## Monte Carlo Techniques and Event Generation Lecture 3: Hadronization & Underlying Event

Jeppe R. Andersen

IPPP Durham

Terascale Monte Carlo School DESY Hamburg, April 13-17 2015



Hard Process, usually calculated at leading order











#### Hadronization

- Partons aren't physical particles: they can't propagate freely.
- We therefore need to describe the transition of the quarks and gluons in our perturbative calculations into the hadrons which can propagate freely.
- We need a phenomenological model of this process.
- There are two models which are commonly used:
  - Lund String Model;
  - Cluster Model.

#### Confinement

■ We know that at small distances we have asymptotic freedom and the force between a quark-antiquark pair is like that between an  $e^+e^-$  pair.



But at long distances the self interactions of the gluons make the field lines attract each other.



#### Confinement

- Gives 1/r potential at short distances
- Linear potential at long distances and confinement.

$$V(r) \sim -\frac{4}{3} \frac{\alpha_S}{r} + \kappa r \sim -\frac{0.13}{r} + r$$

for  $\alpha_S \sim 0.5$ , r in fm and V in GeV.

 Either phenomenogically from quarkonium or lattice QCD.





## **Lund String Model**

- Assume  $\frac{1}{r}$  important for hadron structure but not production.
- In QCD the field lines seem to be compressed into a tube-like region, looks like a string.
- So we have linear confinement with a string tension,

$$F(r) \approx \text{const} = \kappa \approx 1 \,\text{Gev/fm}.$$

Separate the transverse and longitudinal degrees of freedom gives a simple description as a 1+1 dimensional object, the string, with a Lorentz invariant formalism.

#### Mesons

- In the string model mesons are light  $q\bar{q}$  pairs connected by a string.
- $\blacksquare$   $\ell = 0$  messons only have 'yo-yo' modes



Area law  $m^2 = 2\kappa^2$ .



## **Lund String Model**

- Start by considering a  $q\bar{q}$  pair produced in  $e^+e^-$  annihilation.
- Ignore gluon radiation for the time being.
- $\blacksquare$  q and  $\bar{q}$  joined by a string.
- $q\bar{q}$  pairs are created by tunnelling in the intense chromomagnetic field of the string.

$$rac{\mathrm{d}\mathcal{P}}{\mathrm{d}x\mathrm{d}t}\propto\exp\left(-\pirac{m_q^2}{\kappa}
ight)$$

- The string breaks into mesons long before the yo-yo point.
- Gives a simple but powerful picture of hadron production.

## Lund String Model



### Lund Fragmentation Function

- Fermi motion is a gaussian transverse momentum distribution
- The tunnelling probability becomes

$$\frac{\mathrm{d}\mathcal{P}}{\mathrm{d}x\mathrm{d}t} \propto \exp\left[-b\left(m_q^2 + p_\perp^2\right)\right]$$

- The string picture constrains the fragmentation function
  - Lorentz invariance
  - Acausality
  - Left-right symmetry
- The function has the form

$$f(z) \propto z^{a_{\alpha}-a_{\beta}-1}(1-z)^{a_{\beta}}$$

where  $a_{\alpha,\beta}$  are adjustable parameters for quarks  $\alpha$  and  $\beta$ .

 $\blacksquare$  a, b and  $m_q$  are the main tuneable parameters of the model.

### Three-jet Events

- So far we have only considered the hadronization of  $q\bar{q}$  pairs, what about gluons?
- The gluon gives a kink on the string.



- the string effect
- The string model has an infrared safe matching with the parton shower.
- Gluons with  $k_{\perp} < \frac{1}{\text{string width}}$  irrelevant.

### String Effect

- Less radiation between the quark and antiquark.
- Either non-perturbatively via the string model.
- Can get the same result perturbatively via colour coherence.





### Summary of the String Model

- String model strongly physically motivated.
- Very successful fit to data.
- Universal: fitted to  $e^+e^-$  data little freedom elsewhere.
- How does motivation translate to prediction?
- ~one free parameter per hadron/effect!
- Blankets too much perturbative information?
- Can we get by with a simpler model?

#### Preconfinement

- In the planar approximation, large number of colours limit:
   Gluon = colour-anticolour pair
- We can follow the colour structure of the parton shower.
- At the end colour-singlet pairs end up close in phase space.
- Non-perturbatively split the gluons into quark-antiquark pairs.



#### Preconfinement

- The mass spectrum of colour-singlet pairs is asymptotically independent of energy and the production mechanism.
- It peaks at low mass, of order the cut-off *Q*<sub>0</sub>.
- Decreases rapidity for large cluster masses.



#### Cluster Model

- Project the colour-singlet clusters onto the continuum of high-mass mesonic resonances (=clusters).
- Decay to lighter well-known resonances and stable hadrons using a pure 2-body phase-space decay and phase space weight.

$$W \propto (2s_1+1)(2s_2+1)\frac{2p^*}{m}$$

- The hadron-level properties are fully determined by the cluster mass spectrum, i.e. by the properties of the parton shower.
- Heavier hadrons, including baryons and strange hadrons supressed.
- The cut-off  $Q_0$  is the crucial parameter of the model.

#### Cluster Model: Problems

- Tail of high-mass clusters for which cluster decay is not a good approximation.
  - Split heavy clusters into two lighter clusters along "string" direction.
  - $\sim 15\%$  of clusters in  $e^+e^-$  collisions at  $m_Z$  but gives $\sim \frac{1}{2}$  of the hadrons.
- 2 Sensitivity to particle content.
  - only include complete multiplets.
  - change model so adding new heavy particles doesn't effect decay of light clusters.
- 3 Leading hadrons are too soft
  - Perturbative quarks remember their direction

$$P(\theta^2) \sim \exp\left(-rac{ heta^2}{2 heta_0^2}
ight)$$

- String like and extra parameter.
- 4 Problems with particle correlations.

#### The "Beliefs"

There are two main schools of thought in the event generator community.

#### **PYTHIA**

- Hadrons are produced by hadronization. You must get the nonperturbative dynamics right.
- Better data has required improvements to the perturbative simulation.
  - There ain't no such thing as a good parameter-free description.

#### **HFRWIG**

- Get the perturbative physics right and any hadronization model will be good enough
- Better data has required changes to the cluster model to make it more string-like.

### **Hadrochemistry**



### Identified Particle Spectra



#### The facts?

- All the generators give good agreement for event shapes.
- HERWIG has less parameters to tune the flavour composition and tends to be worse for identified particle spectra.
- Baryon production is often a problem.

### **Baryon Production**

- All the models have some problems with baryon production.
- In the Lund model baryons are picture as quark quarks attached to a common centre, a colour source/sink



At large separation two of the quarks are tightly bound, a diquark.



■ The diquark is treated as a colour antitriplet  $(3 \otimes 3 = \overline{3} \oplus 6)$ 

### **Baryon Production**

- Two quarks can tunnel nearby in phase space: baryon—antibaryon pair
- In the string model either use diquarks, with an extra parameter for each diquark.
- or the pop-corn model.
- In the cluster model allow diquarks to be produced in cluster decay (always) or non-pertrubative gluon splitting (allowed in some variants).

### **Baryon Production**



### Universality

- Evolution to a universal, low hadronization scale ensures the hadronization parameters are universal.
- Don't need to retune at each energy.
- Only have to tune the new hadron specific parameters in hadronic collisions.



### Hadron Properties

- Hadronization produces hadrons so we need both the hadron properties: quark content; spin; mass; width; etc..
- and to decide which hadrons to produce.
- Many of the hadrons produced during hadronization (primary hadrons) are unstable so we also need to know how they decay to secondary hadrons.
- Not just a matrer of typing in the PDG:
  - not all resonances in a given multiplet have been measured;
  - measured branching fractions rarely add up to exactly 100%;
  - measured branching fractions rarely exactly respect isospin;
- Also need to make a lot of choices for the matrix elements to describe the various decay modes.

### Hadron Properties

- Often not even numerical values for partial widths.
- Particles decaying into final-states which are nt allowed for on-shell masses, e.g.  $h_1' \to K\bar{K}^*$ .
- In some cases the choice of decay modelling effects the decay tables, e.g.  $a_1 \rightarrow \rho \pi$  vs.  $a_1 \rightarrow \pi \pi \pi$ .



### Hadron Decays

- FORTRAN event generators typically used external packages:
  - TAUOLA  $\tau$  lepton decays;
  - PHOTOS QED radiation in decays;
  - **EVTGEN** hadron, especially *B* meson decays.
- Originally expected more of this in the new generation of programs.
- But better modelling requires passing more information between the different stages of event generation.
- Also many problems with interfaces.
- Net result: better simulation of hadron and  $\tau$  lepton decays in all the new event generators and less use of external packages.

# $au ightarrow ho(a_1) u_ au ightarrow \pi\pi(\pi) u_ au$



### B decays



### Summary

- Hadronization is described by non-perturbative models.
- Modern hadronization models give a good description of a wide range of processes.
- The parameters are universial allowing predictions once they are tuned to data.
- Don't forget about the hadron properties and decays.

#### Introduction

- As well as the hard perturbative scattering there is additional hadronic activity.
- This must be modelled as it is both observable and can have a large effect on jet energies.
- Before we can discuss the models we will first need to understand the definitions of the various types of event.
- We will then discuss the various different models.



## Hadronic Cross Sections

The total hadronic cross section consists of various components

$$\sigma_{\text{total}} = \sigma_{\text{elastic}} + \sigma_{\text{single-diffractive}} + \sigma_{\text{double-diffractive}} + \cdots + \sigma_{\text{non-diffractive}}$$



- Experimentally minimum bias ≈ all events with no bias from trigger conditions
- Theoretically  $\sigma_{\min-\text{bias}} \approx \sigma_{\textit{double-diffractive}} + \sigma_{\textit{non-diffractive}}$

## Hadronic Cross Sections



- The underlying is the additional activity from soft interactions in additional to the primary hard partonic process.
- This is a theoretical definition and such a separation is model dependent.
- However we except the description to be similar to the one we need for the bulk of non-diffractive events.

# Multiparton Interaction Models

- The cross-section for 2 → 2 scattering is dominated by t-channel channel gluon exchange.
- It diverges like

$$rac{\mathrm{d}\hat{\sigma}}{\mathrm{d}p_{\perp}^2} = rac{1}{p_{\perp}^4} \quad \mathrm{for} \quad p_{\perp} o 0$$

■ This must be regulated used a cut  $p_{\perp} > p_{\perp}^{\min}$ .



- For small values of  $p_{\perp}^{min}$  this is larger than the total hadron–hadron cross section.
- More than one parton-parton scattering per hadron collision.

- Hadrons are extended objects so we also need the matter distribution.
- Assume the dependence in x ( $\parallel$  to the beam) and b ( $\bot$  to the beam) factorizes

$$G_i(x, \vec{b}; \mu^2) = f_i(x; \mu^2) S(\vec{b}).$$

and the *n*-parton distributions are "independent"

$$G(x_i, x_j, \vec{b}_i, \vec{b}_j, \mu^2) = G_i(x_i, \vec{b}_i; \mu^2)G_j(x_j, \vec{b}_j; \mu^2)$$

■ The inclusive cross section for  $pp \rightarrow \text{jets}$  is

$$\sigma_{\rm inc} = \int_{p_\perp^{\rm min}}^{\frac{E_{\rm CMF}}{2}} \int \mathrm{d}x_1 \int \mathrm{d}x_2 \sum_{ij} f_i(x_1,p_\perp^2) f_j(x_2,p_\perp^2) \frac{\mathrm{d}\hat{\sigma}_{ij}}{\mathrm{d}p_\perp}$$

■ The *b* dependence from

$$A(b) = \int \mathrm{d}^2 b_1 S(b_1) \int \mathrm{d}^2 b_2 S(b_2) \delta(b - b_1 + b_2)$$

is normalised such that  $\int db^2 A(b) = 1$ .

- If we assume the separate scatters are uncorrelated, *i.e.* they obey Poissonian statistics.
- The average number of scatters per event is

$$\langle n \rangle = \frac{\sigma_{\rm inc}}{\sigma_{\rm nd}}.$$

Alternatively the probability of m scatters is

$$P_m = \frac{\left[A(b)\sigma_{\rm inc}\right]^m}{m!} \exp\left(-A(b)\sigma_{\rm inc}\right).$$

■ The total cross (non-diffractive) cross section is

$$\sigma_{\mathrm{nd}} = \int \mathrm{d}b^2 \sum_{m=1}^{\infty} P_m = \int \mathrm{d}b^2 \left[ 1 - \exp\left( -A(b)\sigma_{\mathrm{inc}} \right) \right]$$

Therefore

$$\langle n \rangle = \frac{\int \mathrm{d}b^2 \sum_{m=1}^{\infty} m P_m}{\int \mathrm{d}b^2 \sum_{m=1}^{\infty} P_m} = \frac{\int \mathrm{d}b^2 \langle n(b) \rangle}{\int \mathrm{d}b^2 \left[1 - \exp\left(-\langle n(b) \rangle\right)\right]} = \frac{\sigma_{\mathrm{inc}}}{\sigma_{\mathrm{nd}}}$$

■ Use either the electromagnetic form factor

$$S_P(\vec{b}) = \int \frac{\mathrm{d}^2 \vec{k}}{2\pi} \frac{e^{ik \cdot b}}{1 + |\vec{k}|}$$

giving

$$A(b) = \frac{\mu^2}{96\pi} (\mu b)^2 K_3(\mu b).$$

or an empirical double Gaussian double Gaussian

$$ho_{\mathrm{matter}}(r) = extstyle N_1 \exp\left(-rac{r^2}{r_1^2}
ight) + extstyle N_2 \exp\left(-rac{r^2}{r_2^2}
ight)$$

where  $r_1 \neq r_2$  gives "hot spots" and

$$A(b) = \int \mathrm{d}^3 \mathrm{d}t 
ho_{1,\mathrm{matter}}^{\mathrm{boosted}}(x,t) 
ho_{2,\mathrm{matter}}^{\mathrm{boosted}}(x,t)$$



- Average activity at b proportional to A(b)
- Central collisions more active, broader than Poissonian
- Peripheral collisions normally give few if any collisions.

## Multiparton Interaction Models

 If the interactions occur independently obeys Poissonian statistics

$$P_n = \frac{\langle n \rangle^n}{n!} e^{-\langle n \rangle}$$

■ However energy-momentum conservation tends to suppressed large numbers of parton scatterings.



## Number of Interactions



#### PYTHIA Model

■ Don't use a strict cut-off in  $p_{\perp}$ 

$$\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}p_{\perp}^2} \propto \frac{\alpha_{\mathsf{S}}^2(p_{\perp}^2)}{p_{\perp}^4} \to \frac{\alpha_{\mathsf{S}}^2(p_{\perp}^2)}{(+pp_{\perp}^2)^2}$$

- double Gaussian matter distribution,
- PDFfs rescaled for momentum conservation
- Trace flavour content of remnant, including baryon number.
- Colour arrangement among outgoing partons
- Interactions ordered in decreasing  $p_{\perp}$ , and evolution interleaved with ISR

$$\frac{\mathrm{d}\mathcal{P}}{\mathrm{d}\boldsymbol{p}_{\perp}} = \left(\frac{\mathrm{d}\mathcal{P}_{\mathrm{MPI}}}{\mathrm{d}\boldsymbol{p}_{\perp}} + \frac{\mathrm{d}\mathcal{P}\mathrm{ISR}}{\mathrm{d}\boldsymbol{p}_{\perp}}\right) \exp\left(-\int_{\boldsymbol{p}_{\perp}}^{\boldsymbol{p}_{\perp},i-1} \left[\frac{\mathrm{d}\mathcal{P}_{\mathrm{MPI}}}{\mathrm{d}\boldsymbol{p}_{\perp}} + \frac{\mathrm{d}\mathcal{P}\mathrm{ISR}}{\mathrm{d}\boldsymbol{p}_{\perp}}\right] \mathrm{d}\boldsymbol{p}_{\perp}'\right)$$

Includes rescattering

## PYTHIA Model





# Herwig++ Model

■ In terms of the eikonal function  $\chi(b,s)$ .

$$\sigma_{\text{tot}} = 2 \int_0^\infty db^2 \left[ 1 - e^{-\chi(b,s)} \right] \quad \sigma_{\text{ela}} = \int_0^\infty db^2 \left| 1 - e^{-\chi(b,s)} \right|^2$$
$$\sigma_{\text{inel}} = \int_0^\infty db^2 \left[ 1 - e^{-2\chi(b,s)} \right]$$

■ Take eikonal + partonic scattering seriously

$$\sigma_{
m tot} = 2 \int {
m d}^2 b \left( 1 - {
m exp} \left[ -rac{1}{2} {\cal A}(b) \sigma_{
m inc} 
ight] 
ight)$$

lacksquare Given the form of the matter distribution predict  $\sigma_{
m inc}$ 

# Herwig++ Model

Too restrictive

$$\sigma_{
m tot} = 2 \int {
m d}^2 b \left( 1 - {
m exp} \, rac{1}{2} \left[ A_{
m soft}(b) \sigma_{
m soft,inc} + A_{
m hard}(b) \sigma_{
m hard,inc} 
ight] 
ight)$$

- Gives two free parameters.
- Independent perturbative scattering above  $p_{\parallel}^{\min}$
- Gluon scattering below  $p_{\perp}^{\min}$  with  $\sigma_{\mathrm{soft,inc}}$  and a Gaussian  $p_{\perp}$  distribution.
- $\blacksquare \frac{\mathrm{d}\sigma}{\mathrm{d}p_{\perp}}$  continuous at  $p_{\perp}^{\min}$ .
- Includes colour reconnection of the partons in clusters produced via MPI.

## Colour Correlations

- Colour correlations can have a big influence on the final state.
- In particular  $\langle p_{\perp} \rangle$  vs  $n_{\rm ch}$  is very sensitive to the colour flow.
- Long string to remnants many charged particles
- Short strings less charged particles.



## x-Dependent Matter Distributions

- Most models have a factorization of the x and b matter dependence.
- Corke & Sjöstrand JHEP 1105 (2011) 009 consider a Gaussian matter distribution with width

$$a(x) = a_0 \left( 1 + a_1 \ln \frac{1}{x} \right)$$





#### Measurements

- In principle all measurements at hadron collisions can be sensitive to the underlying event.
- There are three main types of measurement which are used to study, constrain, and fit the parameters of the models.
  - Measurements which are sensitive to a second hard scattering of a particular type.
  - 2 Measurements of particle numbers,  $p_{\perp}$ , etc. in phase-space regions where we don't expect perturbative radiation in hard events.
  - 3 Measurements of min-bias events.

## Double-Parton Scattering

- Look at  $\gamma$ +jets events.
- One pure QCD scattering and one  $\gamma+$ jet.
- Define an effective cross section s.t.

$$\sigma_{ab} = \frac{\sigma_a \sigma_b}{\sigma_{\text{eff}}}$$





## Double-Parton Scattering





## Underlying event measurements

- Classic approach is to define the event using a hard jet, or other particle, e.g.  $Z^0$ .
- The define toward, away, transverse max and transverse min regions.
- The transverse min region is most sensitive to the underlying event, while transverse max can also be sensitive to perturbative radiation.



## CDF Results Jets



Charged particle density and PTsum density for "leading jet" events versus E<sub>T</sub>(jet#1) for PYTHIA Tune A and HERWIG.

#### CDF Results Drell-Yan



## **CDF** Results



## First LHC Results

#### Charged Particle Multiplicities at vs=0.9, 7 TeV





Monte Carlo underestimates the track multiplicity seen in ATLAS

Physics at LHC, DESY, June 9th, 2010 -ATLAS First Physics Results

Christophe Clement

#### First LHC Results

#### **Pythia Tune to ATLAS MinBias and Underlying Event**

#### Used for the tune

ATLAS UE data at 0.9 and 7 TeV

ATLAS charged particle densities at 0.9 and 7 TeV

CDF Run I underlying event analysis (leading jet) CDF Run I underlying event "Min-Max" analysis

D0 Run II dijet angular correlations

CDF Run II Min bias

CDF Run I Z pT





#### Result

This tune describes most of the MinBias and the UE data Significant improvement compared to pre-LHC tunes

Biggest remaining deviation in  $\frac{1}{N_{\rm ev}}\cdot\frac{1}{2\pi p_{\rm T}}\cdot\frac{{\rm d}^2N_{\rm ch}}{{\rm d}\eta{\rm d}p_{\rm T}}$  These deviations could not be removed

Needs further investigations

Physics at LHC, DESY, June 9th, 2010 - ATLAS First Physics Results

#### First LHC Results

- Before the LHC start there was some worry that the models would completely fail.
- In reality in good agreement with the early data.
- Better agreement now after some tuning of the parameters.
- In both Herwig++ and PYTHIA this needs the  $p_{\perp}^{\min}$  parameter to be energy dependent.
- Older soft models don't describe the data.

## Average transverse $p_{\perp}$ vs $N_{\rm ch}$



## Transverse $p_{\perp}$ density vs $p_{\perp}$



# Transverse $N_{\rm ch}$ density vs $p_{\perp}$



## **Charged Multiplicity**



#### Beam Remnants



#### Need to assign:

- correlated flavours
- correlated  $x_i = p_{zi}/p_{ztot}$
- ullet correlated primordial  $k_{\perp i}$
- correlated colours
- correlated showers
- PDF after preceding MI/ISR activity:
  - 1 Squeeze range 0 < x < 1 into  $0 < x < 1 | \sum_i x_i$
  - 2 Valence quarks reduce by the number already kicked out.
  - Introduce companion quark  $q/\bar{q}$  to each kicked-out sea quark  $q/\bar{q}$ , with x based on assumed  $g\to q\bar{q}$  splitting
  - 4 Gluon and sea: rescale for total momentum conservation.
- Colour flow connects hard scattering to beam remnants which can have consequences.

## Summary

- Underlying event is one of the least least understood aspects of event generation.e
- Modelled and only weakly constrained by existing data.
- Models based on MPI describe the data well with a number of refinements.