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=xercise 1 - Introduction

* Schedule:

Jun

* Tuesday - Exercise 1:
* Random numbers
* MC method

* MC integration

* \Wednesday - Exercise 2:
» Sudakov form factor

» MC solution of evolution
equation
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* Thursday - Exercise 3

» Calculation & simulation of
Higgs production

* Using MC solution of
evolution equation —
calculation of pt spectrum of
Higgs at LHC



_— s Congruential linear generator

* develop our own simple generator

I, = mod(al;_1+ c,m)
I

 With mod(il, ig) = ?:1 — INT(Zl/ZQ)ZQ
seed lp, multiplicative constant « and additive constant ¢ modulus m
=>»maximal repetition period: O(m)

=2 example:
I, = 4711
a = 205
c = 29573

m = 139968
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b Randomness tests

* Congruential generator

congruential generator
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M. LUscher, A portable high-quality random number

< RAN I_UX generator for lattice field theory simulations,

Computer Physics Communications 79 (1994) 100
http://luscher.web.cern.ch/luscher/ranlux/index.html

ranlux

=2 RANLUX much more

sophisticated. Developed and
used for QCD lattice calcs




b (Generating distributions

* From uniform distributions to distributions for any
probability density function

e yse variable transformation

 linear p.d.f: fle) = 2
u(x) = / 2tdt =
0
Tj = VU
* 1/x distribution .
flz) = -
S 7
U(:U) B Fma:z: — szn

w4
Lmazx
Li =  Lmin (—)
Lmin
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b Generating distributions

* Brute Force or Hit & Miss method

* use this If there iIs No easy way to find a analytic integrable
function

*find c< maxf(x)
*reject If f(x;) <uj-c
eaccept if f(xi)>u;-c

* Improvements for Hit & Miss method by variable transtormation
*find c- g(z) > f(z)
sreject If f(z)<u;-c-g(x)
*accept if f(x)>u;-c-g(x)
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Carlo School 2015.
i Law of large numbers

* Law of large numbers
x. independent random variables, having the same mean and

variances 2 :

; o
— Nz
N 2%

for large enough N the sum converges to the correct answer.

* Convergence
is given with a certain probability ...

THIS is a mathematically serious and
precise statement 11!
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b Central Limit Theorem

* Central Limit Theorem
for large N the sum of
iIndependent random
variables is always normally
(Gaussian) distributed:

1 - (x — a,)Z-
flz) = S\ 2m P I 257 _
Zjig B, N(0,1)

=>»independent on the original sub-distributions
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Central Limit Theorem

@ Central Limit Theorem

for large N the sum of

iIndependent random variables is
always normally (Gaussian)
distributed:

f(x)

1
— ex
S\ 2T b

(z —a)°

252

» example: take sum of uniformly
distributed random numbers:

Ry

E|R;]

VIR

E|Ry,
VI[Rn

— Z R;
1=1

/udu =1/2,

= /(u —1/2)%du = 1/12

= n/2
= n/12
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e for Gaussian with mean=0 and

variance=1, take for n=12:
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T s Central Limit Theorem

G. Bohm, G. Zechin
troduction to statistics and measurement analysis for physicists

» Central Limit Theorem f(x) | i
. n=25 n=25
for large N the sum o4
of independent random ]
variables is always normally
(GaUSSIaﬂ) dlStnbUted 00— 3 00— 3 =

=>for any starting distribution .
=>for uniform distribution
=>for exponential distribution o2 02|
0 =% 2z a2
1.0} n=1 =1
4 0.4t
0.5} 02l
00— 06 =2 a 00—Z%——="% 2 =
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o ery Monte Carlo Integration

N b
» Law of large numbers 1 1
? NEJC(U@) >b_a/f(u)d’uf
i=1 a

MC estimate converges to true integral

* Central limit theorem
MC estimate is asymptotically normally distributed
it approaches a Gaussian density

g —

21

Vif]
i ~
with effective variance V(f)
= to decrease g, either reduce V(f) or increase N
* advantages for n-dimensional integral ...
.e. phase space integrals 2 — n processes

IS where other approaches tend to fall
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P ery Monte Carlo Integration

® golve b
. / f(@)dz = (b— a)E[f ()

s osti b—a <
estimate by I~ Iy = - a Zf(xz.)
» with variance = _
Vilue] = of=V b;a’ > f(@i)
N2 7, ]
= oy
(b —a)? [ X f@) (zifm))f
o n I n n

-(b—a,)2 D i J:xz) >

1
— I
n | MC_




Hannes

L \1C method: hit & miss

* Integral in hit & miss b

I f(x)dz

|
S

* Variance V[r] = (§(N))? = ¢2 using binomial statistics with

E[r] = NoP and V[r] = NgP(1—-P) with P = N/N
giving Vir] = N(1 - P)

* yncertainties in hit & miss method:

ol I()O'/NO N(l—P)
- = — e

I IoN/No

Jung, Exercise 1, Monte Carlo school 2015
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b MC method

: do even better ...

Jun

* Importance sampling
MC for function f(x)

approximate f(x) = g(x)
with g(x) > f(x) simple and integrable
generate x according to g(x):

/ g(z")dx' = Rl/ g(z")dz'

example: () 1/;@0'7
g(x) =1/x

R].
- L ] (—)

Lmin

reject event if: f(x) < g(x) R2

g, Exercise 1, Monte Carlo school 2015
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Ju

* Importance sampling
MC for function f(x)

approximate f(x) = g(x)

with g(x) > f(x) simple and integrable
generate x according to g(x):

/ g(z)dx' = Rl/ g(z")dx'
example: .
(z) = 1/z™

f
g(x)=1/x

R1
L = Lmin - (mm&m)

Lmin

reject event if: f(x) < g(x) R2

ng, Exercise 1, Monte Carlo school 2015
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* Importance sampling

MC for function f(x)
approximate f(x) = g(x)
with g(x) > f(x) simple and integrable
generate x according to g(x):

/ g(z)dx' = Rl/ g(z")dx'

example iz ) B 1/:170.7

0 L —=
9(x) = . 0 0.20.40.60.8 1
L = Tmin ° (mmam) X

Lmin

reject event if: f(x) < g(x) R2

es Jung, Exercise 1, Monte Carlo school 2015 15



* Importance sampling

MC for function f(x)
approximate f(x) = g(x)
with g(x) > f(x) simple and integrable
generate x according to g(x):

/ g(z)dx' = Rl/ g(z")dx'

example:
f(z) = 1/207
g(z) =1/

R].

Lmin

reject event if: f(x) < g(x) R2
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ESY, Harmburg A good reference

* PYTHIA 6.4 Physics and Manual

1. Sjostrand, S. Mrenna and P,
Skands

JHEP 05 (2006) 026
hep-ph/0603175)
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4 Monte Carlo Techniques

Quantum mechanics introduces & concept of randomness in the behaviour of physical
processes. The virtue of event generators is that this randomness can be simulated by
the use of Monte Carlo techniques. In the process, the program authors have to use some
ingenuity to find the most efficient way to simulate an assumed probability distribution.
A detailed description of possible techniques would carry us too far, but in this section
some of the most frequently used approaches are presented, since they will appear in
discussions in subsequent sections. Further examples may be found e.g. in [Jamnn0).
First of all one assumes the existence of a random number generator. This is a (For-
tran) function which, each time it is called, returns a number /7 in the range between 0
and 1, such that the inclusive distribution of numbers R is flat in the range, and such that
different numbers 7 are uncorrelated. The random number generator that comes with
PyTHIA is described at the end of this section, and we defer the discussion until then.

4.1 Selection From a Distribution

The situation that is probably most common is that we know a function f(x) which is
non-negative in the allowed r range 7, < T < Ty, We want to select an r ‘at random’
so that the probability in a small interval dr around a given r is proportional to f{z)dz.
Here f(r) might be a fragmentation function, a differential cross section, or any of a
number of distributions.

One does not have to assume that the integral of f{z) is explicitly normalized to unity:
by the Monte Carlo procedure of picking exactly one accepted r value, normalization 1s
implicit in the final result. Sometimes the integral of f(r) does carry a physics content
of its own, as part of an overall weight factor we want to keep track of. Consider, for
instance, the case when r represents one or several phase-space variables and f(r) a
differential cross section; here the integral has a meaning of total cross section for the
process studied. The task of a Monte Carlo is then, on the one hand, to generate events
one at & time, and, on the other hand, to estimate the total cross section. The discussion
of this important example is deferred to section 7.4.

If it is possible to find a primitive function F(rx) which has a known inverse F~'(z),
an r can be found as follows (method 1):

[ s@az=R[" f)ax
= = FYF(zns)+ R{F(Teax) = F(zuns))) . (2)

The statement of the first line is that a fraction R of the total area under f(x) should be
to the left of r. However, seldom are functions of interest so nice that the method above
works. It is therefore necessary to use more complicated schemes.

Special tricks can sometimes be found. Consider eg. the generation of a Gaussian
f(x) = exp{—=z*). This function is not integrable, but if we combine it with the same
Gaussian distribution of a second variable g, 1t is possible to transform to polar coordinates

f(z) dz f(y) dy = exp{~z" — y*) drdy = rexp(—r’)drdyp, (3

and now the r and ¢ distributions may be easily generated and recombined to yield z.
At the same time we get a second number g, which can also be used. For the generation
of transverse momenta in fragmentation, this is very convenient, since in fact we want to
assign two transverse degrees of freedom.

If the maximum of f(x) is known, f(z) < fi.« in the r range considered, & hit-or-miss
method will always yield the correct answer (method 2):

43
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Literature for MC Method

» G. Bohm, G. Zech (2010) Online Book

Introduction to Statistics and Data Analysis for Physicists
* S. Weinzierl Introduction to Monte Carlo method hep-ph/0006269
» G. Cowan. Statistical data analysis, Oxford, UK: Clarendon (1998)

» J. Vermaseren, Lectures on Monte Carlo, Madrid 2008 (
hitp://www.nikhef.nl/~ form/maindir/courses/course2/course2.html/)

@ History of Monte Carlo Method
(http://www.geocities.com/CollegePark/Quad/2435 /history.html)

Hannes Jung, Exercise 1, Monte Carlo school 2015
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Monte Carlo technique

1. construct a uniform random number generator from the congruential method:

I,y =mod(a- I + c,m)

[;
Ry = 1;1
with Iy = 4711, a = 205, ¢ = 29573 and m = 139968
Compare the correlation of 2 random numbers. Compare this with RANLUX.

2. construct a Gaussian random number generator from a uniform random number
generator

3. write a small program that integrates (with Monte Carlo method) the function
f(z) = 32 for [, f(x)dz, and calculate the uncertainty.

4. write a small program that integrates (with Monte Carlo method) [; fi dzdy with
0<z,y<l.

5. write a small program to integrate a simple function in one dimension:
fml g(z)dz = f;"“_"(l — )%% using Monte Carlo integration, with z,,;, = 0.0001
Improve the above integration by using importance sampling.

Hannes Jung, Exercise 1, Monte Carlo school 2015 19
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If you have time, you can do some more exercises:

e use the LHAPDF library to calculate the flavor sum rules:
1
/0 dz uy(z,Q*) = 2

1
fo dz dy(z,Q%) =1

use the LHAPDF library and calculate the momentum sum rule:

use the MRST(MRST2004nlo) set and the LO* (MRST2007lomod) set. How much is
the momentum sum rule violated in the LO* set 7 Is the momentum sum rule satisfied
(or violated in the same way) for different Q? values (use Q? = 5,10, 100, 1000 GeV?).

Hannes Jung, Exercise 1, Monte Carlo school 2015 20
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* ytilities:
courselib.h: include headers

ranlxd.h, ranlxd.cc: random number generator ranlux

* initialize ROOT (needed for plotting)
module avail
module load root/5.34
* copy all the templates (be careful, do not to overwrite ... )
cp -rp /afs/desy.de/user/s/school30/public/Exercises .
* compiling and running:
cd exercise-1

make -f makefile-example-1

./example-1

* templates are provided which include the general structure — you
only have to fill the interesting — important parts ... good luck

Hannes Jung, Exercise 1, Monte Carlo school 2015
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* Connect either to eduroam or to the school network:
Name: terascale

WPA/WPA2-PSK: XXPW|NH7

* All will get school accounts for natf:
* for example: ssh -X school30@naf-school01.desy.de

* create folder:
cd public
* copy all templates:
cp -rp /afs/desy.de/user/s/school30/public/Exercises .

* Writeup, Exercise sheets, templates and solutions at:
http://www.desy.de/~jung/mcschool2015/
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