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Intro to MC & Event Generation L1: Introduction

Overview

The aims of the LHC physics programme are:

discovery, and now measurement of the properties, of the
Higgs boson;

the search for physics Beyond the Standard Model;

the measurement of Standard Model (SM) processes at the
highest energies.

All of these require accurate predictions for a meaningful

interpretation of data.
These lectures: introduction to the calculation techniques

underpinning most (if not all) modern predictions, and informs you
on the physics input needed for a good prediction of a given
measurement.
Heavily influenced by lectures given at schools of the ITN MCNet
by Profs. Peter Richardson, Bryan Webber, Torbjörn Sjöstrand,
Leif Lönnblad, . . .
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Overview

Higgs Boson

In some searches the
background can be
extracted from data.

However even for the
simplest cases there is often
a hidden dependence on
simulation for the cuts and
training of neutral nets and
boosted decision trees.

The interpretation of the
signal strength as that of
the SM Higgs Boson relies
heavily on higher order
calculations
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Overview

Higgs Boson

In other cases we need very
accurate simulations of
complex final states to
predict the background.
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Higgs Boson
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Higgs Boson

In other cases we need very
accurate simulations of
complex final states to
predict the background.
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Overview

SUSY Searches

Understanding the SM backgrounds is
essential in any BSM search.

Often try to use control regions to
validate/normalize simulations.

However MC simulations are an
essential tool in these searches to
predict the signal and background.
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Overview

SUSY Searches

Use a wide range of simulations

Z/γ∗ and γ + jets SHERPA

W + jets ALPGEN+HERWIG.

tt̄,MC@NLO+HERWIG.

s-channel and Wt single top quark +
jets MC@NLO+HERWIG

t-channel single top quark + jets
AcerMC+PYTHIA6

tt̄ + jets, W or Z
MADGRAPH+PYTHIA6.

WZ , ZZ and Zγ SHERPA

SUSY Herwig++ or
MADGRAPH+PYTHIA6
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Overview

LHC Explores New Standard Model Processes

Different calculations,
taking into account
different physics (NLO,
Shower merging of LO
samples, Shower
merging of NLO
samples, High Energy
Logarithms) can all
agree on “easy”
observables  (leading jet) [GeV]j
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. . . And New Regions of Phase Space

. . . but obtain vildly
different results when
probed in the new
territory of the (even
the 8TeV) LHC
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Overview

Lecture 1 Motivation and Introduction to Monte Carlo Techniques

Lecture 2 Parton Showers

Lecture 3 Hadronization & Underlying Event

Lecture 4 New Calculations Necessary for Higher Energies
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Overview

Resources

There are a lot of lectures
on Monte Carlo event
generation from previous
MCnet and other schools.

Best single reference review
produced by MCnet
General-purpose event
generators for LHC physics
Buckley, et. al.,
Phys.Rept. 504 (2011) 145-233, arXiv:1101.2599

Physics Reports 504 (2011) 145–233

Contents lists available at ScienceDirect

Physics Reports

journal homepage: www.elsevier.com/locate/physrep

General-purpose event generators for LHC physics

Andy Buckley a, Jonathan Butterworth b, Stefan Gieseke c, David Grellscheid d, Stefan Höche e,
Hendrik Hoeth d, Frank Krauss d, Leif Lönnblad f,g, Emily Nurse b, Peter Richardson d, Steffen
Schumann h, Michael H. Seymour i, Torbjörn Sjöstrand f, Peter Skands g, Bryan Webber j,∗

a PPE Group, School of Physics & Astronomy, University of Edinburgh, EH25 9PN, UK
b Department of Physics & Astronomy, University College London, WC1E 6BT, UK
c Institute for Theoretical Physics, Karlsruhe Institute of Technology, D-76128 Karlsruhe, Germany
d Institute for Particle Physics Phenomenology, Durham University, DH1 3LE, UK
e SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
f Department of Astronomy and Theoretical Physics, Lund University, Sweden
g PH Department, TH Unit, CERN, CH-1211 Geneva 23, Switzerland
h Institute for Theoretical Physics, University of Heidelberg, 69120 Heidelberg, Germany
i School of Physics and Astronomy, University of Manchester, M13 9PL, UK
j Cavendish Laboratory, J.J. Thomson Avenue, Cambridge CB3 0HE, UK

a r t i c l e i n f o

Article history:

Accepted 18 March 2011

Available online 6 April 2011

editor: R. Petronzio

Keywords:

QCD

Hadron colliders

Monte Carlo simulation

a b s t r a c t

We review the physics basis, main features and use of general-purpose Monte Carlo event

generators for the simulation of proton–proton collisions at the Large Hadron Collider.

Topics included are: the generation of hard scattering matrix elements for processes of

interest, at both leading and next-to-leading QCD perturbative order; their matching to

approximate treatments of higher orders based on the showering approximation; the

parton and dipole shower formulations; parton distribution functions for event generators;

non-perturbative aspects such as soft QCD collisions, the underlying event and diffractive

processes; the string and cluster models for hadron formation; the treatment of hadron

and tau decays; the inclusion of QED radiation and beyond Standard Model processes. We

describe the principal features of the Ariadne, Herwig++, Pythia 8 and Sherpa generators,

together with the Rivet and Professor validation and tuning tools, and discuss the physics

philosophy behind the proper use of these generators and tools. This review is aimed

at phenomenologists wishing to understand better how parton-level predictions are

translated into hadron-level events as well as experimentalists seeking a deeper insight

into the tools available for signal and background simulation at the LHC.

© 2011 Elsevier B.V. All rights reserved.
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Evolution of an event

t = −∞, incoming protons

p, p̄

p, p̄
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Evolution of an event

partons from the protons radiate

p, p̄

p, p̄
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Overview

Evolution of an event

partons collide in
fundamental hard process

t

t̄

p, p̄

p, p̄
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Evolution of an event

Heavy particle decays

t

t̄ b̄

W−
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Evolution of an event

Final-state radiation
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Evolution of an event

Hadronization
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Overview

Simulation

There are a lot of different physical processes involved.

Some we understand and can calculate from first principles.

Some we can approximately calculate.

For others we have to rely and phenomenological models.

We are helped by being able to separate, at some level of
approximation, different physics happening on different
time/length/energy scales.

Simulate different pieces separately, together with evolution
between the different scales.
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A Monte Carlo Event

t

t̄

Hard Process, usually
calculated at leading order
or at next-to-leading order

p, p̄

p, p̄
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A Monte Carlo Event

t

t̄

Initial- and final-
state parton showerp, p̄

p, p̄
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A Monte Carlo Event

t

t̄ b̄

W−

b
W+

νℓℓ+

Perturbative decays
of heavy particles

p, p̄

p, p̄
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A Monte Carlo Event

t

t̄ b̄

W−
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νℓℓ+

Secondary hard
processes
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A Monte Carlo Event
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A Monte Carlo Event
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Monte Carlo Techniques

Parton-Level event generation

We want calculate the expectation value of an observable, O,
which is a function of the momenta of the n final-state
particles.
At the parton-level this is given by

〈O〉 =
∫

(

n
∏

i=1

d
3pi

(2π)32Ei

)

|M({pi})|2
ŝ2

xafa(xa,Q
2) xbfb(xb,Q

2)

× (2π)4δ2

(

n
∑

k=1

p⊥k

)

O({pi}).

The parton-level result is on the firmest theoretical footing -
relies only on factorisation of the pdfs and the hard scattering
There are two issues:

1 calculating the matrix element for a given phase-space point;
2 integrating over the phase space.
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Monte Carlo Techniques

Numerical Integration in One Dimension

Consider integration in one dimension

I =

∫ b

a

dx f (x).

Standard methods for the numerical evaluation use equally spaced
points for the evaluation of the integrand given by

xn = a + (n − 1)h, n = 1, 2, . . . ,N, h =
b − a

N − 1
,

The Trapezoidal rule for estimating the integral requires two
evaluations and is simply

I = h

(

1

2
f1 +

1

2
f2

)

+O(h3f (2)),

where fn ≡ f (xn), and f (2) denotes the maximum value of the
second derivative of f evaluated in the interval.
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Monte Carlo Techniques

Numerical Integration in One Dimension, II

Consider integration in one dimension

I =

∫ b

a

dx f (x).

Standard methods for the numerical evaluation use equally spaced
points for the evaluation of the integrand given by

xn = a + (n − 1)h, n = 1, 2, . . . ,N, h =
b − a

N − 1
,

Simpson’s rule for estimating the integral requires 3 evaluations
and is

I = h

(

1

3
f1 +

4

3
f2 +

1

3
f3

)

+O(h5f (4)),

where fn ≡ f (xn), and f (4) denotes the maximum value of the
fourth derivative of f evaluated in the interval.
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Consider integration in one dimension
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a

dx f (x).

Standard methods for the numerical evaluation use equally spaced
points for the evaluation of the integrand given by

xn = a + (n − 1)h, n = 1, 2, . . . ,N, h =
b − a

N − 1
,

Simpson’s rule for estimating the integral requires 3 evaluations
and is

I = h

(

1

3
f1 +

4

3
f2 +

1

3
f3

)

+O(h5f (4)),

where fn ≡ f (xn), and f (4) denotes the maximum value of the
fourth derivative of f evaluated in the interval.
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Monte Carlo Techniques

Numerical Integration in One Dimension, III

Simpson’s composite rule for estimating the integral by
subdividing the interval

I =h

(

1

3
f1 +

4

3
f2 +

2

3
f3 +

4

3
f4 + · · · + 2

3
fN−2 +

4

3
fN−1 +

1

3
fN

)

+O
(

N−4
)

,

where we have indicated the dependence of the uncertainty on N

only.
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Monte Carlo Techniques

Monte Carlo Integration

The problem at hand requires multi-dimensional integrations

I =

∫

Ω

n
∏

i=1

dxi f ({xi}),

where xi are the integration variable and Ω are the limits. The
standard numerical techniques become extremely inefficient:

trapezium rules converges ∝ N−2/n, Simpson’s rule converges
∝ N−4/n, N the number of function evaluations

for complicated limits;

for integrands which have peaks and divergences.

require separate integral for each observable

All of of which are relevant in particle physics!
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Monte Carlo Techniques

Monte Carlo Integration

Suppose we want to evaluate

I =

∫ x2

x1

f (x)dx .

This can be written as an average

I =

∫ x2

x1

f (x)dx = (x2 − x1)〈f (x)〉.

The average can be calculated by selecting N values randomly
from a uniform distribution

I ≈ IN ≡ (x2 − x1)
1

N

N
∑

i=1

f (xi )

Often we define a weight, wi = (x2 − x1)f (xi ) in which case
the integral is the average of the weight.
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Monte Carlo Techniques

Monte Carlo Integration

The associated uncertainty on the integral can be found using
the central limit theorem

I ≈ IN ±
√

VN

N
,

where

IN =
1

N

N
∑

i=1

wi VN =
1

N

N
∑

i=1

w2
i −

[

1

N

N
∑

i=1

wi

]2

The uncertainty scales as
√
N irrespectively of the dimension of

the integral. Better scaling for multi-dimensional integrals than
other techniques (trapezoid, Simpson’s rule, Gauss’ quadratures).
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Monte Carlo Techniques

Random Number Generation

Drawing Random Numbers

The Monte Carlo method relies on drawing random numbers.

A truly random number generation would mean that results
could not be reproduced. Bad for debugging. And how would
you trust that the numbers generated for a run were truly
random?

Use instead pseudo-random number generators

For one-dimensional problems the requirements are few,
e.g. flat distribution in the interval [0, 1[.
Linear congruential generator might suffice:
Xn+1 = (aXn + c) mod m

a the multiplier, c the increment, X0 the ’seed’.
glibc rand() : m = 232, a = 1103515245, c = 12345
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Monte Carlo Techniques

Random Number Generation

Drawing Random Numbers

Need better quality random numbers for multi-dimensional
problems to avoid correlations:
For a one-dimensional problem with (pseudo-)random
numbers as x1, x2, . . ., also the string (x1, 1− x1, x2, 1− x2, . . .)
will ensure convergence to the central value.

If this series is used however for a two-dimensional problem on
[0, 1[×[0, 1[ to draw points for (x , y), then the function would
be sampled only along y = 1− x .

Random Number Generators that work satisfactory for
one-dimensional problems may not be suitable for
multi-dimensional problems: Do not trust the standard

issue pseudo-random number generators.

Use high-quality (=expensive in terms of CPU) generators like
ranlux (as implemented in e.g. CLHEP, gsl,. . . ).
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Variance Reduction

The Monte Carlo uncertainty estimate is given by

EMC =
VN√
N
, VN =

1

N

N
∑

i=1

w2
i −

[

1

N

N
∑

i=1

wi

]2

.

VN is the MC estimate of the variance of the integral of the
function f we are integrating:

σ2 = V

∫

V

dΩ f 2 −
(
∫

V

dΩ f

)2

.

Reducing σ will decrease the MC uncertainty

Jeppe R. Andersen Intro to MC & Event Generation L1: Introduction



Intro to MC & Event Generation L1: Introduction

Monte Carlo Techniques

Improving the Convergence

Variance Reduction, II

Consider a one-dimensional integral

∫ b

a

dxf (x) =

∫ b

a

dx g(x)

(

f (x)

g(x)

)

=

∫ b

a

dx g(x)h(x)

The trick now is to find a h(x) = f (x)/g(x) that is more slowly
varying than f (i.e. where the variance is less).
Change of variables and rewrite the integral

∫ b

a

dx g(x)h(x) =

∫ G(b)

G(a)
dy h

(

G (−1)(y)
)

,

where dG (x)/dx = g(x).
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Variance Reduction,III

g(x) can be normalised so that
∫ b

a
dx g(x) = 1, and then

∫ b

a

dx f (x) =

∫ b

a

dx g(x)
f (x)

g(x)

≈
〈

f (x)

g(x)

〉

±
√

〈f 2(x)/g2(x)〉 − 〈f (x)/g(x)〉2
N

.

The optimal choice for g(x), i.e. one that reduces the variance the
most, is one that is proportional to |f (x)|.
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Variance Reduction, IV

Importance Sampling is useful iff

1 g(x) is non–negative in the region of integration

2 The function G (x), dG (x)/dx = g(x) must be known
analytically. If the integral of g(x) is normalised to 1, then
G (x) can be chosen to vary between 0 and 1
(G (a) = 0,G (b) = 1), and G (x) will describe the probability
of picking a xi with xi ≤ x .

3 G (x) must be invertible, or it must be possible to generate
random numbers distributed as g(x).

Might seem as a paradox - if we could integrate f analytically, we
would not be using MC methods. But sometimes we can integrate
the main feature, and leave the small variation to MC.
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Variance Reduction: The Example

Consider the integral

f (x) =
1 + exp(x)

x2
∫ 1.0

0.1
dx f (x) =

[

−exp(x)

x
+ Ei(x)

]1.0

0.1

≈ 20.8514,

where Ei(x) is the exponential integral function

Ei(x) = −
∫

∞

x

dx
exp(x)

x
= ln x +

x

1 · 1! +
x2

2 · 2! +
x3

3 · 3! + · · · .
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Variance Reduction: The Example

On the interval of integration, the most important feature is the
suppression 1/x2, which we can integrate analytically, and the
integral has an analytic inverse function:

g(x) =
1

9
x−2, y = G (x) = − 1

9x
, G (−1)(y) = − 1

9y
,

The integral is therefore rewritten

∫ 1.0

0.1
dx f (x) =

∫ 1.0

0.1
dx x−2 (1 + exp(x))

= 9

∫

−1/9

−10/9
dy

(

1 + exp

(

− 1

9y

))
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Variance Reduction: The Example

The variance can be calculated analytically

σ2 ≡ l

∫ b

a

dx [f (x)]2 −
[
∫ b

a

dx f (x)

]2

.

Using this we find that σf ≈ 31.16 while σh ≈ 2.63. Since the
Monte Carlo algorithm converges with an error estimate of σ/

√
N

this means that the required accuracy will be reached by a factor
140 fewer function evaluations by integrating h instead of f .
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Green: Original integral f (x). Blue: Variance Reduced Integral.
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Importance Sampling Cookbook

Consider the integral of f (x) between a and b. Make a change of
variables to a (pseudo-random) number r in the interval [0, 1]

∫ b

a

dx f (x) =

∫ 1

0
dr

dx

dr
f (x(r)) .

Following the ideas of importance sampling we would like x(r) to
peak at values of x that maximises |f (x)|. How to construct x(r)?
Consider a function which could give a good description of the
pt-spectrum, with parameters to be fitted:

g(x) =

(

(

x − d

e

)2

+ 1

)−1
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Importance Sampling Cookbook, II

G (y) is the normalised integral of g(x),

r = G (y) =

∫ y

a

dx g(x)

/
∫ b

a

dx g(x) .

G (y) increases monotonously from 0 to 1 for a ≤ y ≤ b, describing
how the random number r should be distributed as a function of y .
The inverse function G (−1)(r) is given by

G
(−1)(r) = d + e tan

(

arctan

(

a− d

e

)

− r arctan

(

a − d

e

)

+ r arctan

(

b − d

e

))

,

and the derivative is given by

dx

dr
=

dG (−1)(r)

dr
= e

(

− arctan

(

a − d

e

)

+ arctan

(

b − d

e

))

·
(

sec

(

arctan

(

a − d

e

)

− r arctan

(

a − d

e

)

+ r arctan

(

b − d

e

)))2

.
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Generation according to a distribution

Suppose we want to select values of x at random according to
f (x).

Easy provided the function is integrable and invertible, i.e. we
can calculate

F (x) =

∫

dx f (x),

and its inverse F−1(x).

In this case we can generate x according to F (x) between
xmin and xmax using

x = F−1 [F (xmin) +R (F (xmax)− F (xmin))]
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Generation according to a distribution

Consider the example of the Breit-Wigner

f (m2) =
mΓ

(m2 −M2) +M2Γ2

Using the substitution

m2 = M2 +MΓ tan ρ ⇒ dm2 = MΓ sec2 ρdρ

then

F (m2) =

∫

dm2f (m2) =

∫

dρ
M2Γ2 sec2 ρ

M2Γ2 tan2 ρ+M2Γ2
=

∫

dρ = ρ

Therefore

F (m2) = tan−1

[

m2 −M2

MΓ

]
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Generation according to a distribution

The inverse

ρ = F (m2) = tan−1

[

m2 −M2

MΓ

]

⇒ m2 = M2 +MΓ tan(ρ)

Hence
F−1(ρ) = M2 +MΓ tan(ρ)

Therefore generating according to the Breit-Wigner

m
2
= M

2
+ MΓ tan

[

tan
−1

[

m2
min − M2

MΓ

]

+ R
(

tan
−1

[

m2
max − M2

MΓ

]

− tan
−1

[

m2
min − M2

MΓ

])]
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Unweighting or Hit-and-Miss Algorithm

Provided that we know the maximum value
of the function, fmax, we can also generate x

according to f (x).

Randomly generate values of x in the
integration region and keep them with
probability

P =
f (x)

fmax

≥ R.
∫

f (x1, . . . xn)dx1 . . . dxn

=

∫ ∫ f (x1,...xn)

0
1dx1 . . . dxndxn+1
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x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

f(
x
)

fmax
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Special Tricks

The Gaussian f (x) ∝ exp(−x2) does not have an analytic inverse
of the integral. How can we generate according to the Gaussian?

f (x)dx f (y)dy ∝ exp(−(x2 + y2))dxdy

= exp(−r2)r drdφ ∝ exp(−r2)dr2dφ

This we can integrate!

F (r2) =1− exp(−r2) ∴ r2 = − lnR1

x =
√

− lnR1 cos(2πR2)

y =
√

− lnR1 sin(2πR2)

x and y both generated according to a Gaussian (obvious
correlation though between x and y , use only one of them).
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Monte Carlo Integration

The Monte Carlo technique has a number of important
advantages:

always converges as 1/
√
N regardless of the number of

dimensions;

arbitrarily complex integration regions, simply use a hypercube
and set the integrand to zero outside Ω;

easy estimate of the error;

calculation of all observables at once.

Trivially to parallelise: Run M jobs with different seeds for
the random number generator each with N evaluations.
Counts as running M*N evaluations in one run.

In a typical LHC event we have ∼ 1000 particles so we need to do
∼ 3000 phase-space integrals for the momenta. Monte Carlo
integration is the only viable option.
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Improving convergence

Convergence of the integral can be improved by reducing, VN .

Perform a Jacobian transform so that the integral is flat in the
new integration variable.

Consider the example of a fixed width Breit-Wigner
distribution

I =

∫ M2
max

M2
min

dm2 1

(m2 −M2) +M2Γ2

where M is the physical mass of the particle, m is the off-shell
mass and Γ is the width.
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Improving convergence

A useful transformation is

m2 = M2 +MΓ tan ρ ⇒ dm2 = MΓ sec2 ρdρ

which gives

I =

∫ M2
max

M2
min

dm2 1

(m2 −M2) +M2Γ2
=

∫

ρmax

ρmin

dρ
MΓ sec2 ρ

M2Γ2 tan2 ρ+M2Γ2

So we have in fact reduced the error to zero.

I =
1

MΓ
(ρmax − ρmin)
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Improving convergence

In practice few of the cases we need to deal with in real
examples can be exactly integrated.

In these cases we try and pick a function that approximates
the behaviour of the function we want to integrate.

For example suppose we have a spin-1 meson decaying to two
scalar mesons which are much lighter, consider the example of
the ρ decaying to massless pions.

In this case the width

Γ(m) =
Γ0M

m

(

p(m)

p(M)

)3

=
Γ0M

m

(m

M

)
3
2
= Γ0

√

m

M
,

where p(m) is the 3-momentum of the decay products in the
ρ rest frame.
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Improving convergence

If we were just to generate flat in m2 then the weight would be

wi =
M2

max −M2
min

(m2 −M2)2 +
Γ20m

3

M

If we perform a Jacobian transformation the integral becomes

I =

∫ M2
max

M2
min

dm2 1

(m2 −M2)2 +
Γ2
0m

3

M

=
1

MΓ0

∫

ρmax

ρmin

dρ
(m2 −M2)2 +M2Γ20

(m2 −M2)2 +
Γ2
0m

3

M

and the weight is

wi =
1

MΓ0
(ρmax − ρmin)

(m2 −M2)2 +M2Γ20

(m2 −M2)2 +
Γ20m

3

M
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Improving Convergence

If we perform the integral
using m2 the error is ∼ 10
times larger for the same
number of evaluations.

i.e. Factor of 10 slower.

Flat in ρ

Flat in m2
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Improving Convergence

Using a Jacobian transformation is always the best way of
improving the convergence.

There are automatic approaches (e.g. VEGAS) but they are
never as good.

Suppose instead of having
one peak we have an integral
with lots of peaks, say from
the inclusion of excited ρ
resonances in some process.

Cant just use one
Breit-Wigner. The error
becomes large.

Jeppe R. Andersen Intro to MC & Event Generation L1: Introduction



Intro to MC & Event Generation L1: Introduction

Monte Carlo Techniques

Improving the Convergence

Multi-Channel approaches

If we want to smooth out many peaks pick a function

f (m2) =
∑

i

αigi (m
2) =

∑

i

αi

1

(m2 −M2
i )

2 +M2
i Γ

2
i

where αi is the weight for a given term such that
∑

i αi = 1.

We can then rewrite the integral of a function

I =

∫ M2
max

M2
min

dm2h(m2) =

∫ M2
max

M2
min

dm2h(m2)
f (m2)

f (m2)

=

∫ M2
max

M2
min

dm2
∑

i

αigi(m
2)
h(m2)

f (m2)
=
∑

i

αi

∫ M2
max

M2
min

dm2gi(m
2)
h(m2)

f (m2)
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Multi-Channel approaches

We can then perform a separate Jacobian transform for each
of the integrals in the sum

I =
∑

i

αi

∫ M2
max

M2
min

dm2gi (m
2)
h(m2)

f (m2)
=
∑

i

αi

∫ ρi,max

rhoi,min

dρi
h(m2)

f (m2)

Pick one of the integrals (channels) with probability αi and
calculate the weight as before.

Called the Multi-Channel procedure and is used in the most
sophisticated programs for integrating matrix elements in
particle physics.

There are methods to automatically optimise the choice of the
channel weights, αi .
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Matrix Element Calculations

The phase-space integration is only part of the problem of
efficiently calculating observables.

Efficient phase-space integration is usually the most important
part of the problem.

However the calculation of the matrix element is also
important.
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Factorial Growth

The main issue for the evaluation
of matrix elements is the factorial
growth with the number of external
particles.

We need to evaluate
|M|2 = |∑n

i=1Mi |2. 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Number of gluons

100

101

102

103

Nu
m
be

r o
f d

ia
gr
am

s

e+ e− →q̄q+ng

Traditional squaring and and trace techniques grow like n2.

But, amplitudes are complex numbers, add them before
squaring!
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Helicity Amplitudes

As spinors and γ matrices have an explicit form they can be
evaluated by (brute force) matrix multiplication (HELAS).

Alternatively introduce basic helicity spinors and write
everything as spinor products, e.g.

ū(p1, h1)u(p2, h2) = complex number

Translate the Feynman diagrams into helicity amplitudes,
complex-valued functions of momenta and helicities.

Spin-correlations come essentially for free.
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Recursion relations

Still have the factorial growth in the number of diagrams.

In the helicity method

Reuse pieces: Only calculate them once,
Factoring out: reduce the number of multiplications

Recursion relations with recycling built in are a better method

Off-shell recursions Dyson-Schwinger, Berends-Giele, . . . best
candidate so far.
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Berends-Giele Recursion Relations

♥�✶

♥�✷

✷

✶

❏
✖ ❂

✁�✂❳

✐✄☎

✐✰☎
✐✰✂

✐
✐�✂

✂ ☎

✁�✂ ✁�☎

❱✸

✆

✁�☎❳

✐✄☎
❥❃✐

❥

❥�✂

✐✰☎

✐✰✂

✂ ☎ ✐�✂ ✐

✁�✂ ✁�☎ ❥✰☎ ❥✰✂

❱✹

In Berends-Giele relations the off-shell gluon current is
recursively calculated.
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Colour Dressing

Also a factorial growth from the colour algebra

Sampling over colours helps

Colour dressing F.Maltoni et. al. Rev. D67 (2003) 014026 improves things,
particularly with Berends-Giele recursions C.Duhr et. al. JHEP 0608 (2006)

062

Final BG BCF CSW

State CO CD CO CD CO CD
2g 0.24 0.28 0.28 0.33 0.31 0.26
3g 0.45 0.48 0.42 0.51 0.57 0.55
4g 1.20 1.04 0.84 1.32 1.63 1.75
5g 3.78 2.69 2.59 7.26 5.95 5.96
6g 14.2 7.19 11.9 59.1 27.8 30.6
7g 58.5 23.7 73.6 646 146 195
8g 276 82.1 597 8690 919 1890
9g 1450 270 5900 127000 6310 29700
10g 7960 864 64000 - 48900 -
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Current Status

Calculation of higher order processes is more complicated.
Tree-level is now fully automated, limits due to algorithms and
computers.
Automation of one-loop has seen many new processes
calculated.
A growing number of NNLO calculations

done

for some processes

first solutions

n legs

m loops

1 2 3 4 5 6 7 8 9

1

2

0
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Parton-Level Tools

Program 2 → n Ampl. Integ. Public? Lang.
ALPGEN n = 8 rec. Multi yes Fortran

AMEGIC++ n = 6 hel. Multi yes C++
COMIX n = 8 rec. Multi yes C++

COMPHEP n = 4 trace 1 Channel yes C
CALCHEP n = 4 trace 1 Channel yes C
HELAC n = 8 rec. Multi yes Fortran

MADEVENT n = 6 hel. Multi yes Python/Fortran
WHIZARD n = 8 rec. Multi yes OCaml
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Current Best Option

Currently the best combination of
phase-space and ME calculation, i.e.

fastest and highest multiplicity COMIX

Colour-dressed Berends-Giele amplitudes
in the SM with fully recursive phase space
generation.

16000
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22000

24000

σ 
[p

b]

HAAG
Rambo
CSI

10
3

10
4

10
5

integration time [s]

0,1

1

10

∆σ
/σ

 [
%

]

gg → 6g

σ [µb] Number of jets

bb̄ + jets 0 1 2 3 4 5 6
Comix 471.2(5) 8.83(2) 1.813(8) 0.459(2) 0.150(1) 0.0531(5) 0.0205(4)
ALPGEN 470.6(6) 8.83(1) 1.822(9) 0.459(2) 0.150(2) 0.053(1) 0.0215(8)
AMEGIC 470.3(4) 8.84(2) 1.817(6)

gg → ng Cross section [pb]
n 8 9 10 11 12√

s [GeV] 1500 2000 2500 3500 5000
Comix 0.755(3) 0.305(2) 0.101(7) 0.057(5) 0.026(1)
Maltoni(2002) 0.70(4) 0.30(2) 0.097(6)
ALPGEN 0.719(19)
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Summary

Monte Carlo sampling is a vital tool in particle physics for
calculating observables.

Modern phase-space sampling and matrix element calculation
techniques allow ever higher multiplicity matrix elements to be
calculated.

However eventually we still have to use approximations and
models to study LHC physics, as we will see in the rest of the
lectures.

Jeppe R. Andersen Intro to MC & Event Generation L1: Introduction


	Overview
	Monte Carlo Techniques
	Random Number Generation
	Improving the Convergence


