$Z \rightarrow \mu \mu CROSS SECTION @ CMS$

Frank Raupach, <u>Maarten Thomas</u> E-mail: <u>frank.raupach@cern.ch</u>, <u>maarten.thomas@cern.ch</u> Physikalisches Institut 1b, RWTH Aachen

Helmholtz Alliance 'Physics at the Terascale' Workshop Aachen 27th November 2008

PHYSICS AT LHC STARTUP

- Physics at LHC startup: $Z \rightarrow \mu \mu(ee)$.
- Useful for tracker and muon system alignment and calorimeter calibration.
- Z events are setting the lepton momentum and lepton energy scales.
- Result should be cross section or luminosity.

STRATEGY FOR $pp \rightarrow Z/\gamma^* \rightarrow \mu^+\mu^-$

• "Master" formula to estimate cross section or luminosity:

 $\sigma(pp \to Z/\gamma^* \to \mu^+\mu^-) = \frac{N_{\text{cand}} \left(1 - f_{b\bar{b}}\right) \left(1 - f_{t\bar{t}}\right) \left(1 - f_{\text{cosmics}}\right) \left(1 - f_{\tau\tau}\right) \left(1 - f_{pp \to \mu X}\right) \left(1 - f_{W \to \mu\nu}\right)}{\epsilon_{total} \int L \mathrm{d}t}$

- f_i : Fraction of candidate events attributed to $b\overline{b}$ ($t\overline{t}$), cosmic μ , $Z \rightarrow \tau \tau$, $pp \rightarrow \mu X$ and $W \rightarrow \mu \nu$.
- Etotal : Efficiency of selection cuts and detector acceptance.

NCQNLO

- Reminder: crucial for precision measurements.
- Using MC@NLO: $\mathcal{O}(\alpha_s)$ (Frixione, Webber; hep-ph/0204244, hep-ph/0305252)
- NLO provides a more accurate answer for the integrated cross section.
- MC@NLO computes all QCD NLO diagrams before starting the shower.

generate Drell-Yan processes ... Z → μμ
 ... use Herwig for showering ...
 ... do full CMS detector simulation ...

GENERATOR CHECK #1

• MC@NLO: Z mass from generator

mass, width and Breit-Wigner fit okay...

GENERATOR CHECK #2

Check MC@NLO with independent calculations:

(From Anastasiou et al, <u>hep-ph/0312266</u>)

 Integration yields the total cross section times branching ratio. Assume narrow width approximation in *M* and integrate over η numerically (Y = η).

GENERATOR CHECK #2

Results after integrating the plot: LO, lower edge σ = 1.389 nb very unsafe NLO σ = 2.011 nb rather safe
For comparison with our simulation: MC@NLO, NLO: σ = 1.910-2.053 nb depending on PDF.

• Agreement nice!

• Strategy: Using MC@NLO as the generator and NNLO calculations for the cross section.

Z PRODUCTION: $O(\alpha_s^2)$

- QCD NNLO^a: Spin correlations and γ-Z interference included.
- FEWZ is not a generator!
- Is able to calculate Xsec in LO, NLO and NNLO:

 $\sigma_{\gamma^*/Z \to \mu\mu} = (2.031 \pm 0.002) \text{ nb} \ NLO$

 $\sigma_{\gamma^*/Z \to \mu\mu} = (1.988 \pm 0.014) \text{ nb } MC@NLO$

- ... using the same PDFs and 66 GeV $\leq m_{\mu\mu} \leq 166$ GeV
- γ contribution added for MC@NLO.
- Renormalization and factorization scales equal.
 Agreement within ∆ ≈ 2 %.

^a K.Melnikov, F.Petriello, <u>hep-ph/0609070</u>; source code available at <u>http://www.phys.hawaii.edu/~kirill/FEHiP.htm</u>

CROSS SECTION FOR NNLO

- Varying the renormalization μ_r and factorization μ_f scales.
 - $\mu_{\rm r} = \mu_{\rm f} = m_Z$ $\sigma_{\gamma^*/Z \to \mu\mu} = (1.964 \pm 0.020) \text{ nb}$
 - $\mu_{\rm r} = \mu_{\rm f} = \frac{1}{2} m_{\rm Z}$

 $\sigma_{\gamma^*/Z \to \mu\mu} = (1.971 \pm 0.018) \text{ nb}$

 $\mu_{\rm r}=\mu_{\rm f}=2\ m_{\rm Z}$

 $\sigma_{\gamma^*/Z \to \mu\mu} = (1.994 \pm 0.020) \text{ nb}$

- Independent on scales!
- Slightly smaller than NLO from this calculation.
- Same check performed for MC@NLO with similar result!

Mass Z after reconstructing 2 μ 's

 Fit is good with Breit-Wigner alone. This is in principle wrong and just by chance.

Mass Z after reconstructing 2 μ 's

Mass Z after reconstructing 2 μ 's... another fit

 Fit in peak region okay with Breit-Wigner + one Gaussian (in principle one should fit more Gaussians...) • We expect from Z width and detector resolution a width of $2.8 \, \text{GeV} / c^2$.

Mass Z after reconstructing 2 μ 's from narrow width Z

• Fit with 2 Gaussians, detector resolution only!

• We find what we roughly expect from naive calculations.

Mass Z after reconstructing 2 μ 's in barrel region

 $PP \rightarrow \gamma^* / Z \rightarrow \mu^+ \mu^- + X$

Expected number of $\mu\mu$ events for 0.1 *fb*⁻¹ for the LHC with the CMS detector:

Invariant mass of the muons in the $Z_{\gamma}^* \rightarrow \mu \mu$ channel

BACKGROUND

- $f_{b\bar{b}}$ ($f_{t\bar{t}}$) from data (e.g. isolation criteria).
- $f_{\tau\tau}$ irreducible (e.g. from MC)!!
- $f_{W \rightarrow \mu\nu}$ from data (e.g. # candidate events $\geq 2\mu$).
- $f_{pp \rightarrow \mu X}$: events stemming from $qq \rightarrow qq$, $gg \rightarrow gg$, $gq \rightarrow gq$ and $gg \rightarrow qq$ processes.
- *f*_{cosmics} from data (e.g. time info!?).

 $\sigma(pp \to Z/\gamma^* \to \mu^+ \mu^-) = \frac{N_{\text{cand}} \left(1 - f_{b\bar{b}}\right) \left(1 - f_{t\bar{t}}\right) \left(1 - f_{\text{cosmics}}\right) \left(1 - f_{\tau\tau}\right) \left(1 - f_{pp \to \mu X}\right) \left(1 - f_{W \to \mu\nu}\right)}{\epsilon_{total} \int L \mathrm{d}t}$

SIGNAL & BACKGROUND

• Main contribution from bb events.

Background	$p_t > 10 \text{ GeV/c}$	$p_t > 15 \text{ GeV/c}$	$p_t > 20 \text{ GeV/c}$	$p_t > 25 \text{ GeV/c}$
pp→µ+X	1.81.10-2	7.43·10 ⁻³	8.16·10 ⁻³	< 8.10-3
bÞ	7.89·10 ⁻²	7.23·10 ⁻²	2.31·10 ⁻²	1.32.10-2
₩→μν	4.85.10-4	3.23.10-4	2.81.10-4	1.67.10-4
ft	7.17·10 ⁻⁵	6.56·10 ⁻⁵	5.79·10 ⁻⁵	4.72 ·10 ⁻⁵
$pp \rightarrow \gamma^* / Z \rightarrow \tau \tau$	5.78·10 ⁻⁶	5.93·10 ⁻⁶	5.49·10 ⁻⁶	5.22·10 ⁻⁶

Background / signal ratios f_i in 85.6 GeV / $c^2 \le M \le 97.2$ GeV / c^2 .

MUON TRACK DISTANCE

- Background can be reduced by requiring isolated muons.
- Consider a muon isolated if no tracks are present in a cone $\Delta R < 0.3$ around the muon.

 $\Delta R (\text{muon}, \text{track}) = \sqrt{(\eta_{\text{muon}} - \eta_{\text{track}})^2 + (\varphi_{\text{muon}} - \varphi_{\text{track}})^2}$

SIGNAL & BACKGROUND

Background / signal ratios f_i in 85.6 GeV / $c^2 \le M \le 97.2$ GeV / c^2 :

Background	$p_t > 10 \text{ GeV/c}$	$p_t > 15 \; \mathrm{GeV/c}$	$p_t > 20 \text{ GeV/c}$	$p_t > 25 \text{ GeV/c}$
pp→µ+X	< 10-3	< 10-3	< 10-3	< 10 ⁻³
bð	< 10-3	< 10-3	< 10-3	< 10-3
W→µv	4.29 ·10 ⁻⁵	2.93 ·10 ⁻⁵	1.54.10-5	1.65.10-5
ft	2.58·10 ⁻⁵	2.54·10 ⁻⁵	2.32·10 ⁻⁵	2.11·10 ⁻⁵
$pp \rightarrow \gamma^* / Z \rightarrow \tau \tau$	4.56·10 ⁻⁶	4.67·10 ⁻⁶	3.76.10-6	4.05.10-6

Summary: the number of $\mu\mu$ pairs from other sources than Z or γ^* is rather small!!

INCLUSIVE DI UNASS

SYSTEMATICS

Systematic uncertainties due to:

- PDFs
- Muon and Tracker alignment
- Trigger

. . .

Magnetic field

SYSTEMATIC ERROR

- Contributions to the total systematic uncertainty from:
 - Alignment: $\sigma^{\text{alignment}} = 2.9 \%$
 - PDF: $\sigma^{PDF} = 3.8 \%$ (cross section), 1.9% (acceptance)
 - Trigger: $\sigma^{HLT} = 0.8 \%$
 - B field: $\sigma^{B \text{ field}} = 0.5 \%$ (CMS AN-2007/031)
- Total systematic uncertainty:

 $\sigma^{\text{sys}} = \sigma^{\text{alignment}} \oplus \sigma^{\text{PDF}} \oplus \sigma^{\text{HLT}} \oplus \sigma^{\text{B field}} \approx 5\% (4\%)$

• Finally we obtain a systematic uncertainty $\sigma^{sys} \approx 5\%$ for luminosity and $\sigma^{sys} \approx 4\%$ for cross section measurement.

FINAL RESULTS

• Final results: production cross section or luminosity:

- Cross section (with $\varepsilon = (31.19 \pm 0.56)\%$ and assuming L = $(0.10 \pm 0.01) fb^{-1}$): $\sigma_{pp \rightarrow \gamma^*/Z0 \rightarrow \mu\mu} = (1.989 \pm 0.114^{stat} \pm 0.071^{sys} \pm 0.199^{lumi})$ nb.
- Luminosity (with $\sigma_{NNLO} = (1.964 \pm 0.020) \ nb$): L = (0.100 ± 0.006^{stat} ± 0.005^{sys}) fb⁻¹.

FINAL RESULTS

 Compare cross section measurement with other *pp* and *pp* experiments:

UA1: Albajar et al, <u>Phys. Lett. B198</u> (1987) CDF I: Abe et al, Phys. <u>Rev. D 59(5)</u> (Jan 1999) CDF II: Acosta et al, <u>Phys. Rev. Lett. 94</u> (2005)

 $\sigma_{pp \to \gamma^*/Z_0 \to \mu\mu} = (1.989 \pm 0.114^{\text{stat}} \pm 0.071^{\text{sys}} \pm 0.199^{\text{lumi}}) \text{ nb.}$

SUMMARY

- Z production in high energy pp collisions has a clean signature through e.g. $Z \rightarrow \mu\mu$.
- The background is very low.
- Potential luminosity monitor: the most important ingredient is the accuracy to which the cross section for Z production can be theoretically calculated. We find in this analysis that the accuracy of the luminosity measurement ≈ 7%.
- Cross section: if we determine the cross section the main uncertainty stems from the error of the luminosity, at least at the beginning of data taking.