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An example: event-shape variables
Event-shape variables                        are combinations of hadron final-state 
momenta into a number which gives insight on event geometry 

Example: Thrust, longitudinal particle alignment
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Final-state observables
Event-shapes are a class of final-state observables, continuous measures 
of the energy momentum flow of hadronic final states 

In the two-jet limit, one minus the thrust is the sum of the invariant masses 
of the two hemispheres in which an event is divided by the thrust axis 

There are many final-state observables: jet broadenings, jet resolution 
parameters, etc.

Final-state observables

Event-shape variables are a class of final-state observables, continuous measures of final-
state energy-momentum flow

In the previous lecture we have encountered the heavy-jet mass, the maximum of the 
invariant masses of the two hemispheres in which the event is divided by the thrust axis

There are many other such observables, jet broadenings, jet-resolution parameters, etc.
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Collinear and infrared safety
All final-state observables we consider are infrared and collinear (IRC) safe, so 
that we can safely compute their distributions using quark and gluon language  

Example: jets obtained from parton momenta are close to those obtained from 
hadron momenta if they do not change after 

• the addition of any number of soft partons (IR safety) 

• any number of collinear splittings (collinear safety)
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Departure from the Born limit
Final-state observables have the property that, for configurations close to the 
Born limit (e.g. a      pair) their value is close to zero 

Example: pencil-like events are selected by requiring that one minus the thrust 
is below a given threshold  

To quantify the departure from the Born limit we consider the cumulative 
distribution         , the probability that  

qq̄

Large logarithms

Final-states have the property that for configurations close to the Born limit (e.g. a       
pair) their value is close to zero 

Example: pencil like events are selected by requiring the thrust or the heavy-jet mass 
to be below a certain value 

The restriction                   acts as a 
veto on gluon emissions 
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One-gluon emission
Let us consider a single soft (                              )  and collinear (         ) 
emission, for which 

Imposing that we are close to the two-jet limit restricts the phase space for real 
emissions, but not for virtual corrections 
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Large logarithms
The cumulative thrust distribution contains logarithms that can become large in 
the two-jet limit  

Typical two-scale problem: at small    the invariant mass of each jet               is 
much less than the energy of each jet 

⌃(⌧) ' 1� CF
↵s

⇡
ln2

1

⌧

⌧ ! 0

breakdown of  perturbation theory!

large logs

⌧ ⇠
p
⌧Q

⇠ Q



Resummation
In the region              , where                    , we wish the cumulative distribution 
of any final-state observable to be written in the form 
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Why do we need to care about large logarithms?
Let us consider the thrust differential distribution  

Most events lie in the region in which logarithms are large! 
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A hadron-collider parallel
At the LHC it is possible to look for a boosted Higgs decaying into a      pair 

The decay products of the Higgs tend to fall into the same jet      consider the 
invariant mass of fat jet and look for a peak for  

If                        , for background QCD jets                                              , so 
that we have again a two-scale problem when  
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Resummation
In the region              , where                    , we wish the cumulative distribution 
of any final-state observable to be written in the form  

To achieve NLL accuracy we have to consider 

• Double logarithms          : they come from soft and collinear contributions, 
and have to exponentiate 

• Single logarithms        : they come from soft and/or collinear contributions, 
and have to factorise from double logarithms 
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One-gluon emission
We consider one-gluon emission    and compute the distribution  

Example of kinematics: two light-like momenta along the thrust axis 

Sudakov decomposition of    along      and 

Phase space and matrix element squared in the soft-collinear limit   

k ⌃(v)

One gluon emission

We consider one gluon emission     and we compute the distribution   

Example of kinematics: two lightlike momenta along the thrust axis

Sudakov decomposition of k along      and  

Phase space and matrix element in the soft-collinear limit 
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The Lund plane
For resummation purposes, it is extremely useful to visualise soft and collinear 
emissions in the Lund plane. We need to introduce the emission rapidity
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For resummation purposes, it is extremely useful to visualise soft and collinear 
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The thrust in the Lund plane
Exercise. Behaviour of                        in the soft-collinear region 

• Soft and collinear 

• Soft large-angle 

• Hard collinear
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Exercise: the thrust at NLL accuracy

For soft and/or collinear emissions, the thrust can be written as

1. Determine the scaling behaviour of the thrust in the soft-collinear, hard collinear and soft 
large-angle region

2. Prove that the thrust is recursively infrared and collinear safe

3. Show that the multiple emission correction is given by 



The thrust in the Lund plane
Exercise. Behaviour of                        in the soft-collinear region 

• Soft and collinear 

• Soft large-angle 
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An IRC safe final-state observable in the Lund plane
For a single soft-collinear emission   , an IRC safe final-state observable 
behaves as follows 

• Soft and collinear to leg 

• Soft large-angle  

• Hard and collinear to leg 
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Cumulative distributions in the Lund plane
For one emission, the cumulative distribution of any final-state observable is 

The first order contribution to          is just the area of the shaded region 
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Thrust distribution in the Lund plane
Exercise. Show that the thrust distribution is given by
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Thrust distribution in the Lund plane
Exercise. Show that the thrust distribution is given by 

Solution.
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Radiator at single-logarithmic accuracy
The one-gluon contribution to          is conveniently written in terms of a 
radiator, in which one includes running coupling effects 

For two quark legs, as in          annihilation   

The coupling is to be evaluated in the Catani-Marchesini-Webber scheme 

Exercise.* derive the expressions in section 2.1.3 of hep-ph/0407286
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Double soft-collinear emission
Consider the most singular case of two soft gluons strongly ordered in energy 

For gluons widely separated in angle, only independent emission survives
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contribution survives
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Multiple soft-collinear emissions
We first neglect correlated emission. Then the multi-gluon matrix element 
factorises into the product of single emission matrix elements 

The all-order cumulative distribution          becomes 
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Multiple soft-collinear emissions

We first neglect correlated emission. Then the multi-gluon matrix element is simply

In this case the cumulative distribution of an event shape becomes

virtual corrections, ensure 
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Leading logarithmic resummation
Suppose that the emissions are strongly ordered 

Assume also that the value of the observable is dominated by 

If the observable's value is dominated by the "hardest" emission, in the strongly 
ordered regime the cumulative distribution is obtained by the exponentiation of 
the contribution of a single gluon (Sudakov form factor) 
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Non-exponentiating leading logarithms
In the case of the JADE jet algorithm, double logarithms do not exponentiate 

We try to identify what can go wrong  

We need to enforce that the corrections do not give double logarithms
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Recursive IRC safety: condition 1
Recursive infrared and collinear (rIRC) safety conditions are conditions we put 
on the observable, so that we have no surprises from multiple emissions 

1. Let's scale all                          ,the observable should scale the same way V ({p̃}, ki) ⌘ v⇣i

lim

v!0

V ({p̃}, k1[v⇣1], . . . , kn[v⇣n])
v

= finite, and non-zero

rIRC safety: condition 1

Recursive infrared and collinear (rIRC) safety conditions are safety condition we 
put on the observable, so that we have no surprises from multiple emissions

1. Let's scale all                      , the observable should scale the same way, i.e.      

This ensures that, when                                              , we have  V ({p̃}, k1) ⇠ V ({p̃}, k2) ⇠ · · · ⇠ V ({p̃}, kn) ) V ({p̃}, k1, . . . , kn) ⇠ V ({p̃}, k1)



Recursive IRC safety: condition 2a
Recursive infrared and collinear (rIRC) safety conditions are conditions we put 
on the observable, so that we have no surprises from multiple emissions 

2a. Let's make emission          softer, or more collinear than the others  

Exercise. With soft and collinear emissions, the thrust is 

show that the thrust satisfies both condition 1 and condition 2a 
Exercise.* Show that the JADE three-jet resolution fails either 1 or 2a

kn+1

⇣n+1 ⌧ ⇣1 ⇠ ⇣2 ⇠ · · · ⇠ ⇣n

lim
⇣n+1!0

lim
v!0

V ({p̃}, k1[v⇣1], . . . , kn[v⇣n], kn+1[v⇣n+1])

v
= lim

v!0

V ({p̃}, k1[v⇣1], . . . , kn[v⇣n])
v

V ({p̃}, k1) � V ({p̃}, k2) � · · · � V ({p̃}, kn) ) V ({p̃}, k1, . . . , kn) ⇠ V ({p̃}, k1)

1� T ({p̃}, k1, . . . , kn) '
nX

i=1

kti
Q

e�|⌘i|



Recursive IRC safety conditions 1 and 2a
Exercise. With soft and collinear emissions, the thrust is 

show that the thrust satisfies both condition 1 and condition 2a 
Solution. The thrust is an additive observable 

Check of condition 1 

Check of condition 2a
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Failure of recursive IRC condition 1
Exercise.* Show that the JADE three-jet resolution fails either 1 or 2a 
Solution. The distance measure of the JADE algorithm is the invariant mass 
of two partons. The JADE can cluster together two soft and collinear gluons 
belonging to different hemispheres

k1k2
k1 + k2

yk2p2 = y3({p̃}, k2) =
(k2 + p2)2

Q2
' kt2

Q
e+⌘2 = ycut

yk1p1 = y3({p̃}, k1) =
(k1 + p1)2

Q2
' kt1

Q
e�⌘1 = ycut

yk1k2 =

(k1 + k2)2

Q2
' kt1kt2

Q2
[cosh(⌘1 � ⌘2)� cos(�1 � �2)] '

kt1kt2
Q2

e⌘1�⌘2

p1 p1p2p2



Failure of recursive IRC condition 1
Exercise.* Show that the JADE three-jet resolution fails either 1 or 2a 
Solution. Subtlety: when performing the rescaling, the rapidity fraction of each 
emission with respect to the total available rapidity stays fixed!

rIRC safety: condition 1

Recursive infrared and collinear (rIRC) safety conditions are safety condition we 
put on the observable, so that we have no surprises from multiple emissions

1. Let's scale all                      , the observable should scale the same way, i.e.      

This ensures that, when                                              , we have  
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Failure of recursive IRC condition 1
Exercise.* Show that the JADE three-jet resolution fails either 1 or 2a 
Solution. Recombination occurs if  

If recombination occurs, rIRC safety condition 1 fails
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rIRC safety in the Lund plane
An immediate consequence of the rIRC safety conditions is that we can 
neglect all emissions with                          ,where 

rIRC safety in the Lund plane

An immediate consequence of the rIRC safety conditions is that we can neglect all 
emissions with                    , where                      V ({p̃}, ki) < ✏v ✏ � v



Two-gluon correlated emission
The two-gluon matrix element can be always written as the sum of an 
independent and correlated emission part  

The correlated emission part, if integrated inclusively, is combined with the 
one-loop one-gluon matrix element to give the running coupling 

M2(k1, k2) = M2(k1)M
2(k2) + M̃2(k1, k2)

Double soft-collinear emission

Considering the most singular case of two soft gluons with strongly ordered energies

correlated emission, singular only 
when the gluons are close in angle 

When the gluons are widely separated in angle, only the independent emission 
contribution survives

independent 
emission
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correlated emission, singular only 
when the gluons are close in angle 

When the gluons are widely separated in angle, only the independent emission 
contribution survives

independent 
emission

Two-gluon correlated emission

The two-gluon matrix element can be always written as the sum of an independent  
and correlated emission part 

The correlated emission part, if integrated inclusively, is combined with the one-loop 
one-gluon matrix element to give the running coupling



Two-gluon correlated emission
The remainder after the extraction of the running coupling is 

Example: in a jet-rate, the two gluons are clustered in different jets
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Two-gluon correlated emission

The remainder after extraction of the running coupling is

The correlated matrix element has only a collinear singularity (the soft are cutoff 
by     ). Does this singularity produce an extra logarithm? If yes, this contribution 
can be potentially single logarithmic, we need to prevent this from happening. 

Example: in a jet-rate, two correlated emissions are clustered into different jets

Two-gluon correlated emission

The remainder after extraction of the running coupling is

The correlated matrix element has only a collinear singularity (the soft are cutoff 
by     ). Does this singularity produce an extra logarithm? If yes, this contribution 
can be potentially single logarithmic, we need to prevent this from happening. 

Example: in a jet-rate, two correlated emissions are clustered into different jets
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Recursive IRC safety: condition 2b
We require a further condition with respect to collinear splittings 

2b Consider the splitting                  with 

Notice the order of the limits, first you rescale the observable, and then you 
take the collinear limit. If you take the limit in reverse order, the result is trivial 
because the observables we consider are all collinear safe.  

Exercise. With two collinear emissions only, show that the thrust satisfies rIRC 
safety condition 2b
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Recursive IRC safety: condition 2b
Exercise. With two collinear emissions only, show that the thrust satisfies rIRC 
safety condition 2b 

Solution. The collinear emissions are in the same hemisphere 

The parent gluon     has a mass squared 

1� T ({p̃}, k1, k2) =
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rIRC safety 2b in the Lund plane
Clustering emissions close in rapidity does not produce extra logarithms  

The relevant emissions are soft and collinear, widely separated in angle, and 
in a strip of size                 : this is a line, i.e. a single logarithmic contribution 

rIRC safety 2.bis in the Lund plane

Clustering emissions close in rapidity does not produce extra logarithms

The relevant emissions are soft and collinear, widely separated in angle, and in a strip 
of size                  : this is a line, i.e. a single logarithmic contribution ln v ⇥ ln ✏



NLL resummation for rIRC safe observables
At last, we can write the NLL formula for a rIRC safe final-state observable 
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The thrust at NLL accuracy
For soft and/or collinear emissions, the thrust can be written as  

Exercise. Show that the multiple emission function for the thrust is given by

Exercise: the thrust at NLL accuracy

For soft and/or collinear emissions, the thrust can be written as

1. Determine the scaling behaviour of the thrust in the soft-collinear, hard collinear and soft 
large-angle region

2. Prove that the thrust is recursively infrared and collinear safe

3. Show that the multiple emission correction is given by 
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Thrust at NLL accuracy
Exercise. Show that the multiple emission function for the thrust is given by 

Analytic solution. Change variable from    to  
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Thrust at NLL accuracy
Exercise. Show that the multiple emission function for the thrust is given by 

Analytic solution. Factorise the observable constraint 

The thrust distribution exponentiates in Laplace space!
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Thrust at NLL accuracy
Exercise. Show that the multiple emission function for the thrust is given by 

Monte Carlo solution. Isolate the emission with largest value of    and 
resurrect all emissions with 

Rescale                and do the    integration analytically 

This expression can be numerically implemented as a shower event generator
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Summary
In this lecture we have learnt 

1. what is the origin of large logarithm in final-state observable distributions 

2. how to compute double logarithms fast using Lund diagrams 

3. there are rIRC safety conditions you have to impose on observables to that 
leading logarithms exponentiate 

4. for rIRC safe observables, NLL accuracy forces all real emissions to be 
soft, collinear and widely separated in rapidity 

5. multiple emission contributions give at most a single-logarithmic function


