parton showers.
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……back to the slides!
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Matching vs. Merging

Matrix element matching:
+Next-to-leading order accurate.
+Improved description of “first” Sudakov.
−Only possible one process at a time.
−Multiple jets always given by PS.

Matrix element merging:
+Process independent method.
+Valid for any number of extra partons.
−Only a leading-order method.

However, for data description, we need more. For example, HT, njets are
common, but “tricky” jet observables.

⇒ To describe these with small (scale/PDF…) uncertainties, combine
NLO calculations!
⇒ NLO merging 39 / 57



NLO merging: Strategy

Any leading-order method X contains approximate virtual corrections.

We want to use the full NLO multijet results whenever possible, e.g. have
NLO accuracy for inclusive W + 0 jet observables
NLO accuracy for inclusive W + 1 jet observables
NLO accuracy for inclusive W + 2 jet observables

…all at the same time. And the method should be process-independent.

To do NLO multi-jet merging for your preferred LO scheme X, do:

⋄ Subtract approximate X O(αs)-terms, add full NLO calculations.

⋄ Make sure fixed-order calculations do not overlap by cutting, vetoing
events, and/or vetoing emissions.

⋄ Adjust higher orders to suit other needs.

⇒ X@NLO
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Problem: Getting many distributions ”right” – at NLO
…back to the blackboard (if we have time)
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Let’s start from LO merging
again.

p⊥Z

B0O0

→B0O0 −
∫
1

B1O0
[
Π0−Π(0)

0 − Π(1)
0

]
+

∫
1

B1O1
[
Π0−Π(0)

0 − Π(1)
0

]
−

∫
1

B1O0 +
∫
1

B1O1

−
∫
2

B2O1Π0Π1 +
∫
2

B2O2Π0Π1



The lowest order does not
(really) require subtrac-
tions. p⊥Z

B0O0

→B0O0 −
∫
1

B1O0
[
Π0−Π(0)

0 − Π(1)
0

]
+

∫
1

B1O1
[
Π0−Π(0)

0 − Π(1)
0

]
−

∫
1

B1O0 +
∫
1

B1O1

−
∫
2

B2O1Π0Π1 +
∫
2

B2O2Π0Π1



One-jet states need approx-
imate virtuals removed.

p⊥Z

B0O0

→B0O0 −
∫
1

B1O0
[
Π0−Π(0)

0 − Π(1)
0

]
+

∫
1

B1O1
[
Π0−Π(0)

0 − Π(1)
0

]
−

∫
1

B1O0 +
∫
1

B1O1

−
∫
2

B2O1Π0Π1 +
∫
2

B2O2Π0Π1



One-jet states need approx-
imate virtuals removed
…but don’t forget to sub-
tract what you add! p⊥Z

B0O0

→B0O0 −
∫
1

B1O0
[
Π0−Π(0)

0 − Π(1)
0

]
+

∫
1

B1O1
[
Π0−Π(0)

0 − Π(1)
0

]
−

∫
1

B1O0 +
∫
1

B1O1

−
∫
2

B2O1Π0Π1 +
∫
2

B2O2Π0Π1



Now we can add the full
one-jet NLO calculation.

p⊥Z

B0O0

→B0O0 −
∫
1

B1O0
[
Π0−Π(0)

0 − Π(1)
0

]
+

∫
1

B1O1
[
Π0−Π(0)

0 − Π(1)
0

]
−

∫
1

B1O0 +
∫
1

B1O1

−
∫
2

B2O1Π0Π1 +
∫
2

B2O2Π0Π1



Now we can add the full
one-jet NLO calculation.
…but don’t forget to sub-
tract what you add! p⊥Z

B0O0

→B0O0 −
∫
1

B1O0
[
Π0−Π(0)

0 − Π(1)
0

]
+

∫
1

B1O1
[
Π0−Π(0)

0 − Π(1)
0

]
−

∫
1

B1O0 +
∫
1

B1O1

−
∫
2

B2O1Π0Π1 +
∫
2

B2O2Π0Π1



……back to the slides!
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NLO merging schemes

FxFx1: Combine MC@NLO’s by MLM jet matching@NLO
FxFx: Pro: Probably fewest counter events.
FxFx: Con: Restricted merging scale range. Accuracy unclear.

MEPS@NLO2: Combine MC@NLO’s by METS@NLO
FxFx1: Pro: Improved Sudakovs.
FxFx1: Con: Restricted merging scale range.

UNLOPS3: Combine MC@NLO’s or POWHEG’s by UMEPS @NLO
FxFx1: Pro: Unitarity by approximate NNLO terms.
FxFx1: Con: Naively, many counter events.

MiNLO4: Get zero-jet NLO by reweighted one-jet POWHEG after integration
FxFx1: Pro: Improved resummation, unitary.
FxFx1: Con: Process-dependent, only two NLO’s can be combined.

1 Frixione, Frederix 2 Höche, Krauss, Schönherr, Siegert 3 Lönnblad, SP, Plätzer, 4 Hamilton, Nason, Oleari, Zanderighi
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Summary
• Parton showers are derived from collinear factorisation and resum

(leading) logarithms.
• This necessitates improvements to describe LHC data. The two

main avenues for PS improvements are NLO matching, and multijet
merging.

• Matrix element matching: “PS” used in conjuction with NLO
calculations.
Two schools: MC@NLO and POWHEG. Differences in exponentiation
and in treatment of real corrections.

• Matrix element merging: Emphasis on combining many multijet
ME’s. Make fixed-order calculations additive by making them
exclusive through no-emission probabilities. Then minimise the
impact of arbitrary slicing parameters.
Three schools: MLM, CKKW(-L) and UMEPS. Differences in
generation (approximation of) no-emission probabilities, and in the
treatment of non-showerlike configurations.

• NLO merging combines both NLO matching and multijet merging.
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Issues

What I did not tell you about
…in matching

• What gets exponentiated, what is kept as ”power correction”…
• Combination of matched result with full shower, PS starting

conditions…
…in merging

• Handling of merging scale dependence (in some cases)…
• Cancellations between weights (in others)…

…more generally
• How is the reweighting with Sudakovs actually done?
• Treatment of resonances + resummation…
• Treatment of unordered emissions…
• New channels (incomplete histories)…
• Assigning uncertainties…
• Correlation with soft physics (MPI)…
• Electroweak logarithms…

These subtleties are important, and are the reason why competing
approaches exist. 51 / 57



Tools / prescriptions shopping list

LO merging
MLM available with Alpgen + (Herwig6, Pythia6/8), Madgraph +
(Herwig++, Pythia6/8), Whizard + Pythia6
CKKW no longer available (?) in Sherpa, Herwig++
CKKW-L / METS available in Sherpa, (Alpgen, Madgraph,…) + Pythia8
UMEPS available in (Alpgen, Madgraph,…) + (Herwig++, Pythia8)

NLO matching
NLO merging
NNLO matching
Other improvements
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Tools / prescriptions shopping list

LO merging
NLO matching

POWHEG available in Sherpa, Herwig++, POWHEG-BOX + (Herwig6/++,
Pythia6/8)
MC@NLO available in Sherpa, Herwig++, aMC@NLO + (Herwig6/++,
Pythia6/8)

NLO merging
NNLO matching
Other improvements
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Tools / prescriptions shopping list

LO merging
NLO matching
NLO merging

MEPS@NLO available in Sherpa
UNLOPS available in Herwig++, (POWHEG-BOX, aMC@NLO) + Pythia8
FXFX available in aMC@NLO + (Herwig++, Pythia8)

NNLO matching
Other improvements
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Tools / prescriptions shopping list

LO merging
NLO matching
NLO merging
NNLO matching

UN2LOPS available as plugin to Sherpa
MiNLO-NNLOPS available through POWHEG-BOX

Other improvements
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Tools / prescriptions shopping list

LO merging
NLO matching
NLO merging
NNLO matching
Other improvements

MiNLO available through POWHEG-BOX
Iterated ME corrections available through VINCIA
ME reweighting available in HEJ
KRKC proposed new NLO matching
GENEVA proposed higher-logs + fixed-order (NLO, NNLO) + showers
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