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Introduction

In classical and quantum electrodynamics accelerated charges
radiate.

Similarly in QCD accelerated colour charges radiate.

This gives a cascade of quarks and gluons, the parton shower
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A Monte Carlo Event

t

t̄

Hard Process, usually
calculated at leading order
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A Monte Carlo Event
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state parton showerp, p̄
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A Monte Carlo Event
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A Monte Carlo Event
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A Monte Carlo Event
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A Monte Carlo Event
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Plan

Infrared divergences.

Colinear Emission.

Sudakov Form Factors.

Soft emission and colour coherence.

Initial-State radiation.

Heavy quarks.

Dipole cascades.

Intrinsic p⊥
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Parton Showers

Gluon Emission

Let’s start with the simplest possible gluon emission process,
i.e. e+e− → qq̄g .

e+

e−

q

q̄

g
γ/Z 0 e+

e−

q

q̄

γ/Z 0

g

The total cross section is

σ(e+e− → qq̄g) = σ0CF
αS

2π

∫

dx1dx2
x21 + x22

(1− x1)(1 − x2)
,

where xi ≡ 2pi/
√
s and σ0 = σ(e+e− → qq̄).

Divergent at the edge of phase space as x1,2 → 1 so that the
total cross section is σ = ∞!
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Parton Showers

Gluon Emission

Common feature of all perturbative QCD calculations.

Configurations which are indistinguishable from the
leading-order result are divergent.

Physically there are two regions where this happens

1 Colinear limit: x1 → 1 at fixed x2 or x2 → 1 at fixed x1

2p2·k =
sx2x3

2
(1−cos θ23) = s(1−x1) ⇒ (1−cos θ23) =

2(1− x1)

x2x3
→ 0.

2 Soft limit: x1,2 → 1 at fixed 1−x1
1−x2

Eg =

√
s

2
x3 =

√
s

2
(1− x1 + 1− x2) → 0.

Both universal features of QCD matrix elements.
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Parton Showers

Colinear Limit

If we take k parallel to p2 (θ23 = 0) we can define

p2 = (1− z)p̄2, k = zp̄2, with p̄22 = 0.

In this limit the matrix element factorizes

|Mqq̄g |2 = |Mqq̄ |2 ×
g2
s

p2 · k
× CF

1 + (1− z)2

z
.

As does the phase space

dx1dx2 −→
1

4
z(1− z)dzdθ223.
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Parton Showers

Colinear Limit

Putting this together

σ = σ0

∫

dθ223
θ223

dzCF

αS

2π

1 + (1− z)2

z
.

The Dokshitzer-Gribov-Lipatov-Altarelli-Parisi splitting
function is a universal probability distribution for the radiation
of a colinear gluon in any process producing a quark.

Exactly same form for anything proportional to θ2, e.g.

transverse momentum k2
⊥
= z2(1− z)2θ2;

invariant mass q2 = z(1 − z)θ2E 2.

such that
dθ2

θ2
=

dk2
⊥

k2
⊥

=
dq2

q2
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Parton Showers

Parton Shower

The simulation of QCD radiation is
based this factorization, i.e

dσn+1 = dσn
dθ2

θ2
dz

αS

2π
Pji (z)

where the splitting function only
depends on the spin and flavour of
the partons.

Mn

i

k

j

θk

θj

Jeppe R. Andersen Intro to MC & Event Generation L1: Introduction



Intro to MC & Event Generation L1: Introduction

Parton Showers

Splitting Functions

z

1− z

Pq→qg (z) = CF

1 + z2

1− z

z

1− z

Pq→gq(z) = CF

1 + (1− z)2

z

z

1− z

Pg→gg (z) = CA

[

1− z

z
+

z

1− z
+ z(1 − z)

]

z

1− z

Pg→qq̄(z) = TR

[

z2 + (1− z)2
]
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Parton Showers

Parton Shower

This expression is singular as θ → 0.
What is a parton? (or what is the difference between a
colinear pair and a parton).
Introduce a resolution criterion, e.g. k⊥ > Q0.
Combine the virtual corrections and unresolvable emission

Resolvable Emission
Infinite

Unresolvable Emission
Infinite

“Unitarity”: Unresolved + Resolved =1. Obviously not the
full perturbative information. Defines the virtual contributions
to allow for a probabilistic interpretation of emissions .
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Parton Showers

Sudakov Form Factor

We can then exponentiate the real emission piece

P(unresolved) = 1− P(resolved),

= 1−
∫ Q2

q2

dk2

k2

∫ 1−
Q2
0

q2

Q2
0

q2

dz
αS

2π
P(z),

= exp



−
∫ Q2

q2

dk2

k2

∫ 1−
Q2
0

q2

Q2
0

q2

dz
αS

2π
P(z)



 .

The Sudakov form factor which is the probability of evolving
between two scales and emitting no radiation.

More strictly it is the probability of evolving from a high scale
to the cut-off with no resolvable emission.
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Parton Showers

Sudakov Form Factor

More formally, the probability of emission between dq2 and
q2 + dq2 is

dP =
dq2

q2

∫ 1−
Q2
0

q2

Q2
0

q2

dz
αS

2π
P(z)

We can then write a differential equation for the evolution of
the probability of no-emission between Q2 and q2, ∆(Q2, q2)

d∆(Q2, q2) = ∆(Q2, q2)dP ⇒ d∆(Q2, q2)

∆(Q2, q2)
=

dq2

q2

∫ 1−
Q2
0

q2

Q2
0

q2

dz
αS

2π
P(z)

giving

∆(Q2, q2) = exp



−
∫ Q2

q2

dk2

k2

∫ 1−
Q2
0

q2

Q2
0

q2

dz
αS

2π
P(z)





Jeppe R. Andersen Intro to MC & Event Generation L1: Introduction



Intro to MC & Event Generation L1: Introduction

Parton Showers

Numerical Procedure

Radioactive Decay

Start with an isotope.

Work out when it decays by generating a random
number R∃[0, 1] and solving

R = exp

[

−
t

τ

]

,

where τ is its lifetime.

Generate another random number and use the
branching ratios to find the decay mode.

Generate the decay using the masses of the decay
products and phase space.

Repeat the process for any unstable decay
products.

This algorithm is actually used in Monte Carlo
event generators to simulate particle decays.

Parton Shower

Start with a parton at a high virtuality, Q, typical
of the hard collision.

Work out the scale of the next branching by
generating a random number R∃[0, 1] and
solving

R = ∆(Q
2
, q

2
),

where q is the scale of the next branching.

If there’s no solution for q > Q0 then stop.

Otherwise workout the type of branching.

Generate the momenta of the decay products
using the splitting functions.

Repeat the process for the partons produced in
the branching.
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Parton Showers

Veto Algorithm

Usually we cannot easily solve ∆(Q2, q2) = R.

Instead we start by picking an overestimate Pover(z) ≥ P(z)
which is easily invertible, i.e. we can calculate
H(z) =

∫

Pover(z)dz and H−1(z).

Also overestimate of the integration region zover
min

≤ zmin and
zovermax ≥ zmax, and the maximum value of αS ,
αover

S ≥ αS (p⊥(q
2, z)) ∀ z , q2.

We now have an overestimate of the integrand of the Sudakov
form factor, i.e.

F (k2) =
1

k2

∫ zmax

zmin

dz
αS

2π
P(z) → G(k2) =

1

k2

∫ zover
max

zover
min

dz
αover
S

2π
Pover(z)
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Parton Showers

Veto Algorithm

We can solve this to get a first trial value of q2

lnR = −
∫ Q2

q2

dk2

k2

∫ zover
max

zover
min

dz
αover
S

2π
Pover(z) ⇒ q2 = Q2 exp





lnR
∫ zover

max

zover
min

dz
α

over

S

2π Pover(z)





However we cannot do simple accept/reject
Instead generate a value of z using

z = H−1 [H(zovermin ) +R(H(zovermax)− H(zovermin ))]

We reject the emission if z is outside the true limits or with
probability

F (q2)

G (q2)
=

αS

2πP(z)
αover

S

2π Pover(z)
≥ R

if z is inside the true limits but if the try is rejected start
again with Q2 = q2 and generate another try.
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Parton Showers

Veto Algorithm

If we define Pn(q
2) to be probability we accept q2 after rejecting n

attempts then the probability of generating q2 is
∑

∞

n=0 Pn(t),
where

P0(q
2) = G(q2)∆over(Q2, q2)

F (q2)

G(q2)
= ∆over(Q2, q2)F (q2)

P1(q
2) =

∫ Q2

q′2

dq′2G(q′2)∆over(Q2, q′2)

[

1− F (q′2)

G(q′2)

]

G(q2)∆over(q′2, q2)
F (q2)

G(q2)

= F (q2)∆over(Q2, q2)

∫ Q2

q2

dq′2
(

G(q′2)− F (q′2)
)

. . .

Pn(q
2) =

1

n!
F (q2)∆over(Q2, q2)

[

∫ Q2

q2

dq′2
(

G(q′2)− F (q′2)
)

]n
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Parton Showers

Veto Algorithm

Summing

∞
∑

n=0

Pn(t) = F (q2)∆over(Q2, q2)

∞
∑

n=0

[

∫ Q2

q2

dq′2
(

G(q′2)− F (q′2)
)

]n

= F (q2)∆over(Q2, q2) exp

[

∫ Q2

q2

dq′2
(

G(q′2)− F (q′2)
)

]

= F (q2) exp

[

−
∫ Q2

q2

dq′2G(q′2)

]

exp

[

∫ Q2

q2

dq′2
(

G(q′2)− F (q′2)
)

]

= F (q2)∆over(Q2, q2)

as required.
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Parton Showers

Monte Carlo Procedure

The key difference between the different Monte Carlo simulations
is in the choice of the evolution variable.

Evolution Scale

Virtuality, q2

Transverse Momentum, k⊥
Angle, θ

Energy fraction, z

Energy fraction
Light-cone momentum fraction
. . .

Are all the same in the colinear limit.
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Parton Showers

Soft Emission

We have only considered
colinear emission. What
about soft emission?

Soft gluons come from all
over the event.

There is quantum
interference

Does this spoil the parton
shower picture?
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Parton Showers

Soft Limit

In the limit that Eg → 0 the matrix element for the
e+e− → qḡ factorizes

Mqq̄g = Mqq̄gs t
a
ij

(

p1

p1 · k
− p2

p2 · k

)

· ǫA(k).

Called the Eikonal Current.

The matrix element squared therefore factorizes in this case

|Mqq̄g |2 = |Mqq̄|2g2
s CF

2p1 · p2
p1 · kp2 · k

.

In this case the phase space is

dx1dx2 −→
2

s
EgdEgd cos θ.
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Parton Showers

Soft Limit

So in the soft limit

σ = σ0

∫

CF

αS

2π

dEg

Eg
d cos θ

2(1− cos θqq)

(1− cos θqg )(1− cos θqg )
.

Gives the Dipole Radiation pattern.

Universal probability distribution to emit a soft gluon from
any colour-connected pair of partons.

Only universal at the amplitude level
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Parton Showers

Angular Ordering

In the soft limit the matrix element
factorizes but at the amplitude level.

The remarkable result is that if we
take the large number of colours limit
much of the interference is destructive.

In particular if we consider the colour
flow in an event.

QCD radiation only occurs in a cone
up to the direction of the colour
partner.

The best choice of evolution variable is
therefore an angular one

Feynman Diagram

e+

e−

Z0/γ
q

q̄

q̄

g

q
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Parton Showers

Colour Coherence

X X

Wide angle soft gluons cannot resolve the difference between
a gluon and ”colinear” quark and gluon with the same
quantum numbers.

Called Colour Coherence

Angular ordering is one way of including this physics, but
there are others.
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Parton Showers

Accuracy of Parton Shower simulations

Formally the parton shower is accurate to leading log.

∆(Q2,Q2
0 ) ≈ exp

[

−CF

αS

2π
ln2
(

Q2

Q2
0

)]

However Monte Carlo simulations include a number of
subleading effects.

The most important is the conservation of energy and
momentum.

Others include the choice of the scale for αS .
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Parton Showers

Running Coupling

Some of the higher order effects are included by

replacing αS → αS(k
2
⊥
)

Gives more emission as k2 → Q2
0 . The phase space fills with

soft gluons.

Must avoid the Landau pole K 2
⊥
≫ Λ2 so that Q2

0 becomes a
physical parameter.
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Parton Showers

LEP Event Shapes
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Parton Showers

LEP Jet Resolution
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Parton Showers

Jet Shapes
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Parton Showers

Hadron–Hadron Simulations

In order to simulate hadron collisions we also need to simulate
initial-state radiation.
In principle this is similar to final-state radiation, but in
practice there is a complication.
For final-state radiation: One end of the evolution fixed, the
scale of the hard collision.
For initial-state radiation: Both ends of the evolution fixed,
the hard collision and the incoming hadron.

Use a different approach based on the evolution equations.
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Parton Showers

Initial-State Radiation

There are two options for the initial-state shower:

Forward Evolution

Start at the hadron with the distribution of partons given by
the PDF.
Use the parton shower to evolve to the hard collision.
Reproduces the PDF by a Monte Carlo procedure.
Unlikely to give an interesting event at the end, so highly
inefficient.

Backward Evolution

Start at the hard collision and evolve backwards to the proton
guided by the PDF.
Much more efficient in practice.
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Initial-State Radiation

The evolution equation for the PDF can be written as

t
dfb(x ,Q

2)

dt
=
∑

a

∫ 1

x

dz

z
fa

(x

z
,Q2

) αS

2π
Pa→bc(z) where t = ln

(

Q2

Λ2

)

or

dfb(x ,Q
2)

fb(x ,Q2)
=

dt

t

∑

a

∫ 1

x

dz

z

x ′fa
(

x ′,Q2
)

xfb(x ,Q2)

αS

2π
Pa→bc(z) where x ′ =

x

z

This can be written as a Sudakov form-factor for evolving
backwards in time, i.e from the hard collision at high Q2 to
lower with

∆ = exp

(

−dt

t

∑

a

∫ 1

x

dz

z

x ′fa
(

x ′,Q2
)

xfb(x ,Q2)

αS

2π
Pa→bc(z)

)

.
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Backward Evolution

The evolution equations give
the PDFs at (x ,Q2) as a
function of those at
(> x , < Q2)

Backward evolution starts
from the hard scattering at
(x ,Q2) and work ↓ q2 and
↑ x towards the incoming
hadron.
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Hadron Collisions

The hard scattering sets up the initial conditions for the
parton shower.

Colour coherence is important here too.

Each parton can only emit in a cone stretching to its colour
partner.

Essential to fit the Tevatron data.
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Colour Coherence

Distributions of the
pseudorapidity of the third
jet.

At the time only described
by HERWIG which has
complete treatment of
colour coherence.

PYTHIA+ had partial.

Modern generators now all
include coherence in some
manner.

PRD50, 5562, CDF (1994)
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Colour Coherence
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Colour Coherence
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Hadronic Event Shapes

In hadron collisions we can’t use the same event shapes as
e+e− collisions due to radiation along the beam direction.

There are however a range of event shapes using transverse
quantities, for example

τ⊥,C = 1−max
n̂T

∑

i |~p⊥,i · n̂T |
∑

i p⊥,i

.
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Hadronic Event Shapes

CMS Phys. Lett. B699 (2011) 48-67

Jeppe R. Andersen Intro to MC & Event Generation L1: Introduction



Intro to MC & Event Generation L1: Introduction

Parton Showers

Heavy Quarks

The colinear singularity is regulated
by the quark mass.

2p2 · k = 2Eg(Eq − |pq| cos θ23)

= 2Eg |pq |(
√

1 +
m2

|pq|2
− cos θ23)

Taking the azimuthal average of the
soft radiation function gives a
smooth suppression of radiation as
θ → 0 starting from θ ∼ m

E
.

Historically implemented as a
cut-off.

0.0 0.2 0.4 0.6 0.8 1.0
θ

0

5

10

15

20

25

30

35

40

〈 W〉

Massless

Massive

Dead-cone

θ∼m
E

Jeppe R. Andersen Intro to MC & Event Generation L1: Introduction



Intro to MC & Event Generation L1: Introduction

Parton Showers

Heavy Quarks

Better treatment involves the use of the quasi-colinear
splitting functions Catani et.al Phys.Lett. B500 149-160 (2001)

dP =
αS

2π

dq2

q2 −m2
Pĩj→ij(z , q

2)

where

Pq→qg =
CF

1− z

[

1 + z2 −
2(1− z)m2

q

q2 −m2
q

]

,Pg→qq̄ = TR

[

1− 2z (1− z) +
2m2

q

q2 −m2
q

]

,

Pg̃→g̃g =
CA

1− z

[

1 + z2 −
2(1− z)m2

g̃

q2 −m2
g̃

]

,Pq̃→q̃g =
2CF

1− z

[

z −
(1 − z)mq̃

q2 −m2
q̃

]

.

Gives a smooth suppression as θ → 0.
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Heavy Quarks

Only exact for either:

soft emission Egluon → 0;
radiation from scalars.

In general the radiation
depends on:

Gluon energy;
spins of radiating particles
and colour partner;
colours of the particles;

i.e. process-dependent mass
corrections.

angle (degrees)

3 → 3 + 1

8 → 3 + 3̄
1 → 3 + 3̄

3 → 3 + 8

Nucl.Phys. B603 297-342 Norrbin & Sjostrand (2001)
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Jet Shapes for bottom quark jets
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b-fragmentation function
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The Colour Dipole Model

Conventional parton showers: start from colinear limit, modify
to incorporate soft gluon coherence

Colour Dipole Model: start from soft limit Emission of soft
gluons from colour-anticolour dipole universal (and classical):

dσ ∼ σ0
1

2
CA

αS(k⊥)

2π

dk2
⊥

k2
⊥

dy ,

where y = is the rapidity of the emitted particle.

After emitting a gluon, colour dipole is split:
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The Colour Dipole Model

Subsequent dipoles continue to split.

Conventional parton-showers 1 → 2 parton splittings.

CDM one dipole to two dipoles, 2 → 3 partons.

Problems with the treatment of initial=-state radiation.

The hadronic remnant forms a dipole with scattered quark.

But as the remnant is an extended object there is a
suppression.
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Dipole Cascades

Most new shower algorithms are based on a dipole picture.

However most split the dipole into two pieces, one for
radiation from each of the partons forming it, as in
Catani-Seymour subtraction.

The partner is used to absorb recoil and define the radiation
pattern.

Dipole Vinica, ARIADNE
Split PYTHIA6.3, PYTHIA8, Sherpa and Herwig++ dipole showers
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Primordial p⊥

The partons inside the proton have
some motion with p⊥ ∼ 1

1 fm .

Intrinsic p⊥ is essential to describe the
low p⊥ behaviour of Drell-Yan.

Particularly important at the Tevatron
as no perturbative radiation in some
events.

Less important at the LHC, pp and
higher energy.
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Primordial p⊥
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Older Programs

PYTHIA 6: two showers

q2 ordering with veto of non-ordered final state emission and
partial implementation of angular ordering in initial state;

p⊥ -ordered parton showers, interleaved with multi-parton
interactions and dipole-style recoil.

Matrix element for first emission in many processes and a
large range of hard processes.

HERWIG6: complete implementation of colour coherence;
NLO evolution for large x; smaller range of hard processes.

ARIADNE: complete implementation of colour dipole model;
best fit to HERA data; interfaced to PYTHIA for hard
processes.
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Modern Programs

PYTHIA8: new program with many of the same features as
PYTHIA6, many obsolete features removed.

SHERPA: new program built from scratch; either older q2 or
newer p⊥-ordered dipole showers; multi-jet matching scheme
(CKKW) and NLO built in.

Herwig++: new program with similar parton shower to
HERWIG (angular ordered) plus quasi-colinear limit and recoil
strategy based on colour flow; spin correlations.
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Summary

Accelerated colour charges radiate gluons.

As the gluon is also coloured this leads to a cascade of gluons.

Modern parton shower algorithms are sophisticated
implementations of perturbative QCD.

Allows us to evolve from the scale of the hard collision to the
hadronization scale.

However we then need non-perturbative hadronization models.
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