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Goals of the Lectures

• To provide conceptual foundations for understanding and interpreting experi-
mental results in the high energy physics literature.

What do experimental physicists mean when they report p values, confidence
intervals, Bayes factors, posterior probabilities, etc.? What should one look for
to judge the reliability of measurement results?

• To provide some guidelines for estimating the sensitivity of a proposed analysis,
for making predictions, and for analyzing data.

What is the most useful way to present an expected significance? How should
one optimize an analysis? How does one decide whether an observation is
significant or not? How does one use data to bound a theoretical parameter?
How does one summarize a data analysis?
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Outline

1. What is probability?

2. Hypothesis testing

3. Interval estimates

4. Search procedures
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General Resources (1)

Many experimental collaborations have formed statistics committees whose purpose
is to make recommendations on proper statistical methods, to act as consultants
on specific data analyses, and to help with the comparison and combination of
experimental results from different experiments. These committees have web pages
with lots of useful information:

• CDF: http://www-cdf.fnal.gov/physics/statistics/statistics home.html

• BABAR: http://www.slac.stanford.edu/BFROOT/www/Statistics

• CMS: https://twiki.cern.ch/twiki/bin/view/CMS/StatisticsCommittee

• ATLAS: https://twiki.cern.ch/twiki/bin/view/Atlas/StatisticsTools
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General Resources (2)

In addition, high energy physicists and astrophysicists regularly meet with pro-
fessional statisticians to discuss problems and methods. These so-called PhyStat
meetings have their own webpages and proceedings:

• Jan.2000: http://doc.cern.ch/cernrep/2000/2000-005/2000-005.html;

• Mar.2000: http://conferences.fnal.gov/cl2k/;

• Mar.2002: http://www.ippp.dur.ac.uk/Workshops/02/statistics/;

• Sep.2003: http://www.slac.stanford.edu/econf/C030908/;

• Sep.2005: http://www.physics.ox.ac.uk/phystat05/proceedings/default.htm;

• Jun.2007: http://phystat-lhc.web.cern.ch/phystat-lhc/.

Finally, there is a repository of statistics software and other resources at
http://phystat.org, and professional statistics literature is available online
through http://www.jstor.org.
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General Resources (3)

There are many valuable books on statistics and data analysis. Of particular
relevance to high-energy physics are the following recent monographs:

• F. James, “Statistical Methods in Experimental Physics,” 2nd ed., World Scien-
tific Publishing Co., 2006 (345pp).

• D.S. Sivia with J. Skilling, “Data Analysis, a Bayesian Tutorial,” 2nd ed., Oxford
University Press, 2006 (246pp).

A very pedagogical, but also comprehensive presentation is:

• G. Casella and R.L. Berger, “Statistical Inference,” 2nd ed., Duxbury, 2002
(660pp).

A more abstract, theoretical approach is provided in:

• J.M. Bernardo and A.F.M. Smith, “Bayesian Theory,” John Wiley & Sons, 1994
(586pp).
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WHAT IS PROBABILITY?
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Frequentism (1)

Frequentism attempts to define probabilities as relative frequencies in sequences of
trials; this should result in

probabilities as real, objective, measurable quantities that exist “outside us”.

How can this definition be made rigorous?

1. Probability = limiting relative frequency in an infinite sequence of trials;

2. Probability = limiting relative frequency that would be obtained if the
sequence of trials were extended to infinity;

3. Probability = relative frequency in a sufficiently long, finite sequence of trials.

All these definitions are conceptually problematic in some way.

An argument that is sometimes made is that frequentism must be the correct
approach to data analysis because quantum mechanical probabilities are frequen-
tist. . . This argument is specious however, because the process by which we learn
from our observations is logically distinct from the process that generates these
observations. Furthermore, advances in quantum information science have shown
that it is possible to interpret quantum mechanical probabilities as epistemic, i.e.
Bayesian.
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Frequentism (2)

According to frequentism, a random variable is a physical quantity that fluctuates
from one observation to the next. This makes it impossible to assign a meaningful
probability value to a statement such as “the true mass of the Higgs boson is
between 150 and 160 GeV/c2”, since the true mass of the Higgs boson is a fixed
constant of nature.

Frequentism therefore needs an additional, separate concept to describe the relia-
bility of inferences: this is the concept of confidence, to be described later. It is
very important to remember that in Frequentism, confidence and probability have
entirely different meanings.

The objective of Frequentist statistics is then to transform measurable probabilities
of observations into confidence statements about physics parameters, models, and
hypotheses. Due to the great variety of measurement situations, frequentism has
many “ad hoc” rules and procedures to accomplish this transformation. There is
no single unifying principle to guide the process of drawing inferences.
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Bayesianism (1)

Bayesianism makes a strict distinction between propositions and probabilities:

• Propositions are either true or false; their truth value is a fact. Examples: “The
Higgs mass is between 150 and 160 GeV/c2”, “It will rain tomorrow”.

• Probabilities are degrees of belief about the truth of some proposition; they are
neither true nor false; they are not propositions. Example: “There is a 10%
probability that the Higgs mass is between 150 and 160 GeV/c2”.

Bayesian probability:

• is a logical construct rather than a physical reality;

• applies to individual events rather than to ensembles;

• is a statement not about what is in fact the case, but about what one can
reasonably expect to be the case;

• is epistemic, normative, subjective.
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Bayesianism (2)

It can be shown that coherent degrees of belief satisfy the usual rules of probability
theory. Bayesian statistics is therefore entirely based on the latter, viewed as a form
of extended logic (Jaynes): a process of reasoning by which one extracts uncertain
conclusions from limited information.

This process is guided by Bayes’ theorem, which prescribes how degrees of belief
are to be updated when new data become available:

π(θ |x) =
p(x | θ) π(θ)

m(x)
where:

• π(θ) is the prior probability density function of θ, i.e. the distribution of degrees
of belief about θ before new data became available.

• p(x | θ) is the likelihood function, i.e. the probability density of observations x
for a given value of θ, viewed as a function of θ.

• m(x) ≡
∫

Θ

p(x | θ) π(θ) dθ is the marginal distribution of x, also called

prior-predictive distribution, or evidence.

• π(θ |x) is the posterior density function of θ, given the observations x.
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Bayesianism (3)

All the basic tools of Bayesian statistics are direct applications of probability theory.
Here are two examples:

1. Marginalization:
Suppose we have a model for the data that depends on two parameters, θ and
λ, but that we are only interested in θ. The posterior density of θ can then be
obtained from the joint posterior of θ and λ by integration:

π(θ |x) =
∫

Λ

π(θ, λ |x) dλ.

2. Prediction:
Suppose we observe data x and wish to predict the distribution of future data
y. This can be obtained via the posterior-predictive distribution:

p(y |x) =
∫

Ω

p(y |ω) π(ω |x) dω.

Note that the output of a Bayesian analysis is always the full posterior distribution.
The latter can be summarized in various ways, by providing point estimates, interval
estimates, hypothesis probabilities, predictions for new data, etc., but the summary
should never be substituted for “the whole story”.
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Constructing Bayesian Priors (1)

The elicitation of prior probabilities on an unknown parameter or incompletely
specified model is often difficult work, especially if the parameter or model is
multidimensional and prior correlations are present.

In particle physics we can usually construct so-called “evidence-based priors” for
parameters such as the position of a detector element, an energy scale, a tracking
efficiency, or a background level. Such priors are derived from subsidiary data
measurements, Monte Carlo studies, and theoretical beliefs.

If for example the position of a detector is measured to be x0 ± ∆x, and ∆x is
accurately known, it will be sensible to make the corresponding prior a Gaussian
distribution with mean x0 and width ∆x. On the other hand, for an energy
scale, which is usually a positive quantity, it will be more natural to use a gamma
distribution, and for an efficiency bounded between 0 and 1 a beta distribution
should be appropriate. In each of these cases, other functional forms should be
tried to assess the sensitivity of the final result to the choice of prior.

Note that evidence-based priors are always proper, that is, they integrate to 1.
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Constructing Bayesian Priors (2)

In physics data analysis we often need to extract information about a parameter θ
about which very little is known a priori. Or perhaps we would like to pretend that
very little is known for reasons of objectivity. How do we apply Bayes’ theorem in
this case: how do we construct the prior π(θ)?

Historically, this problem is the main reason for the development of alternative
statistical paradigms: frequentism, likelihood, fiducial probability, etc. Even
Bayesianism has come up with its own answer to the above question; it is known
as objective Bayes. In general, results from these different methods agree on large
data samples, but not necessarily on small samples (discovery situations).

For this reason, the CMS Statistics Committee at the LHC recommends data
analysts to cross-check their results using three different methods: objective Bayes,
frequentism, and likelihood.
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Constructing Bayesian Priors (3)

At its most optimistic, objective Bayesianism tries to find a completely coherent
objective Bayesian methodology for learning from data. A much more modest view
is that it is simply a collection of ad hoc but useful methods to learn from the
data. There are in fact several approaches, all of which attempt to construct prior
distributions that are minimally informative in some sense:

• Reference analysis (Bernardo and Berger);

• Maximum entropy priors (Jaynes);

• Invariance priors;

• Matching priors;

• Flat priors: these tend to be popular in HEP, but they are hard to justify
since they are not invariant under parameter transformations. Furthermore,
they sometimes lead to improper posterior distributions and other kinds of
misbehavior.

• . . .

Objective priors are also known as neutral, formal, or conventional priors. Although
they are often improper, they must lead to proper posteriors in order to make sense.
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Constructing Bayesian Priors (4)

A very well-known example of objective Bayesian prior is the so-called Jeffreys’
prior. Suppose the data X have a distribution p(x | θ) that depends on a continuous
parameter θ; Jeffreys’ prior is then:

πJ(θ) ≡
{
−E

[
∂2

∂θ2
ln p(x | θ)

]}1/2

, (1)

where the expectation is with respect to the data pdf p(x | θ).

When θ is multi-dimensional, this prior tends to misbehave and must be replaced
by the more general reference analysis prescription.
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Data Analysis: Frequentist or Bayesian?

With some reasonable care, frequentist and Bayesian inferences generally agree
for large samples. Disagreements tend to appear in small samples (discovery
situations), where prior assumptions play a more important role (on both sides).

For a small number of problems, the Bayesian and frequentist answers agree exactly,
even in small samples.

An often fruitful approach is to start with a Bayesian method, and then verify if
the solution has any attractive frequentist properties. For example, if a Bayesian
interval is calculated, does the interval contain the true value of the parameter of
interest sufficiently often when the measurement is repeated? This approach has
been formally studied by professional statisticians and is quite valuable.

On the other hand, if one starts with a purely frequentist method, it is also
important to check its Bayesian properties for a reasonable choice of prior.

In experimental HEP we often use a hybrid method: a frequentist method to handle
the randomness of the primary observation, combined with Bayesian techniques to
handle uncertainties in auxiliary parameters.
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What Do We Mean by Testing?

Two very different philosophies to address two very different problems:

1. We wish to decide between two hypotheses, in such a way that if we repeat
the same testing procedure many times, the rate of wrong decisions will be fully
controlled in the long run.
Example: in selecting good electron candidates for a measurement of the mass
of the W boson, we need to minimize background contamination and maximize
signal efficiency.

2. We wish to characterize the evidence provided by the data against a given
hypothesis.
Example: in searching for new phenomena, we need to establish that an
observed enhancement of a given background spectrum is evidence against the
background-only hypothesis, and we need to quantify that evidence.

Traditionally, the first problem is solved by Neyman-Pearson theory and the second
one by the use of p values, likelihood ratios, or Bayes factors.
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The Neyman-Pearson Theory of Testing (1)

Suppose you wish to decide which of two hypotheses, H0 or H1, is more likely
to be true given an observation X. The frequentist strategy is to minimize the
probability of making the wrong decision over many independent repetitions of the
test procedure. However, that probability depends on which hypothesis is actually
true. There are therefore two types of error that can be committed:

• Type-I error: Rejecting H0 when H0 is true;

• Type II error: Accepting H0 when H1 is true.

To fix ideas, suppose that the hypotheses have the form:

H0 : X ∼ f0(x) versus H1 : X ∼ f1(x).

The frequentist test procedure is to reject H0 whenever X falls into a so-called
critical region C (a predefined subset of sample space). The Type-I error probability
α and the Type-II error probability β are then given by:

α =
∫

C

f0(x) dx and β = 1−
∫

C

f1(x) dx.

Note: 1− β is known as the power of the test.
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The Neyman-Pearson Theory of Testing (2)

In general there are many possible critical regions C that correspond to a given,
suitably small α. The idea of the Neyman-Pearson theory is to choose C so as to
minimize β at that value of α. In the above example, the distributions f0 and f1
are fully known (“simple vs. simple testing”). In this case it can be shown that, in
order to minimize β at a fixed α, C must be of the form:

C = {x : f0(x)/f1(x) < cα},

where cα is a constant depending on α. This result is known as the Neyman-Pearson
lemma, and the quantity f0(x)/f1(x) is known as a likelihood ratio.

Unfortunately it is usually the case that f0 and/or f1 are composite, meaning that
they depend on one or more unknown parameters ν. The likelihood ratio is then
defined as:

λ(x) ≡
sup

ν∈H0

f0(x | ν)

sup
ν∈H1

f1(x | ν)

Although the Neyman-Pearson lemma does not generalize to the composite
situation, the likelihood ratio remains a useful test statistic.
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The Neyman-Pearson Theory of Testing (3)

The Neyman-Pearson theory of testing is most useful in quality-control applications,
when a given test has to be repeated on a large sample of identical items. In HEP
we use this technique to select events. For example, if we want to measure the
mass of the top quark, for each event in some appropriate trigger stream we set
H0 to the hypothesis that the event contains a top quark, and choose cuts that
minimize the background contamination (β) for a given signal efficiency (1− α).

On the other hand, this approach to testing is not very satisfactory when dealing
with one-time testing situations, for example when testing a hypothesis about a
new phenomenon such as the Higgs boson or SUSY. This is because the result of a
Neyman-Pearson test is either “accept H0” or “reject H0”, without consideration
for the strength of evidence contained in the data. In fact, the level of confidence
in the decision resulting from the test is already known before the test: it is either
1− α or 1− β.

There are several ways to address this problem: the frequentist approach uses
p values exclusively, whereas the Bayesian one works with posterior hypothesis
probabilities, Bayes factors, and p values.
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Introducing p Values

Suppose we collect some data X and wish to test a hypothesis H0 about the
distribution f(x | θ) of the underlying population. A general approach is to find a
test statistic T (X) such that large values of tobs ≡ T (xobs) are evidence against
the null hypothesis H0.

A way to calibrate this evidence is to calculate the probability for observing T = tobs

or a larger value under H0; this tail probability is known as the p value of the test:

p = P(T ≥ tobs |H0).

Thus, small p values are evidence against H0. Typically one will reject H0 if p ≤ α,
where α is some predefined, small error rate.

How should we calculate P in the above definition?
When there are no unknown parameters under H0, i.e. when H0 is simple, this is
unambiguous. The more common case of composite H0 is more difficult however,
and sometimes controversial. . .
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Using p Values to Calibrate Evidence

The usefulness of p values for calibrating evidence against a null hypothesis H0

depends on their null distribution being known to the experimenter and being the
same in all problems considered.

This is the reason for requiring the null distribution of p values to be uniform. In
practice however, it is often difficult to fulfill this requirement, either because the
test statistic is discrete or because of the presence of nuisance parameters. The
following terminology characterizes the null distribution of p values:

p exact ⇔ P(p ≤ α |H0) = α,

p conservative ⇔ P(p ≤ α |H0) < α,

p liberal ⇔ P(p ≤ α |H0) > α.

Compared to an exact p value, a conservative p value tends to understate the
evidence against H0, whereas a liberal p value tends to overstate it.
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Caveats

The correct interpretation of p values is notoriously subtle. In fact, p values
themselves are controversial. Here is partial list of caveats:

1. P values are neither frequentist error rates nor confidence levels.

2. P values are not hypothesis probabilities.

3. Equal p values do not represent equal amounts of evidence.

Because of these and other caveats, it is better to treat p values as nothing more
than useful “exploratory tools,” or “measures of surprise.”

In any search for new physics, a small p value should only be seen as a first
step in the interpretation of the data, to be followed by a serious investigation
of an alternative hypothesis. Only by showing that the latter provides a better
explanation of the observations than the null hypothesis can one make a convincing
case for discovery.
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The 5σ Discovery Threshold

A small p value has little intuitive appeal, so it is conventional to map it into
the number Nσ of standard deviations a normal variate is from zero when the
probability outside ±Nσ equals 2p :

p =
∫ +∞

Nσ

dx
e−x2/2

√
2π

=
1
2

[
1 − erf(Nσ/

√
2)

]
.

The threshold for discovery is typically set at α = 2.9× 10−7 (5σ) for the following
reasons:

1. The null hypothesis is almost never exactly true, even in the absence of new
physics. However, systematic effects are not always easy to identify, let alone to
model and quantify.

2. When compared with Bayesian measures of evidence, p values tend to over-reject
the null hypothesis.

3. The screening effect: when looking for new physics in a large numbers of
channels, the posterior error rate can only be kept reasonable if α is much
smaller than the fraction of these channels that do contain new physics.

Luc Demortier, Testing a hypothesis 26



Example of a 5σ Effect that Went Away
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Figure 1: Left: S. Stepanyan et al. (CLAS Collaboration), “Observation of an
Exotic S = +1 Baryon in Exclusive Photoproduction from the Deuteron,” Phys.
Rev. Lett. 91, 252001 (2003). Right: B. McKinnon et al. (CLAS Collaboration),
“Search for the Θ+ Pentaquark in the reaction γd→ pK−K+n,” Phys. Rev. Lett.
96, 212001 (2006).
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The Problem of Nuisance Parameters

Often the distribution of the test statistic, and therefore the p value, depends on
unknown “nuisance” parameters. As there are many methods to eliminate nuisance
parameters, we need some criteria to choose among them:

1. Uniformity: The method should preserve the uniformity of the null distribution of
p values. If exact uniformity is not achievable in finite samples, then asymptotic
uniformity should be aimed for.

2. Monotonicity: For a fixed value of the observation, systematic uncertainties
should decrease the significance of null rejections.

3. Generality: The method should not depend on the testing problem having a
special structure, but should be applicable to as wide a range of problems as
possible.

4. Power: The probability of rejecting the null hypothesis when an alternative is
true should be as large as possible.

5. Unbiasedness: The probability of rejecting the null hypothesis should be larger
everywhere under the alternative than anywhere under the null.
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Methods for Eliminating Nuisance Parameters

Here is a sampling of methods:

1. Conditioning;

2. Supremum;

3. Confidence Interval;

4. Bootstrap;

5. Prior-predictive;

6. Posterior-predictive.

Luc Demortier, Testing a hypothesis 29



A Benchmark Problem

A useful, HEP inspired benchmark problem: let n be an observation from a Poisson
distribution whose mean is the sum of a background with unknown strength ν and
a signal with strength µ:

f(n | ν + µ) =
(ν + µ)n

n!
e−ν−µ.

We wish to test:

H0 : µ = 0 versus H1 : µ > 0.

This problem cannot be solved without additional information about the nuisance
parameter ν. This information can come in two forms: as the likelihood function
from an auxiliary measurement, or as a Bayesian prior distribution.

In principle, a Bayesian prior can itself be the posterior of an auxiliary measurement.
A couple of examples follow.
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Benchmark Problem with Gaussian Auxiliary PDF

• The likelihood is:

Laux.(ν) =
e−

1
2(ν−x

∆ν )2

√
2π∆ν

.

Although the true value of ν must be positive since it represents a physical
background rate, suppose the measured value x is allowed to take on negative
values due to resolution effects in the auxiliary measurement.

• The Jeffreys prior for ν is a step function:

πaux.(ν) =

{
1 if ν ≥ 0,
0 if ν < 0.

• Applying Bayes’ theorem to the above likelihood and prior yields the posterior

πaux.(ν |x) =
e−

1
2(ν−x

∆ν )2

√
2π∆ν 1

2

[
1 + erf

(
x√
2 ∆ν

)] ≡ π(ν),

where erf(x) ≡ (2/π)
∫ x

0
e−t2 dt. When eliminating ν from a p value calculation,

one can either use π(ν) in a Bayesian method or Laux.(ν) in a frequentist one.
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Benchmark Problem with Poisson Auxiliary PMF

• The likelihood is:

Laux.(ν) =
(τ ν)m

m!
e−τ ν,

where m is the result of the auxiliary measurement.

• For the ν prior we take:
πaux.(ν) ∝ ν−ρ.

Jeffreys’ prior corresponds to ρ = 1/2, a flat prior to ρ = 0.

• The auxiliary posterior again follows from Bayes’ theorem:

πaux.(ν |m) =
τ (τ ν)m−ρ e−τ ν

Γ(m+ 1− ρ)
≡ π(ν).

This is a gamma distribution.
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The Conditioning Method

This is a frequentist method: suppose that we have some data N and that there
exists a statistic A = A(N) such that the distribution of N given A is independent
of the nuisance parameter(s) under the null hypothesis. Then we can use that
conditional distribution to calculate p values.

Our benchmark problem can be solved by this method only if the auxiliary mea-
surement has a Poisson pmf, i.e. we observe:

N ∼ Poisson(µ+ ν) and M ∼ Poisson(τν),

where τ is a known constant. The distribution of N given A ≡ N + M is
binomial under H0, and the p value corresponding to the observation N = n0, and
conditional on A = n0 +m0, is:

pcond =
n0+m0∑
n=n0

(
n0 +m0

n

) (
1

1 + τ

)n (
1− 1

1 + τ

)n0+m0−n

= I 1
1+τ

(n0,m0 + 1).

Luc Demortier, Testing a hypothesis 33



Null Distribution of pcond for Benchmark Problem

Benchmark with Poisson subsidiary measurement:
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The Supremum Method (1)

The conditioning method has limited applicability due to its requirement of the
existence of a conditioning statistic. A much more general technique consists in
maximizing the p value with respect to the nuisance parameter(s):

psup = sup
ν
p(ν).

Note however that this is no longer a tail probability. Psup is guaranteed to be
conservative, but may yield the trivial result psup = 1 if one is unlucky or not careful
in the choice of test statistic. In general the likelihood ratio is a good choice,
so we will use that for the benchmark problem. Assuming that the background
information comes from a Gaussian measurement, the joint likelihood is:

L(ν, µ |n, x) =
(ν + µ)n e−ν−µ

n!
e−

1
2(x−ν

∆ν )2

√
2π∆ν

.

The likelihood ratio statistic is:

λ(n, x) =

sup ν≥0

µ=0

L(ν, µ |n, x)

sup ν≥0

µ≥0

L(ν, µ |n, x)
(0 ≤ λ ≤ 1).

Small λ is evidence against H0.

Luc Demortier, Testing a hypothesis 35



The Supremum Method (2)

It can be shown that for large ν, the quantity X ≡ −2 lnλ is distributed as

1
2
χ2

0 +
1
2
χ2

1 :


P(X = 0) =

1
2
,

P(X > x) =
1
2

∫ ∞

x

e−t/2

√
2π x

dx =
1
2

[
1− erf

(√
x

2

)]
.

For small ν however, the distribution of −2 lnλ depends appreciably on ν and is
a good candidate for the supremum method. Here the supremum p value can be
rewritten as:

psup = sup
ν≥0

P(λ ≤ λ0 |µ = 0)

A great simplification occurs when −2 lnλ is stochastically increasing with ν,
because then psup = p∞ ≡ limν→∞ p(ν). Unfortunately this is not generally true,
and is often difficult to check. When psup 6= p∞, then p∞ will tend to be liberal.
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Null Distribution of p∞ for Benchmark Problem

Benchmark with Gaussian subsidiary measurement:

Luc Demortier, Testing a hypothesis 37



Counter-Example to the Stochastic Monotonicity of λ

Benchmark with Poisson subsidiary measurement (n0 = 10, m0 = 7,τ = 16.5);
plot of P[λ ≤ λ0 |µ = 0, ν] versus ν:
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The Confidence Interval Method

The supremum method has two important drawbacks:

1. Computationally, it is often difficult to locate the global maximum of the relevant
tail probability over the entire range of the nuisance parameter ν.

2. Conceptually, the very data one is analyzing often contain information about the
true value of ν, so that it makes little sense to maximize over all values of ν.

A simple way around these drawbacks is to maximize over a 1 − γ confidence set
Cγ for ν, and then to correct the p value for the fact that γ is not zero:

pγ = sup
ν∈Cγ

p(ν) + γ.

This time the supremum is restricted to all values of ν that lie in the confidence
set Cγ. It can be shown that pγ, like psup, is conservative:

P(pγ ≤ α) ≤ α for all α ∈ [0, 1].
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Bootstrap Methods: the Plug-In

This method gets rid of unknown parameters by estimating them, using for example
a maximum-likelihood estimate, and then substituting the estimate in the calculation
of the p value. For our benchmark problem with a Gaussian measurement x of the
background rate ν, the likelihood function is:

L(µ, ν |x, n) =
(µ+ ν)n e−µ−ν

n!
e
−1

2

“
x−ν
∆ν

”2

√
2π ∆ν

,

where µ is the signal rate, which is zero under the null hypothesis H0. The
maximum-likelihood estimate of ν under H0 is obtained by setting µ = 0 and
solving ∂ lnL/∂ν = 0 for ν. This yields:

ν̂(x, n) =
x−∆ν2

2
+

√(
x−∆ν2

2

)2

+ n∆ν2.

The plug-in p value is then:

pplug(x, n) ≡ P
[
N ≥ n

∣∣∣ ν = ν̂(x, n)
]

=
+∞∑
k=n

ν̂(x, n)k e−ν̂(x,n)

k!
.
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Bootstrap Methods: the Adjusted Plug-In

In principle two criticisms can be leveled at the plug-in method. Firstly, it makes
double use of the data, once to estimate the nuisance parameters under H0, and
then again to calculate a p value. Secondly, it does not take into account the
uncertainty on the parameter estimates. The net effect is that plug-in p values tend
to be too conservative. The adjusted plug-in method attempts to overcome this.

If we knew the exact cumulative distribution function Fplug of plug-in p values
under H0, then the quantity Fplug(pplug) would be an exact p value since its
distribution is uniform by construction. In general however, Fplug depends on one
or more unknown parameters and can therefore not be used in this way. The next
best thing we can try is to substitute estimates for the unknown parameters in
Fplug. Accordingly, one defines the adjusted plug-in p value by:

pplug,adj ≡ Fplug(pplug | θ̂),

where θ̂ is an estimate for the unknown parameters collectively labeled by θ.

This adjustment algorithm is known as a double parametric bootstrap and can also
be implemented in Monte Carlo form.
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Monte Carlo Calculation of an Adjusted Plug-In p Value

For our benchmark problem with a Gaussian auxiliary measurement, here is the
pseudo-code to calculate the adjusted plug-in p value corresponding to an observa-
tion (n, x):

1. Compute ˆ̂ν = (x−∆ν2)/2 +
√

(x−∆ν2)2/4 + n∆ν2.

2. Use ˆ̂ν to generate M bootstrap samples (n?
i , x

?
i )i=1,...,M .

3. Calculate p? = #{n?
i ≥ n, 1 ≤ i ≤ M}/M , the single bootstrap estimate of

the plug-in p value.

4. For each bootstrap sample (n?
i , x

?
i ):

a. Calculate ˆ̂ν?
i = (x?

i −∆ν2)/2 +
√

(x?
i −∆ν2)2/4 + n?

i ∆ν2.

b. Use ˆ̂ν?
i to generate N bootstrap samples (n??

ij )j=1,...,N .
c. Calculate p??

i = #{n??
ij ≥ n?

i , 1 ≤ j ≤ N}/N .

5. Set p?? = #{p??
i ≤ p?, 1 ≤ i ≤ M}/M , the double bootstrap estimate of the

p value.

Luc Demortier, Testing a hypothesis 42



Null Distribution of pplug and pplug,adj for Benchmark

Benchmark with Gaussian subsidiary measurement:
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The prior-predictive method

The prior-predictive distribution of a test statistic T is the predicted distribution of
T before the measurement:

mprior(t) =
∫
dθ p(t | θ) π(θ)

After having observed T = t0 we can quantify how surprising this observation is by
referring t0 to mprior, e.g. by calculating the prior-predictive p value:

pprior = Pmprior
(T ≥ t0 |H0) =

∫ ∞

t0

dt mprior(t)

=
∫
dθ π(θ)

[∫ ∞

t0

dt p(t | θ)
]

= Eπ

[
p(θ)

]
.

For the benchmark example with a Poisson auxiliary measurement with flat auxiliary
prior (ρ = 0), pprior coincides exactly with pcond.
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Null Distribution of pprior for Benchmark Problem

Benchmark with Gaussian subsidiary measurement:
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The posterior-predictive method

The posterior-predictive distribution of a test statistic T is the predicted distribution
of T after measuring T = t0:

mpost(t | t0) =
∫
dθ p(t | θ) π(θ | t0)

The posterior-predictive p value estimates the probability that a future observation
will be at least as extreme as the current observation if the null hypothesis is true:

ppost = Pmpost(T ≥ t0 |H0) =
∫ ∞

t0

dt mpost(t | t0)

=
∫
dθ π(θ | t0)

[∫ ∞

t0

dt p(t | θ)
]

= Eπ(· | t0)

[
p(θ)

]
.

Note the double use of the observation t0.

In contrast with prior-predictive p values, posterior-predictive p values can usually
be defined even with improper priors.
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Null Distribution of ppost for Benchmark Problem

Benchmark with Gaussian subsidiary measurement:
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Further Comments on Predictive P Values

• Since predictive p values are averages of the classical p value with respect to
a reference distribution (prior or posterior), one can also calculate a standard
deviation to get an idea of the uncertainty due to the spread of that reference
distribution.

• Posterior-predictive p values can be calculated for discrepancy variables (i.e.
functions of data and parameters) in addition to test statistics.

• Rather than simply reporting the p value, it may be more informative to plot the
observed value of the test statistic against the appropriate predictive distribution.

• There are other types of predictive p values, which avoid some of the problems of
the prior- and posterior-predictive p values (see for example M.J. Bayarri and J.O.
Berger, “P-Values for Composite Null Models,” J. Amer. Statist. Assoc. 95,
1127 (2000); also at http://www.stat.duke.edu/∼berger/papers/98-40.
html)
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Study of P Value Power for Benchmark Problem
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Asymptotic limit of P Values for Benchmark Problem

Method ∆ν = 10 ∆ν = 100
P value Nσ P value Nσ

Supremum 1.16× 10−28 11.05 9.81× 10−9 5.62
Confidence Interval 9.87× 10−10 6.00 1.23× 10−8 5.58
Plug-In 8.92× 10−28 10.86 1.86× 10−3 2.90
Adjusted Plug-In 1.13× 10−28 11.05 9.90× 10−9 5.61
Prior-Predictive 1.23× 10−28 11.04 9.85× 10−9 5.61
Posterior-Predictive 5.27× 10−27 10.70 1.35× 10−2 2.21

P values for a Poisson observation of n0 = 3893 events over an estimated
background of x0 = 3234 ±∆ν events. For the confidence interval p value a 6σ
upper limit was constructed for the nuisance parameter.
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Summary of P Value Trends

There are many methods for eliminating nuisance parameters in p value calculations:
conditioning, supremum, confidence interval, bootstrap (plug-in and adjusted plug-
in), prior-predictive, and posterior-predictive. Here are some trends:

• For a fixed observation, all the p values tend to increase as the uncertainty on
the background rate increases.

• Asymptotically, the supremum, adjusted plug-in, and prior-predictive p values
seem to converge.

• There is quite a variation in uniformity properties under the null hypothesis, with
the adjusted plug-in and supremum p values showing good uniformity. However,
this behavior depends strongly on the choice of test statistic. The likelihood
ratio is generally a safe choice.

• Among the methods with the best uniformity properties, there is not much
difference in power. Only the prior-predictive p value seems to loose power faster
than the other p values at high ∆ν.

• Some methods are more general than others...
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Asymptotic Distribution of the Likelihood Ratio Statistic (1)

The likelihood ratio statistic for testing H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ \Θ0 is

λ(xobs) ≡
sup
Θ0

L(θ |xobs)

sup
Θ
L(θ |xobs)

=
L(θ̂0 |xobs)

L(θ̂ |xobs)
,

where θ̂0 is the maximum likelihood estimate (MLE) under H0 and θ̂ is the
unrestricted MLE.

Note that 0 ≤ λ(X) ≤ 1. A likelihood ratio test is a test whose rejection region
has the form {x : λ(x) ≤ c}, where c is a constant between 0 and 1.

To calculate p values based on λ(X) one needs the distribution of λ(X) under H0:

Under suitable regularity conditions it can be shown that the asymptotic distribution
of −2 lnλ(X) under H0 is chisquared with ν − ν0 degrees of freedom, where
ν = dim Θ and ν0 = dim Θ0.
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Asymptotic Distribution of the Likelihood Ratio Statistic (2)

It is not uncommon in HEP for one or more regularity conditions to be violated:

1. The tested hypotheses must be nested, i.e. H0 must be obtainable by imposing
parameter restrictions on the model that describes H1.
As counter-example consider a test comparing two new-physics models that
belong to separate families of distributions.

2. H0 must not be on the boundary of the model that describes H1.
A typical violation of this condition is when θ is a positive signal magnitude and
one is testing H0 : θ = 0 versus H1 : θ > 0.

3. There must not be any nuisance parameters that are defined under H1 but not
under H0.
Suppose for example that we are searching for a signal peak on top of a smooth
background. The location, width, and amplitude of the peak are unknown. In
this case the location and width of the peak are undefined under H0, so the
likelihood ratio will not have a chisquared distribution.

There does exist analytical work on the distribution of −2 lnλ(X) when the above
regularity conditions are violated; however these results are not always easy to apply
and still require some numerical calculations. Physicists usually prefer to simulate
the −2 lnλ(X) distribution from scratch.
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Asymptotic Distribution of the Likelihood Ratio Statistic (3)

Example of semi-analytical bound on the distribution of −2 lnλ:

P
{
−2 lnλ(X) > u

∣∣∣H0

}
≤ 1

2

[
1− erf

(√
u

2

)]
+

K

2π
e−u/2.

Plot based on D. Acosta et al., “Observation of the narrow state X(3872) →
J/ψπ+π− in pp̄ collisions at

√
s = 1.96 TeV,” Phys. Rev. Lett. 93, 072001

(2004):

Two free parameters underH1: peak
amplitude θ and mass µ, with θ ≥ 0
and 3.65 ≤ µ ≤ 4.00 GeV/c2.

Solid: Monte Carlo calculation

Dot-dashes: semi-analytical bound

Dots: 1
2χ

2
2

Dashes: 1
2χ

2
1
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Expected Significances

Probably the most useful way to describe the sensitivity of a model of new physics,
given specific experimental conditions, is to calculate the integrated luminosity
for which there is a 50% probability of claiming discovery at the 5σ level. The
calculation can be done as follows:

1. Compute (or simulate) the distribution of p values under the new physics model
and assuming a fixed integrated luminosity.

2. Find the median of the p value distribution.

3. Repeat steps 1 and 2 for several values of the integrated luminosity and
interpolate to find the integrated luminosity at which the median p value is
2.7× 10−7.

To determine the most sensitive method, or the most sensitive test statistic for
discovering new physics, a useful measure is the expected significance level (ESL),
defined as the observed p value averaged over the new physics hypothesis. If the
test statistic X has distribution Fi(x) under Hi, and if p = F0(X), then:

ESL ≡ E(p |H1) =
∫
F0(x) f1(x) dx.

The integral on the right is easy to estimate by Monte Carlo, since it represents
the probability that X ≤ Y , where X ∼ F0 and Y ∼ F1, independently.
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Combining Significances (1)

When searching for a new particle in several different channels, or via different
experiments, it is sometimes desired to summarize the search by calculating a
combined significance. This is a difficult problem.

The best approach is to combine the likelihood functions for all the channels and
derive a p value from the combined likelihood ratio statistic.

However, it may not always be possible or practical to do such a calculation. In this
case, if the individual p values are independent, another possibility is to combine
the p values directly. Unfortunately there is no unique way of doing this. The
general idea is to choose a rule S(p1, p2, p3, . . .) for combining individual p values
p1, p2, p3,. . . , and then to construct a combined p value by calculating the tail
probability corresponding to the observed value of S. Some plausible combination
rules are:

1. The product of p1, p2, p3,. . . (Fisher’s rule);

2. The smallest of p1, p2, p3,. . . (Tippett’s rule);

3. The average of p1, p2, p3,. . . ;

4. The largest of p1, p2, p3,. . . .
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Combining Significances (2)

This list is by no means exhaustive. To narrow down the options, there are some
properties of the combined p value that one might consider desirable. For example:

1. If there is strong evidence against the null hypothesis in at least one channel,
then the combined p value should reflect that, by being small.

2. If none of the individual p values shows any evidence against the null hypothesis,
then the combined p value should not provide such evidence.

3. Combining p values should be associative: the combinations ((p1, p2), p3),
((p1, p3), p2), (p1, (p2, p3)), (p1, p2, p3), should all give the same result.

Now, it turns out that property 1 eliminates rules 3 and 4; property 2 is satisfied by
all four rules, and property 3, called evidential consistency, is satisfied by none. This
leaves Tippett’s and Fisher’s rules as reasonable candidates. Actually, it appears
that Fisher’s rule has somewhat more uniform sensitivity to alternative hypotheses
of interest in most problems. So Fisher’s rule is quite popular.
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Combining Significances (3)

Trick to combine n p-values by Fisher’s rule: take twice the negative logarithm of
their product and treat it as a chisquared for 2n degrees of freedom (this comes
from the facts that the cumulative distribution of a chisquared variate for 2 d.o.f.
is given by e−x/2, and that chisquared variates are additive). For n = 2 the result
is:

pcomb = p1 p2

[
1 − ln

(
p1 p2

)]
.

For general n the result is:

pcomb = Π
n−1∑
j=0

(− lnΠ)j

j!
, where Π ≡

n∏
j=1

pj.

This result is only strictly valid if the individual p values are derived from continuous
statistics. If one or more p values are discrete, the formula will give a combined p
value that is larger than the correct one, and therefore “conservative”.
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Bayesian Hypothesis Testing (1)

The Bayesian approach to hypothesis testing is to calculate posterior probabilities
for all hypotheses in play. When testing H0 versus H1, Bayes’ theorem yields:

π(H0 |x) =
p(x |H0)π0

p(x |H0)π0 + p(x |H1) π1
,

π(H1 |x) = 1 − π(H0 |x),

where πi is the prior probability of Hi, i = 0, 1.

If π(H0 |x) < π(H1 |x), one rejects H0 and the posterior probability of error is
π(H0 |x). Otherwise H0 is accepted and the posterior error probability is π(H1 |x).

In contrast with frequentist Type-I and Type-II errors, Bayesian error probabilities
are fully conditioned on the observed data. It is often interesting to look at the
evidence against H0 provided by the data alone. This can be done by computing
the ratio of posterior odds to prior odds and is known as the Bayes factor:

B01(x) =
π(H0 |x)/π(H1 |x)

π0/π1

In the absence of unknown parameters, B01(x) is a likelihood ratio.
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Bayesian Hypothesis Testing (2)

Often the distributions of X under H0 and H1 will depend on unknown param-
eters θ, so that posterior hypothesis probabilities and Bayes factors will involve
marginalization integrals over θ:

π(H0 |x) =

∫
p(x | θ,H0)π(θ |H0)π0 dθ∫ [

p(x | θ,H0)π(θ |H0)π0 + p(x | θ,H1)π(θ |H1)π1

]
dθ

and: B01(x) =

∫
p(x | θ,H0)π(θ |H0) dθ∫
p(x | θ,H1)π(θ |H1) dθ

Suppose now that we are testing H0 : θ = θ0 versus H1 : θ > θ0. Then:

B01(x) =
p(x | θ0)∫

p(x | θ,H1)π(θ |H1) dθ
≥ p(x | θ0)

p(x | θ̂1)
= λ(x).

The ratio between the Bayes factor and the corresponding likelihood ratio is larger
than 1, and is sometimes called the Ockham’s razor penalty factor: it penalizes the
evidence against H0 for the introduction of an additional degree of freedom under
H1, namely θ.
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Bayesian Hypothesis Testing (3)

Small values of B01, or equivalently large values of B10 ≡ 1/B01, are evidence
against the null hypothesis H0. A rough descriptive statement of standards of
evidence provided by Bayes factors against a given hypothesis is as follows:

2 lnB10 B10 Evidence against H0

0 to 2 1 to 3 Not worth more than a bare mention
2 to 6 3 to 20 Positive
6 to 10 20 to 150 Strong
> 10 > 150 Very strong

(See R.E. Kass and A.E. Raftery, “Bayes Factors,” J. Amer. Statist. Assoc. 90,
773 (1995).)
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Bayesian Significance Tests

For a hypothesis of the form H0 : θ = θ0, a test can be based directly on the
posterior distribution of θ. First calculate an interval for θ, containing an integrated
posterior probability β. Then, if θ0 is outside that interval, reject H0 at the
α = 1 − β credibility level. An exact significance level can be obtained by finding
the smallest α for which H0 is rejected.

There is a lot of freedom in the choice of posterior interval. A natural possibility is to
construct a highest posterior density (HPD) interval. If the lack of parametrization
invariance of HPD intervals is a problem, there are other choices. One is to use
a standard ∆ lnL interval subject to the constraint of a given posterior credibility
content.

If the null hypothesis is H0 : θ ≤ θ0, a valid approach is to calculate a lower limit
θL on θ and exclude H0 if θ0 < θL. In this case the exact significance level is the
posterior probability of θ ≤ θ0.
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