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Intro to MC & Event Generation L1: Introduction
I—Overview

The aims of the LHC physics programme are:

m discovery, and now measurement of the properties, of the
Higgs boson;

m the search for physics Beyond the Standard Model;

m the measurement of Standard Model (SM) processes at the
highest energies.

All of these require accurate predictions for a meaningful
interpretation of data.

These lectures: introduction to the calculation techniques
underpinning most (if not all) modern predictions, and informs you
on the physics input needed for a good prediction of a given
measurement.

Heavily influenced by lectures given at schools of the ITN MCNet
by Profs. Peter Richardson, Bryan Webber, Torbjorn Sjostrand,
Leif Lonnblad, ...
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Higgs Boson

m In some searches the
background can be
extracted from data.
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heavily on higher order
calculations
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- Overview

SUSY Searches

i ]
wh ]
b ]
m Understanding the SM backgrounds is = E
essential in any BSM search. g =f
m Often try to use control regions to P S 7o
validate/normalize simulations. R T

m However MC simulations are an
essential tool in these searches to
predict the signal and background.

events / 150 GeV
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- Overview

SUSY Searches

Use a wide range of simulations
m Z/v* and v + jets SHERPA
m W + jets ALPGEN+HERWIG.
m tt,MCONLO+HERWIG.

m s-channel and Wt single top quark +
jets MCONLO+HERWIG

m t-channel single top quark + jets
AcerMC4PYTHIA6

m tt + jets, Wor Z
MADGRAPH-+PYTHIA®G.

m WZ, ZZ and Zv SHERPA

m SUSY Herwig++ or
MADGRAPH+PYTHIA6

events / 100 GeV

DATA/ MC

events / 150 GeV'

DATA/MC

el 00
560000 T80 2000 200" 000" 0000
m,y(incl.) [GeV]
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- Overview

LHC Explores New Standard Model Processes
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- Overview

... And New Regions of Phase Space

... but obtain vildly
different results when
probed in the new
territory of the (even
the 8TeV) LHC
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- Overview

Overview

Lecture 1 Motivation and Introduction to Monte Carlo Techniques
Lecture 2 Parton Showers
Lecture 3 Hadronization & Underlying Event

Lecture 4 New Calculations Necessary for Higher Energies
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I—Overview

Resources

m There are a lot of lectures
on Monte Carlo event
generation from previous
MCnet and other schools.

m Best single reference review
produced by MCnet
General-purpose event
generators for LHC physics
Buckley, et. al.,

Phys.Rept. 504 (2011) 145-233, arXiv:1101. 2599
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http://inspirehep.net/record/884202?ln=en
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Evolution of an event

t = —o0, incoming protons
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- Overview

Evolution of an event

partons from the protons radiate

P, P
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- Overview

Evolution of an event

P, B

~+|

partons collide in
fundamental hard process

P, P
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- Overview

Evolution of an event

P, B

Final-state radiation
p, B
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- Overview

Evolution of an event

Hadrons

P, B

suoipey
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- Overview

Simulation

There are a lot of different physical processes involved.
Some we understand and can calculate from first principles.

[

[

m Some we can approximately calculate.

m For others we have to rely and phenomenological models.
[

We are helped by being able to separate, at some level of
approximation, different physics happening on different
time/length /energy scales.

m Simulate different pieces separately, together with evolution
between the different scales.
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- Overview

A Monte Carlo Event

P, B
Hard Process, usually
calculated at leading order
7 or at next-to-leading order
t
P, P
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- Overview

A Monte Carlo Event

P, B

Initial- and final-

PP state parton shower
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- Overview

A Monte Carlo Event

P, B

P, P

Perturbative decays

v, of heavy particles
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- Overview

A Monte Carlo Event

Secondary hard
processes
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- Overview

A Monte Carlo Event

Hadrons

Hadron Decays

Hadrons

Hadrons

suoipey
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I—Monte Carlo Techniques

Parton-Level event generation

m We want calculate the expectation value of an observable, O,
which is a function of the momenta of the n final-state
particles.

m At the parton-level this is given by

n

3p; )12
() = / (H (2:);25) MU, 1 ) it 07

(Z pu) ({pi})-

m The parton-level result is on the firmest theoretical footing -
relies only on factorisation of the pdfs and the hard scattering
m There are two issues:
calculating the matrix element for a given phase-space point;
K integrating over the phase space.
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I—Monte Carlo Techniques

Numerical Integration in One Dimension

Consider integration in one dimension

I = /abdxf(x).

Standard methods for the numerical evaluation use equally spaced
points for the evaluation of the integrand given by

b—a

N-1

The Trapezoidal rule for estimating the integral requires two
evaluations and is simply

I =h (%ﬂ + %5) + O(h3f2),

xp=a+(n—-1)h n=12....N, h=

where f, = f(x,), and f(?) denotes the maximum value of the
second derivative of f evaluated in the interval.
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I—Monte Carlo Techniques

Numerical Integration in One Dimension, Il

Consider integration in one dimension

Izilbdxﬂx)

Standard methods for the numerical evaluation use equally spaced
points for the evaluation of the integrand given by

b—a
= —1)h =12,....N, h=——
Xn a —"_ (n ) 9 n ) 9 ) 9y N _ 1?
Simpson'’s rule for estimating the integral requires 3 evaluations

and is

1, 4, 1
I=h(Zh+<h+f heF®
<31+32+33>+0( ),

where f, = f(x,), and f(*) denotes the maximum value of the
fourth derivative of f evaluated in the interval.
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Numerical Integration in One Dimension, Il

Consider integration in one dimension

Izilbdxﬂx)
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points for the evaluation of the integrand given by

b—a
= —1)h =12,....N, h=——
Xn a —"_ (n ) 9 n ) 9 ) 9y N _ 1?
Simpson'’s rule for estimating the integral requires 3 evaluations

and is

1, 4, 1
I=h(Zh+<h+f heF®
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where f, = f(x,), and f(*) denotes the maximum value of the
fourth derivative of f evaluated in the interval.
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I—Monte Carlo Techniques

Numerical Integration in One Dimension, |lI

Simpson’s composite rule for estimating the integral by
subdividing the interval

1 4 2 4 2 4 1
l=h|=-AF+=h+=-FR+=f+ -+ =Fy_ —fy_ —f
<31+32+33+34+ +3N2+3N1+3N)

+0O (N4,

where we have indicated the dependence of the uncertainty on N
only.
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I—Monte Carlo Techniques

Monte Carlo Integration

The problem at hand requires multi-dimensional integrations

- /Qil;[ldx,-f({x,-}),

where x; are the integration variable and 2 are the limits. The
standard numerical techniques become extremely inefficient:

m trapezium rules converges o« N=2/" Simpson’s rule converges
o N_4/”, N the number of function evaluations

m for complicated limits;
m for integrands which have peaks and divergences.
m require separate integral for each observable

All of of which are relevant in particle physics!
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I—Monte Carlo Techniques

Monte Carlo Integration

m Suppose we want to evaluate

x2
I:/ f(x)dx.
x1

This can be written as an average

- / F F()dx = (o — x1) (F(x)).

1
m The average can be calculated by selecting N values randomly
from a uniform distribution
L
I~ Iy=(x-— Xl)N Z; f(x)
1=
m Often we define a weight, w; = (x2 — x1)f(x;) in which case
the integral is the average of the weight.
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I—Monte Carlo Techniques

Monte Carlo Integration

m The associated uncertainty on the integral can be found using
the central limit theorem

V
llei\/WN,
where

1Y 1 1
_ . — 2 .
Iy = N ;—1 w; Vi = m ;—1 Wi N - w;

The uncertainty scales as v/ N irrespectively of the dimension of
the integral. Better scaling for multi-dimensional integrals than
other techniques (trapezoid, Simpson's rule, Gauss' quadratures).
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I—Monte Carlo Techniques

I—Random Number Generation

Drawing Random Numbers

The Monte Carlo method relies on drawing random numbers.

m A truly random number generation would mean that results
could not be reproduced. Bad for debugging. And how would
you trust that the numbers generated for a run were truly
random?

m Use instead pseudo-random number generators

m For one-dimensional problems the requirements are few,
e.g. flat distribution in the interval [0, 1[.
Linear congruential generator might suffice:
Xnt+1 = (aXp 4+ ¢) mod m
a the multiplier, ¢ the increment, Xp the 'seed’.
glibc rand() : m =232 a = 1103515245, ¢ = 12345

Jeppe R. Andersen Intro to MC & Event Generation L1: Introduction



Intro to MC & Event Generation L1: Introduction
I—Monte Carlo Techniques

I—Random Number Generation

Drawing Random Numbers

m Need better quality random numbers for multi-dimensional
problems to avoid correlations:

For a one-dimensional problem with (pseudo-)random
numbers as x1, x2, . . ., also the string (x1,1 —x1,x2,1—x2,...)
will ensure convergence to the central value.

m If this series is used however for a two-dimensional problem on
[0,1[x[0, 1] to draw points for (x,y), then the function would
be sampled only along y =1 — x.

m Random Number Generators that work satisfactory for
one-dimensional problems may not be suitable for
multi-dimensional problems: Do not trust the standard
issue pseudo-random number generators.

m Use high-quality (=expensive in terms of CPU) generators like
ranlux (as implemented in e.g. CLHEP, gsl,...).
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I—Monte Carlo Techniques

I—Improving the Convergence

Variance Reduction

m The Monte Carlo uncertainty estimate is given by

v, 1 LA
EMC:—N7 VN:_ZWI2_ _ZWI' .
\/N Ni:l Ni:l

Vy is the MC estimate of the variance of the integral of the
function f we are integrating:

2
02:V/de2—</de> )
|4 14

Reducing o will decrease the MC uncertainty
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I—Monte Carlo Techniques

I—Improving the Convergence

Variance Reduction, Il

Consider a one-dimensional integral

/abde(X) = /ab dx g(x) <%) = /abdxg(x)h(x)

The trick now is to find a h(x) = f(x)/g(x) that is more slowly
varying than f (i.e. where the variance is less).
Change of variables and rewrite the integral

/a bdxg(x)h(x) = /G ((;()b) dy h(6V()),
where dG(x)/dx = g(x).
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I—Monte Carlo Techniques

I—Improving the Convergence

Variance Reduction,lll

g(x) can be normalised so that fab dxg(x) =1, and then

/abdx £(x) :/abdxg(x)%

< 8> \/<f2(X)/g2(X)>A7<f(X)/g(X)>2.

The optimal choice for g(x), i.e. one that reduces the variance the
most, is one that is proportional to |f(x)|.
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I—Monte Carlo Techniques

I—Imprﬂving the Convergence

Variance Reduction, IV

Importance Sampling is useful iff
g(x) is non—negative in the region of integration
A The function G(x), dG(x)/dx = g(x) must be known
analytically. If the integral of g(x) is normalised to 1, then
G(x) can be chosen to vary between 0 and 1
(G(a) =0,G(b) = 1), and G(x) will describe the probability
of picking a x; with x; < x.
G(x) must be invertible, or it must be possible to generate
random numbers distributed as g(x).
Might seem as a paradox - if we could integrate f analytically, we
would not be using MC methods. But sometimes we can integrate
the main feature, and leave the small variation to MC.
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I—Monte Carlo Techniques

I—Improving the Convergence

Variance Reduction: The Example

Consider the integral

~ 14exp(x)

2

() = —=
1.0

1.0
/ dx f(x) = [—M L Ei(x)|  ~20.8514,
0.1 X 0.1

where Ei(x) is the exponential integral function

. 0 exp(x) bs b%s b%s
EI(X):_/X e TS TR Y TR P TR
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I—Improving the Convergence

Variance Reduction: The Example

140

60
40
20F
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I—Monte Carlo Techniques

I—Improving the Convergence

Variance Reduction: The Example

On the interval of integration, the most important feature is the
suppression 1/x2, which we can integrate analytically, and the
integral has an analytic inverse function:

gx)=gx " y=60()=—g- GH(y) ==,

The integral is therefore rewritten

1.0 1.0
= xx_2 exp(x
/0 dxf(x)—/o dxx 2 (14 exp(x))

1 1

-1/9 1
:9/ dy <1+exp <——>)
~10/9 %
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I—Improving the Convergence

Variance Reduction: The Example
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I—Monte Carlo Techniques

I—Improving the Convergence

Variance Reduction: The Example

The variance can be calculated analytically

0’ = l/abdx[f(x)]2— [/abdxf(x)r.

Using this we find that o =~ 31.16 while o = 2.63. Since the
Monte Carlo algorithm converges with an error estimate of cr/\/N
this means that the required accuracy will be reached by a factor
140 fewer function evaluations by integrating h instead of f.
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I—Monte Carlo Techniques

I—Improving the Convergence

Variance Reduction: The Example

35

7

‘TTTT

Monte Carlo estimate of integral

llllllllllllll

80 0
Evaluations/10

Green: Original integral f(x). Blue: Variance Reduced Integral.
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I—Monte Carlo Techniques

I—Improving the Convergence

Importance Sampling Cookbook

Consider the integral of f(x) between a and b. Make a change of
variables to a (pseudo-random) number r in the interval [0, 1]

/abdxf(x):/oldr%f(x(r)).

Following the ideas of importance sampling we would like x(r) to
peak at values of x that maximises |f(x)|. How to construct x(r)?
Consider a function which could give a good description of the
pt-spectrum, with parameters to be fitted:
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I—Monte Carlo Techniques

I—Improving the Convergence

Importance Sampling Cookbook, Il

G(y) is the normalised integral of g(x)

— Gly) = a " dxg x)// dx g(x

G(y) increases monotonously from 0 to 1 for a < y < b, describing
how the random number r should be distributed as a function of y.

The inverse function G(=1)(r) is given by

G(_l)(r) =d+etan <arctan (?) — rarctan <_a ; d) + rarctan <—b ; d)) ,

and the derivative is given by

dx  d6c(=V(r) a—d b—d
—_ = = e | — arctan -+ arctan
dr dr e e
a—d a—d b—d 2
- | sec [ arctan — r arctan + r arctan .
e e e
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I—Monte Carlo Techniques

I—Improving the Convergence

Generation according to a distribution

m Suppose we want to select values of x at random according to
f(x).

m Easy provided the function is integrable and invertible, i.e. we
can calculate

F(x) = /dx f(x),

and its inverse F~1(x).

m In this case we can generate x according to F(x) between
Xmin and Xpax USIiNg

x=F1 [F(Xmin) +R (F(Xma.x) - F(Xmin))]
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I—Monte Carlo Techniques

I—Improving the Convergence

Generation according to a distribution

m Consider the example of the Breit-Wigner

ml
(m2 — M2) + M2[2

f(m?) =

m Using the substitution

m? = M? 4+ Mr tanp = dm? = MT sec? pdp

then
M?2T2 sec? p
F2:d2f2:/d :/d:
() / mf(m’) P M2 tan? ) + M2r2 pP=p
Therefore

Jeppe R. Andersen Intro to MC & Event Generation L1: Introduction



Intro to MC & Event Generation L1: Introduction
I—Monte Carlo Techniques

I—Improving the Convergence

Generation according to a distribution

m The inverse

m? — M?

= F(m?) =tan !
p (m°) = tan [ s

] = m? = M? 4 MT tan(p)

m Hence
F~1(p) = M? 4 MT tan(p)

m Therefore generating according to the Breit-Wigner

2 2 2 2 2 2
=M - M =M
m? = M? + MT tan tan "} Mmin — M + R tan ! Mmax = M —tan ! Mmin = M
Mr Mr Mr
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I—Monte Carlo Techniques

I—Improving the Convergence

Unweighting or Hit-and-Miss Algorithm

m Provided that we know the maximum value
of the function, fy.x, we can also generate x
according to f(x).

m Randomly generate values of x in the
integration region and keep them with
probability

p=t.p

fm ax

/f(xl,...x,,)dxl ...dx,

f(x1,...xn)
= // 1dx; ... dxpdXp41
0
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I—Monte Carlo Techniques

I—Improving the Convergence

Special Tricks

The Gaussian f(x) o exp(—x2) does not have an analytic inverse
of the integral. How can we generate according to the Gaussian?

f(x)dx f(y)dy oc exp(—(x* + y?))dxdy
= exp(—r?)r drd¢ x exp(—r?)dr?de
This we can integrate!

F(r*) =1 —exp(—r?) ..r* = —InRy

x =v/—In Ry cos(2m Ry)

y =v/—In Ry sin(27Ry)

x and y both generated according to a Gaussian (obvious
correlation though between x and y, use only one of them).
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I—Monte Carlo Techniques

I—Improving the Convergence

Monte Carlo Integration

The Monte Carlo technique has a number of important
advantages:

m always converges as 1/+/N regardless of the number of
dimensions;

m arbitrarily complex integration regions, simply use a hypercube
and set the integrand to zero outside ;

m easy estimate of the error;

m calculation of all observables at once.

m Trivially to parallelise: Run M jobs with different seeds for
the random number generator each with N evaluations.
Counts as running M*N evaluations in one run.

In a typical LHC event we have ~ 1000 particles so we need to do
~ 3000 phase-space integrals for the momenta. Monte Carlo
integration is the only viable option.
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Improving convergence

m Convergence of the integral can be improved by reducing, Vy.

m Perform a Jacobian transform so that the integral is flat in the
new integration variable.

m Consider the example of a fixed width Breit-Wigner
distribution

Miiax 1
| = dm?
/,\,,2 M (m2 — M2) + M2r2

min

where M is the physical mass of the particle, m is the off-shell
mass and [ is the width.
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Improving convergence

m A useful transformation is
2 _ g2 2 2
m* = M+ Ml tanp = dm* = MT sec” pdp

which gives

, /Mfmx w? 1 B /Pmax q MT sec? p
= e (m2 — M2) + M2r2 P M2r2tan? p + M212

min Pmin

m So we have in fact reduced the error to zero.

1
| = — max — MPmin
(P Prain)
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Improving convergence

m In practice few of the cases we need to deal with in real
examples can be exactly integrated.

m In these cases we try and pick a function that approximates
the behaviour of the function we want to integrate.

m For example suppose we have a spin-1 meson decaying to two
scalar mesons which are much lighter, consider the example of
the p decaying to massless pions.

m In this case the width

=" () = ) =T

where p(m) is the 3-momentum of the decay products in the
p rest frame.
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Improving convergence

m If we were just to generate flat in m? then the weight would be

M2, — M?

max min

R2m3
(m2 — M2)2 4 2a7

w; =

m If we perform a Jacobian transformation the integral becomes

Mrznax 5 1 1 Pmax (m2 _ M2)2 + M2 r%
I = dm r2m3 = dp r2m3
M12nin (m2 - M2)2 + _0,\/,_ Mro Pmin (m2 — M2)2 + _Ol\/l_
and the weight is
1 (m? — M?)? + M3
wi = W (pmax - pmin) 5 o r3m3
0 (m? — M2)2 + =7
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Improving Convergence

m If we perform the integral e
using m? the error is ~ 10
times larger for the same
number of evaluations.

80.10-11

m /.e. Factor of 10 slower.

1078

1077

1078

Error

109 |
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Improving Convergence

m Using a Jacobian transformation is always the best way of
improving the convergence.

m There are automatic approaches (e.g. VEGAS) but they are
never as good.

10710 =

m Suppose instead of having
one peak we have an integral i
with lots of peaks, say from pay
the inclusion of excited p ;
resonances in some process.

m Cant just use one
Breit-Wigner. The error
becomes large.
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Multi-Channel approaches

m If we want to smooth out many peaks pick a function

1
2y o (m2) — .
f(m®) = z’:a,g,(m )= Za'(mz — Mi2)2 + Mi2rl2
where «; is the weight for a given term such that ) . o = 1.

m We can then rewrite the integral of a function

M s M s 2
| = dm?h(m?) = dm?h(m?) L)
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Multi-Channel approaches

m We can then perform a separate Jacobian transform for each
of the integrals in the sum

=S [ an e < S |

hol ,min 2)

Pi,max 2)

m Pick one of the integrals (channels) with probability «; and
calculate the weight as before.

m Called the Multi-Channel procedure and is used in the most
sophisticated programs for integrating matrix elements in
particle physics.

m There are methods to automatically optimise the choice of the
channel weights, «;.
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Matrix Element Calculations

m The phase-space integration is only part of the problem of
efficiently calculating observables.

m Efficient phase-space integration is usually the most important
part of the problem.

m However the calculation of the matrix element is also
important.
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Factorial Growth

& ggtng

m The main issue for the evaluation
of matrix elements is the factorial
growth with the number of external
particles.

m We need to evaluate

M2 = | S0, M2, I e

m Traditional squaring and and trace techniques grow like n?.

m But, amplitudes are complex numbers, add them before
squaring!
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Helicity Amplitudes

m As spinors and v matrices have an explicit form they can be
evaluated by (brute force) matrix multiplication (HELAS).

m Alternatively introduce basic helicity spinors and write
everything as spinor products, e.g.

a(p1, h1)u(p2, hy) = complex number

m Translate the Feynman diagrams into helicity amplitudes,
complex-valued functions of momenta and helicities.

m Spin-correlations come essentially for free.
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Recursion relations

m Still have the factorial growth in the number of diagrams.
m In the helicity method

m Reuse pieces: Only calculate them once,
m Factoring out: reduce the number of multiplications

e S

m Recursion relations with recycling built in are a better method

m Off-shell recursions Dyson-Schwinger, Berends-Giele, ... best
candidate so far.
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Berends-Giele Recursion Relations

m In Berends-Giele relations the off-shell gluon current is
recursively calculated.

Jeppe R. Andersen Intro to MC & Event Generation L1: Introduction



Intro to MC & Event Generation L1: Introduction
I—Monte Carlo Techniques

I—Improving the Convergence

Colour Dressing

m Also a factorial growth from the colour algebra

m Sampling over colours helps

m Colour dressing F Maltoni et. al. Rev. D67 (2003) 014026 improves things,
particularly with Berends-Giele recursions cpuhe et al. JHEP 0608 (2006)

062

Final BG BCF csw

State | CO | D co ) co cD
28 024 | 028 | 028 033 031 0.26
3g 045 | 048 | 042 051 0.57 0.55
4g 120 | 1.04 | 084 1.32 1.63 1.75
5g 378 | 269 | 259 7.26 5.95 5.96
6g 142 | 710 | 119 50.1 27.8 30.6
g 585 | 237 | 736 646 146 195
8g 276 | 821 | 597 8690 919 1890
9% 1450 | 270 | 5900 | 127000 | 6310 | 29700
10g 7960 | 864 | 64000 - 48900 -
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Current Status

Calculation of higher order processes is more complicated.

Tree-level is now fully automated, limits due to algorithms and

computers.

m Automation of one-loop has seen many new processes
calculated.

m A growing number of NNLO calculations

m loops . done
k for some processes
& first solutions

1 2 3 4 5 6 7 8 9 nlegs
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Parton-Level Tools

Program 2—=n | Ampl. Integ. Public? Lang.
ALPGEN n=28 rec. Multi yes Fortran
AMEGIC++ | n=6 hel. Multi yes C++
COMIX n=28 rec. Multi yes C++
COMPHEP | n=4 | trace | 1 Channel yes C
CALCHEP n=4 | trace | 1 Channel yes C
HELAC n= rec. Multi yes Fortran
MADEVENT | n=6 hel. Multi yes Python/Fortran
WHIZARD n=28 rec. Multi yes OCaml
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Current Best Option

m Currently the best combination of
phase-space and ME calculation, i.e.
fastest and highest multiplicity COMIX

m Colour-dressed Berends-Giele amplitudes £ N
. . . S 1 ™~ 3
in the SM with fully recursive phase space T e T
generatlon 0&03 mleg?;lonume[s] 1‘05
o [ub] Number of jets
bb + jets 0 1 2 3 4 5 6
Comix 4712(5) | 8.83(2) | 1.813(8) | 0.459(2) | 0.150(1) | 0.0531(5) | 0.0205(4)
ALPGEN 4706(6) | 8.83(1) | 1.822(9) | 0.459(2) | 0.150(2) | 0.053(1) | 0.0215(8)
AMEGIC 4703(4) | 8.84(2) | 1.817(6)
gg — ng Cross section [pb]
n 8 9 10 11 12
/s [GeV] 1500 2000 2500 3500 5000
Comix 0.755(3) | 0.305(2) | 0.101(7) | 0.057(5) | 0.026(1)
Maltoni(2002) |  0.70(4) 0.30(2) 0.097(6)
ALPGEN 0.719(19)
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Summary

m Monte Carlo sampling is a vital tool in particle physics for
calculating observables.

m Modern phase-space sampling and matrix element calculation
techniques allow ever higher multiplicity matrix elements to be
calculated.

m However eventually we still have to use approximations and
models to study LHC physics, as we will see in the rest of the
lectures.
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