ATLAS Discovery Potential of bb h/A/H $\rightarrow \tau \tau$ in the Fully Leptonic Channel

LHC Deutschland Meeting, 27.11.2008

Jana Schaarschmidt, Michael Kobel, Wolfgang Mader

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Outline

- 1. The Signal Process in the MSSM
- 2. Selection
- 3. Background Estimation
- 4. Systematics
- 5. Discovery Potential

Publication to appear:

ATLAS Collaboration,

Expected Performance of the ATLAS Experiment, Detector, Trigger and Physics, CERN-OPEN-2008-020, Geneva, 2008

The Higgs Sector in the MSSM

- 2 Higgs doublets \Rightarrow 5 Higgs bosons: \mathbf{h}^{0} , \mathbf{H}^{0} (CP = +1), \mathbf{A}^{0} (CP = -1), \mathbf{H}^{\pm}
- Tree level decribed by only two parameters: $\mathbf{m}_{\mathbf{A}}$, $\mathbf{tan}\boldsymbol{\beta} = \mathbf{v}_{\mathbf{u}}/\mathbf{v}_{\mathbf{d}}$ $\mathbf{v}_{\mathbf{u}}^2 + \mathbf{v}_{\mathbf{d}}^2 = \mathbf{v}^2$
- $m_h < m_Z$ but large loop corrections increase this limit!

Couplings:
$$g_{MSSM} = \xi g_{SM}$$

Additional parameters:

 $\begin{array}{lll} X_t & Stop mixing parameter \\ M_{SUSY} & Energy scale of SUSY breaking \\ M_2 & Gaugino mass at EW scale \\ M_{\widetilde{g}} & Gluino mass at EW scale \\ \mu & Strength of SUSY Higgs mixing \end{array}$

ξ	t	b / τ	W / Z			
h	cosα/sinβ	-sinα/cosβ	$sin(\alpha - \beta)$			
Η	sinα/sinβ	cosα/cosβ	$\cos(\alpha - \beta)$			
A	cotβ	tanβ	-			
h/A/H \rightarrow ττ enhanced if tanβ large						
hmark	x scenarios:	$h/H \rightarrow ZZ^*$ suppressed A does not couple to W/Z				

All parameters except tan β , m_A fixed in benchmark scenarios:

 m_h^{max} : $m_h < 133 \text{ GeV}$, maximum allowed mass for hnomixing: $m_h < 116 \text{ GeV}$, no mixing in stop sectorgluphobic: $m_h < 119 \text{ GeV}$, suppressed gg fusionsmall α : $m_h < 123 \text{ GeV}$, suppressed ttbar h, h \rightarrow bb

The Signal Process in the MSSM

ATLAS Discovery Potential of bb h/A/H $\rightarrow \tau \tau \rightarrow 21 4v$

Signal Mass Reconstruction

Conditions:

- \bullet Higgs mass large compared to τ mass
- Higgs boson has non-zero p_T
- \bullet p_{T,miss} in the detector due to neutrinos only

$$\begin{array}{l} \mathbf{x} = \mathbf{p}_{\mathrm{T},\ell} / \mathbf{p}_{\mathrm{T},\tau} \\ \mathbf{0} < \mathbf{x} < 1 \end{array} \qquad m_{\tau\tau} = \frac{m_{\ell\ell}}{\sqrt{x_1 \cdot x_2}} \end{array}$$

Mass resolution in bb h/A/H:

Event Selection

Relevant background processes:

- W+jets (20045 pb), bbar W (111 pb)
- Z(\rightarrow leplep)+jets (2036 pb), bbar Z (52.3 pb)
- ttbar (833 pb)

Mass independent Preselection:

- Trigger: high p_T single or di-lepton trigger ($\mu 20$, 2e15, e25, e15& $\mu 10$)
- Choose two oppositely charged leptons with $p_T > 10 \text{ GeV}$
- Veto events with more than 2 jets
- Require at least one b-tag with jet $p_T > 15 \text{ GeV}$
- Select physical solutions of collinear approximation ($\Delta \Phi_{ll} < 3.0, 0 < x_i < 1$)

Mass Dependent Selection

• More kinematical cuts optimized for best statistical significance on each mass point mostly taking into account the low p_T signature of the signal

- Events with high $\Delta \Phi_{ll}$ (back to back signature, esp.for higher A masses)
- Events with small p_{T,Higgs}
- Events with certain p_T of the leading b-jet
- Events with a large $p_{T,miss}$ (missing E_T due to neutrinos in final state)
- Cuts on m_{ll} and $x_1 \cdot x_2$ (to suppress $Z \rightarrow leplep$)
- Individual optimization in ee/µµ and the mixed eµ channel due to $Z \rightarrow ee/µµ$ contribution

	Higgs Signal	ttbar	$Z \rightarrow \tau \tau$	$W \rightarrow l\nu$	Z → ee/µµ
Trigger	1 511 fb	255 114 fb	47 027 fb	17 200 000 fb	2 707 140 fb
Preselection	116 fb	1 096 fb	441 fb	122 fb	6 071 fb
Further cuts	43.3 fb	32.8 fb	107.5 fb	21 fb	7.4 fb
Overall selec- tion efficiency	0.02	7 • 10 ⁻⁵	1 • 10-3	7 • 10 ⁻⁷	2 • 10-6

Example $m_A = 130$ GeV, $tan\beta = 20$:

ATLAS Discovery Potential of bb h/A/H $\rightarrow \tau\tau \rightarrow$ 21 4v

Results of Selection for 30 fb⁻¹ (1/3)

 \Rightarrow Clearly dominated by irreducable $Z \rightarrow \tau \tau$

G

Results of Selection for 30 fb⁻¹ (2/3)

160 GeV

⇒ ttbar background becomes more important

Results of Selection for 30 fb⁻¹ (3/3)

300 GeV

 \Rightarrow Z background almost negligible

 \Rightarrow Signal tiny due to cross section*BR

$Z \rightarrow \tau \tau$ Estimation from Data (1/2)

G

$Z \rightarrow \tau \tau$ Estimation from Data (2/2)

Events normalized to Unity preliminary ATLAS • Shapes of leptonic final states identical - Z \rightarrow tt \rightarrow ee+4v within statistical limits ____Z→ττ→μμ+4ν • Use and modify sideband to select ee or up events $Z \rightarrow \tau \tau \rightarrow e \mu + 4 \nu$ **Data-driven normalization of** $Z \rightarrow \tau \tau$ shape: $\# (Z \to \tau \tau \to \mu \mu)_{DATA}^{Signal} = \# (Z \to \tau \tau \to \mu \mu)_{MC}^{Signal} \cdot \frac{\# (Z \to \mu \mu)_{DATA}^{Sideband}}{\# (Z \to \mu \mu)_{TC}^{Sideband}}$

Double ratios of efficiencies in Sideband and signal region for $Z \rightarrow ee/\mu\mu$ and $Z \rightarrow \tau\tau \rightarrow ee/\mu\mu$ (signal region = all analysis specific cuts applied)

Systematic uncertainties on $Z \rightarrow \tau \tau$:

- JES and b-tagging uncertainties cancel
- Remaining uncertainties on lepton resolution, p_T scale and efficiency: 2.6 %
- No systematics on shape estimated so far
- Statistical uncertainty on the normalization is negligible for 30 fb⁻¹

Systematic Uncertainties (1/2)

Experimental Uncertainties:

Electron efficiency	$\pm 0.2 \%$
Electron E scale	$\pm 0.2 \%$
Electron resolution	$\sigma(E_T) = 0.0073 E_T$ •
Muon efficiency	$\pm 1 \%$
Muon pT scale	$\pm 1 \%$
Muon resolution	$\sigma(1/p_T) = 0.001/p_T \oplus 0.00017$
Jet energy scale	$\pm 3 \% (10 \%, \eta > 3.2)$
Jet energy resolution	$\sigma(E) = 0.45 \sqrt{E} (0.63 \sqrt{E}, \eta > 3.2)$
b-tagging efficiency	$\pm 5 \%$
b-tagging fake rate	$\pm 10 \%$

- Evaluated for each mass point for W+jets and ttbar
- $Z \rightarrow \tau \tau$ uncertainty flat 2.6 %

Theoretical Uncertainty:

- Higgs mass dependent signal cross section uncertainty
- Additional $\Delta \sigma = \pm 10\%$ on ttbar (no data driven approach used)

Systematic Uncertainties (2/2)

m _A	110 GeV	130 GeV	160 GeV	200 GeV	300 GeV	450 GeV
ttbar exp.	7.4 %	6.8 %	5.3 %	5.3 %	4.7 %	4.6 %
ttbar exp. & theory	12.4 %	12.1 %	11.3 %	11.3 %	11 %	11 %
W+jets	4.7 %	4.9 %	4.8 %	5.4 %	5.1 %	5.1 %
Signal experimental	9 %	4.6 %	9.2 %	9.4 %	4.6 %	5.1 %
Signal theory	18 %	15.5. %	13.5 %	10 %	7.5 %	6 %

⇒ Dominated by uncertainty on jet energy scale and b-tagging efficiency

- ⇒ Differences between mass points due to MC statistics
- ⇒ The experimental signal uncertainty only given for information

A

⇒ Systematics fully included in final significance:

$$Signi = \frac{S}{\sqrt{N_{ttbar} + N_{Z \to \tau\tau} + N_{W+Jets} + N_{Z \to ll} + (\Delta_{ttbar} \cdot N_{ttbar})^2 + (\Delta_{Z \to \tau\tau} \cdot N_{Z \to \tau\tau})^2 + (\Delta_{W+jets} \cdot N_{W+jets})^2}}$$

- The dashed line shows the significance incl. the extra 10% ttbar cross section uncertainty
- The grey band is given by the signal cross section uncertainty

Limits for 30 fb⁻¹

 5σ Discovery

- Only m_h^{max} scenario considered
- Most parts of m_A tan β plane covered
- Expect improved results if combined with lep-had/had-had channel

G

- Overview on the analysis of h/A/H $\rightarrow \tau\tau \rightarrow$ leplep in b associated production
- Study completed for 14 TeV and 30 fb⁻¹, to be published
- No cavern background and no pile-up considered

Prospects for first data:

- Study major backgrounds with 0.01 fb⁻¹ 0.1 fb⁻¹
- Study systematic uncertainties esp. regarding b-tag
- Possible (early) discovery contrained by MSSM parameters (esp. value of $tan\beta$)

Very excited for what will come next year...