Report from the Higgs Working Group

Robert Harlander, Sandra Horvat, Guenter Quast, Dieter Zeppenfeld

2nd Annual Workshop of the Helmholtz Alliance • 26.11. - 28.11.2008 • Aachen

HIGGS @ TEVATRON/ LHC: SM HIGGS AND VBF; MSSM HIGGS BOSOSN; HIGGS CP PROPERTIES/ HIGGS BOUNDS/ SUMMARY 1/21

Higgs Searches at the Tevatron

• Using neural network and boosted decision trees to increase the sensitivity. • Spin correlations for the background suppression $(\Delta \phi_{\ell \ell})$. Use of neural network analysis.

HIGGS @ TEVATRON/ LHC: SM HIGGS AND VBF; MSSM HIGGS BOSOSN; HIGGS CP PROPERTIES/ HIGGS BOUNDS/ SUMMARY 2/21

Higgs at the Tevatron: Search Results

Michiel Sanders

HIGGS @ TEVATRON/ LHC: SM HIGGS AND VBF; MSSM HIGGS BOSOSN; HIGGS CP PROPERTIES/ HIGGS BOUNDS/ SUMMARY 3/21

Tevatron: Combined Results, July 2008

HIGGS @ TEVATRON/ LHC: SM HIGGS AND VBF; MSSM HIGGS BOSON; HIGGS CP PROPERTIES/ HIGGS BOUNDS/ SUMMARY 4/2

SM Higgs Boson at the LHC

Central jets in the VBF Higgs Process

VBF topology:

Christoph Hackstein

- Higgs decay products in central region.
- Two forward jets.
- Large rapidity gap (no central jets):

it is important to investigate this gap after the parton shower, hadronization and underlying event.

The gap is strongly model dependent \Rightarrow comparing different generators.

VBFNLO w. Herwig++ showering, Pythia w. Pythia showering

 \Rightarrow Significant difference between Herwig++ and Pythia, originating from the parton shower.

From the parton shower one expects mostly emission in forward region.

Under investigation, collision data $\frac{1}{1.5}$ may be giving us the only answer.

SUSY corrections to VBF Higgs production

VBF Higgs production cross-section:

Michael Rauch

SM NLO corrections are fully known, $O(\alpha_s) \sim 5-10\%$, $O(\alpha) \sim 5\%$.

- Replace the SM Higgs boson with the SM-like MSSM h^0 boson.
- Therefore, change total cross-section as $\sigma^{MSSM} = \sigma^{SM} \cdot \sin{(\beta \alpha)^2}$.
- $\sin(\beta \alpha) \approx 1$ for large part of SUSY parameter space.
- * However, additional loop diagrams with SUSY particles appear:

Strong corrections (only left diagram known so far [Djouadi, Spira]):

HIGGS @ TEVATRON/ LHC: SM HIGGS AND VBF; MSSM HIGGS BOSON; HIGGS CP PROPERTIES/ HIGGS BOUNDS/ SUMMARY 7/2:

SUSY corrections to VBF: Results

Michael Rauch

(SPS: Set of reference points

	WWh	$\mathcal{O}(lpha)$	$\mathcal{O}(lpha_s)$	all
	+ZZh			
SPS1a	-0.329	-0.469	-0.015	-0.484
SPS1b	-0.162	-0.229	-0.006	-0.235
SPS2	-0.147	0.129	-0.002	-0.131
SPS3	-0.146	-0.216	-0.006	-0.222
SPS4	-0.258	-0.355	-0.008	-0.363
SPS5	-0.606	-0.912	-0.010	-0.922
SPS6	-0.226	-0.309	-0.010	-0.319
SPS7	-0.206	-0.317	-0.006	-0.323
SPS8	-0.157	-0.206	-0.004	-0.210
SPS9	-0.094	-0.071	-0.003	-0.074

 $\Delta \sigma / \sigma [0/]$

- \Rightarrow Strong corrections heavily suppressed
- \Rightarrow Typical corrections at or below 1%
- \Rightarrow Can reach up to 4% for parameter points still allowed
- \Rightarrow Need to be considered for a precision analysis of the Higgs sector

SUSY contributions to $gg \rightarrow H + 2jets$

As a background for the VBF Higgs searches:

a) $qq \rightarrow qqH$;

b) $qg \rightarrow qgH$; c) $gg \rightarrow ggH$

• squark-gluino vertices allow box and pentagon diagrams also for quark-scattering

Michael Kubocz

Full one-loop calculations are available for quark-loop induced Hjj production, squark-loop contributions also consdered.

As a signal:

Azimuthal angle ϕ_{jj} between the tagging jets may provide information on CP-violation.

HIGGS @ TEVATRON/ LHC: SM HIGGS AND VBF; MSSM HIGGS BOSOSN; HIGGS CP PROPERTIES/ HIGGS BOUNDS/ SUMMARY 9/2

MSSM Higgs Bosons

Two Higgs doublets \Rightarrow 5 Higgs bosons:

 h^0, H^0 : light and heavy CP-even neutral Higgs boson

 A^0 : CP-odd neutral Higgs boson

 H^{\pm} : charged Higgs boson

- h and H production is very similar to the SM case.
- A-boson has no tree-level couplings to vector bosons \Rightarrow two dominant production modes are gluon fusion and associated $b\bar{b}A$.
 - Importance of bottom loops to the gluon-Higgs coupling increases with $\tan \beta$, so higher order calculations are much more difficult. Additional contributions may come from top and botom squarks.
 - For large $\tan\beta$ values, the $b\bar{b}A/H/h$ production is enhanced.

SUSY QCD corrections for neutral MSSM Higgs

The contribution of stop and bottom quarks to the $gg \rightarrow A$ production is closely related to the calculation $A^0 \rightarrow \gamma \gamma$ decays, since the calculations are done in a similar fashion.

Including bottom-sbottom contributions, in addition to previous top-stop.

H, *A*−−−≺⊂

NLO: QCD.vs.QCD+Stops.vs.SQCD

 $A \rightarrow \gamma \gamma$ decay width ($\Gamma \cdot 10^{-6}/\text{GeV}$)

Franziska Hofmann

 \Rightarrow Bottom-Sbottom contributions become important for large tan β .

SUSY EW corrections for neutral MSSM Higgs

 $A^0 \rightarrow \gamma \gamma$: corr. of the same size and opposite sign as QCD corrections. $A^0 \rightarrow gg$: corrections are small.

HIGGS @ TEVATRON/ LHC: SM HIGGS AND VBF; MSSM HIGGS BOSOSN; HIGGS CP PROPERTIES/ HIGGS BOUNDS/ SUMMARY 12/21

b-associated MSSM Higgs production

Two approaches to calculate production cross-section at NLO:

- $gg \rightarrow b\bar{b}H$: reliable for high- p_T^b , collinear logs for low- p_T^b
- $gb \rightarrow bH$, $bb \rightarrow H$: move one or both gluon splitings to a b-pdf.

Typical Higgs search requires *exactly* 0 or *at least* 1 b-jet in final state \Rightarrow need all mentioned approaches, but cannot simply add them.

Can our generators describe well the proportion of different event topologies (with 0, 1, and 2 high- p_T b-jets)?

 Sherpa agrees better with the prediction from MRST2004 pdf

Markus Warsinsky

• Pythia agrees better with the prediction from MRST2002 pdf

 Observed differences of up to 20% have been used as an estimate of the systematic signal uncertainty in recent ATLAS analyses.

Neutral MSSM Higgs Searches at the LHC

 $A/H/h \rightarrow \tau \tau \rightarrow 2\ell 4\nu$

- $m_{\tau^+\tau^-}$ reconstruction by means of collin. approximation (resolution 20-50%).
- Backgrounds:
 - Z + jets, $t\bar{t}$, W + jets
- Event selection: leptons, E_{T}^{miss} , $\geq 1b - tag$

Jana Schaarschmidt, Markus Warsinsky

 $A/H/h \rightarrow \mu\mu$

- Excellent $m_{\mu\mu}$ mass-resolution (resolution 2-8%).
- Backgrounds: Z + jets, $t\bar{t}$

• Event selection:

muons, no $E_{\rm T}^{\rm miss}$ and

a) =
$$0b - tag$$
 or

b) $\geq 1b - tag$.

Combine (a) and (b).

HIGGS @ TEVATRON/ LHC: SM HIGGS AND VBF; MSSM HIGGS BOSOSN; HIGGS CP PROPERTIES/ HIGGS BOUNDS/ SUMMARY 14/21

Neutral MSSM Higgs Searches: Potential

Jana Schaarschmidt, Markus Warsinsky

HIGGS @ TEVATRON/ LHC: SM HIGGS AND VBF; MSSM HIGGS BOSOSN; HIGGS CP PROPERTIES/ HIGGS BOUNDS/ SUMMARY 15/21

Charged MSSM Higgs Searches

• Complex final state with $m_{H^{\pm}} < m_{top}$.

Susanne Mohrdieck-Möck

• No full event reconstruction possible (3nu, on both sides.)

Charged MSSM Higgs Searches: Combined Result

Susanne Mohrdieck-Möck

• light $H^{\pm}(m_{H^{\pm}} < m_{top})$:

-
$$t\bar{t} \rightarrow (H^{\pm}b)(Wb) \rightarrow (\tau_{had}\bar{\nu}_{\tau}\nu_{\tau} \ b)(\ell\nu_{\ell} \ b)$$

- $t\bar{t} \rightarrow (H^{\pm}b)(Wb) \rightarrow (\tau_{had}\bar{\nu}_{\tau}\nu_{\tau} \ b)(qq \ b)$

-
$$t\bar{t} \rightarrow (H^{\pm}b)(Wb) \rightarrow (\ell \nu_{\ell} \bar{\nu}_{\tau} \nu_{\tau} b)(qq b)$$

$$\begin{array}{l} - \ \mathrm{H}^{\pm} \to \mathrm{tb} : \mathrm{gg/gb} \to \mathrm{t[b]}\mathrm{H}^{\pm} \to \mathrm{W_{qq}b[b]}(\ell\nu_{\ell}\mathrm{bb}) \\ - \ \mathrm{H}^{\pm} \to \tau\nu : \mathrm{gg/gb} \to \mathrm{t[b]}\mathrm{H}^{\pm} \to \mathrm{W_{qq}b[b]}(\tau_{had}\bar{\nu}_{\tau}\nu_{\tau}) \end{array}$$

CP properties of Neutral Higgs Bosons

Stefan Berge

 $\phi^0 \rightarrow \tau^+ \tau^- \rightarrow \pi^+ \pi^- + 2\nu$ carries the information about the CP=±1 states of the Higgs boson.

Experimantally very challenging analysis!

HiggsBounds

Oliver Brein

HiggsBounds:

Test theoretical predictions of models with arbitrary Higgs sectors against exclusion bounds obtained from Higgs searches at LEP and the Tevatron. – basic idea

- Evaluate model prediction Q_{model} for cross section times BR (normalised to a reference value or not) of all search channels X for given Higgs masses and deviations from the SM and compare to experimental limit.
- Depending on the way the exclusion result (table) for a particular search channel (topology) has been published (relative or absolute limit, BR assumed to be 1), we evaluate

$$Q_{\text{model}} = \frac{[\sigma \times \text{BR}]_{\text{model}}}{[\sigma \times \text{BR}]_{\text{ref}}} \text{ or } [\sigma \times \text{BR}]_{\text{model}}.$$

- From the experimental results we read off the value $Q_{\text{observed}}(X)$ corresponding to the observed 95% C.L. limit.
- If $\frac{Q_{\text{model}}(X)}{Q_{\text{observed}}(X)} > 1$ the model is excluded by this channel at 95% C.L.

HiggsBounds: Application for CPX MSSM Higgs

Oliver Brein, Karina Williams

New exclusion plots for the CPX scenario

Channel with the highest statistical sensitivity

$$= h_1 Z \rightarrow b\bar{b}Z
= h_2 Z \rightarrow b\bar{b}Z
= h_2 Z \rightarrow h_1 h_1 Z \rightarrow b\bar{b} b\bar{b}Z
= h_2 h_1 \rightarrow b\bar{b} b\bar{b}
= h_2 h_1 \rightarrow h_1 h_1 h_1 \rightarrow b\bar{b} b\bar{b} b\bar{b}
= h_3 h_1 \rightarrow b\bar{b} b\bar{b}$$

$$= other channels$$

Exclusion region at 95 % CL

green = excluded white = unexcluded

(results for $m_t = 170.9$ GeV are in K.W. and G.Weiglein 2008)

HIGGS @ TEVATRON/ LHC: SM HIGGS AND VBF; MSSM HIGGS BOSOSN; HIGGS CP PROPERTIES/ HIGGS BOUNDS/ SUMMARY 20/21

Instead of the Summary

A few open questions:

- Can we improve our understanding of the rapidity gap in the VBF Higgs searches?
- Can we reduce the theoretical uncertainty on the neutral MSSM Higgs production in association with two *b*-quarks?

And still more things to work on:

• Optimization of the present and development of new methods for the data-driven background estimation.