Top physics in LHC-D

Markus Cristinziani

2nd Annual Workshop of the Helmholtz Alliance Physics at the Terascale, Aachen, Nov. 2008

With W. Bernreuther, F.P. Schilling and P. Uwer

PHYSICS AT THE TERASCALE Strategic Helmholtz Alliance HELMHOLTZ

Top physics at LHC

- Signal will be established with less than a fb⁻¹
 - <20% syst. and very small stat. error
- Precise measurement of properties possible
- With first mass measurement
 - Feedback to detector performance
 - Calibration of jet energy scales
- Beyond Standard Model
 - New particles may decay into top pairs
- Background in searches for new physics

 \rightarrow Good understanding of top quark physics essential

Top pair production

Electroweak production

Top quark decay

- Top quarks decay to Wb ~ 100%
- Pair production signatures
 - dilepton (2b + 2l + 2v)
 - lepton + jets (2b + 2q + l + v)
 - all hadronic (2b + 4q)
- Single top signatures
 - t channel (b + q + l + v)
 - Wt channel
 - s channel (2b

$$(1b + 2a + l + v)$$

(2b + l + v)

Yesterday's LHC-D top session

Top-quark pair production beyond next-to-leading order	UWER, Peter
ttbar cross section (ATLAS)	RADICS, Balint
Top rediscovery / cross section (CMS)	CHWALEK, Thorsten
ttbar differential cross section (ATLAS)	BUNSE, Moritz
Differential cross section (mtt) at production threshold	STEINHAUSER, Matthias
Calibration with ttbar events (CMS)	Mr. NAUMANN-EMME, Sebastian
Top Montecarlo at LHC	HUSEMANN, Ulrich
Single Top Production in MC@NLO	MOTYLINSKI, Patrick
Single top (ATLAS)	KHORIAULI, Gia
Single top (CMS)	WEINELT, Julia
Top mass and other properties (CMS)	Dr. WOLF, Roger
Top mass (ATLAS)	Dr. KROENINGER, Kevin
The potential of top invariant mass measurements at the LHC	MALTONI, Fabio
Resonances decaying into ttbar (CMS)	STEGGERMANN, Jan
ttbar resonances with Herwig++	MECHTEL, Markus

Top quark pair production

- Top quark pair production beyond NLO Peter Uwer
- <u>ttbar cross section (ATLAS)</u> Balint Radics
- Top rediscovery / cross section (CMS) Thorsten Chwalek
- <u>ttbar differential cross section (ATLAS)</u> Moritz Bunse
- <u>Calibration with ttbar events (CMS)</u> Sebastian Naumann-Emme

Top-quark production beyond NLO

- Why do we need to go beyond NLO ?
 - NLO prediction has scale dependence of ~12%
 - Uncertainty due to PDFs is much smaller: < 4%

 \rightarrow Go beyond NLO to improve theoretical prediction

Large contribution to NLO due to (universal) threshold logs

 \rightarrow Resummation possible (LL, NLL, NNLL)

NEW!

Peter Uwer

 \rightarrow Shift of a few percent and slight improvement of scale dependence

Progress towards complete NNLO

Almost all the building blocks available, combination of the results highly non-trivial due IR singularities

Approximate NNLO

Use existing knowledge to produce approximate NNLO all threshold logs at NNLO from NNLL resummation Coulomb singularity at NNLO Full scale dependence at NNLO from RGE analysis

 \rightarrow Shift of ~5%, important reduction of scale dependence down to 3%

[Moch, Uwer arXiv:0804.1476]

Experiments: top pair selection

- Large sample will be (eventually) quickly available
 - Mostly concerned with systematic uncertainties
 - Cross section measurement
 - Can be used to calibrate the detector
 - Need to be well understood for searches
- Backgrounds to deal with
 - W + jets, Z + jets
 - Single top
 - Diboson
 - QCD multi-jet events
- Initial strategies
 - Simple selection
 - Do not use b-tagging information or E_T^{miss}

Common systematic uncertainties

- Luminosity estimation
 - Assume initially 20-30%
 - Reduced to 3-5% with dedicated runs and detectors
- Lepton efficiency
 - Initial identification (1%) and trigger efficiency with Z events (1%)
 - fake rate uncertainty for muons (20%) and electrons (50%)
- Jet energy scale
 - Challenging! Assume 5%, ultimate goal is 1%

CERN-OPEN-2008-020 to appear

Common systematic uncertainties

- B-tagging
 - tt will be used to calibrate b-tagging
 - Efficiency known to 5%, mistag rate to 50%
- Parton density functions
 - PDF error sets CTEQ6 and MRST used
 - Evaluation expensive \rightarrow reweight events
- W+jets normalisation
 - Large theoretical uncertainty
 - Could be determined from data ($\sim 20\%$ with 1fb⁻¹)

- Smallest background, high trigger efficiency (>96%)
- Sub-channels (ee, μe, μμ) optimized separately
- Three approaches considered:
- Cut and count
 - Determine optimal cuts
 - E_T^{miss} > 30GeV, 2 jets, 2 os leptons
 - Z veto cut for same flavor
- Inclusive template
- Likelihood method

Dilepton channel

Likelihood method

Cut and Count method: $\Delta \sigma / \sigma = (4(\text{stat})^{+5}_{-2}(\text{syst}) \pm 2(\text{pdf}) \pm 5(\text{lumi}))\%$ Template method: $\Delta \sigma / \sigma = (4(\text{stat}) \pm 4(\text{syst}) \pm 2.(\text{pdf}) \pm 5(\text{lumi}))\%$ Likelihood method method: $\Delta \sigma / \sigma = (5(\text{stat})^{+8}_{-5}(\text{syst}) \pm 0.2(\text{pdf}) \pm 5(\text{lumi}))\%$

Report from the top working group

Markus Cristinziani

tt lepton+jets analysis

event Selection: I lepton Pt > 20 GeV, Missing Et > 20 GeV, at least 4 Jets with Pt > 20 GeV, of which at least 3 Jets Pt > 40 GeV

hadronic top candidate: 3 Jet combination leading to highest Pt

hadronic W candidate: 2 Jet combination from hadronic top Jets, leading to highest Pt

W constraint:W candidate has an invariant mass of the reconstructed W mass ± 10 GeV

- Main backgrounds are single boson plus jet production and QCD fakes
- Plans for data driven background estimation:
 - W/Z+jets
 - QCD fakes

Likelihood method: $\Delta\sigma/\sigma = (7(\text{stat}) \pm 15(\text{syst}) \pm 3(\text{pdf}) \pm 5(\text{lumi}))\%$ Counting method: $\Delta\sigma/\sigma = (3(\text{stat}) \pm 16(\text{syst}) \pm 3(\text{pdf}) \pm 5(\text{lumi}))\%$

Feasibility study of double differential $t\bar{t}$ cross-section $f(p_T,y)$

Truth, generated with MC@NLO

Reconstructed, 1fb⁻¹

New: employ TMVA to distinguish correct pairing of jets from combinatorial background

Markus Cristinziani

Moritz Bunse

PAS-TOP-08-005

Early data analysis (10pb⁻¹)

Tight cuts on muons to reduce QCD No E_T^{miss} cut, no b-tagging

With this selection we find in 10 pb⁻¹:

- 128 ttbar signal events
- 25 ttbar other events
- 63 BG events
- Data driven QCD background estimate

Discriminating variables η and M3

 Luminosity dependence of statistical uncertainty

- Systematics
 - Important contribution from JES
- Improve with overall likelihood
 - 12 input variables

- Top quark suitable to calibrate JES and b-tagging
- Two approaches for jet correction: factorized and global fit

• CMS is developing a factorized jet correction in 7 steps:

Level 1: correction for pile-up, electronic noise and jet energy lost by thresholds Level 2: relative correction for variations in jet response with pseudo-rapidity Level 3: absolute correction as a function of jet p_T

Sebastian Naumann-Emme

μ (p_t(Jet)^{rec}/p_t(Jet)^{had}

η**(Jet)^{had}**

combine orthogonal samples

p (Jet)^{had} [GeV]

- takes correlations into account
- recalibrate on tower level and calibrate on jet level

Global fit

 $\chi^2_{\text{global}} = \chi^2_{\gamma/Z+\text{jet}} + \chi^2_{\text{dijet}} + \chi^2_{\text{track-tower}} + \chi^2_{\text{top}} + \dots$

Top quark as a calibration tool

Monte Carlo for top quark physics

Monte Carlo for top quark physics

- Tevatron (Pythia) → LHC (more sophisticated generators)
- tt̄ production
 - MC@NLO seem to fit requirements, new: Powheg
- Single top
 - MadGraph or AcerMC. Now also MC@NLO
- Backgrounds
 - W/Z+jets in Alpgen (LO not sufficient)
- Underlying event
 - Tunable in generators
 - Important to do it right
- Don't underestimate the infrastructure of experiments
 - Long turn-around time, validations, ...

Top mass and properties

- Top mass and other properties (CMS) Roger Wolf
- Top mass (ATLAS) Kevin Kröninger

Top mass & properties

Presented study in full hadronic mode (Aachen)

- Combinatorics
- QCD
- Classes of diff. matching quality
- With likelihood obtain
 - S/B = 2/3
- Dominating systematics
 - QCD background
 - ISR/FSR
 - JES

• $\Delta m_{top} (1fb^{-1}) = \pm 1(stat) \pm 3(syst) \text{ GeV}$

Top mass

- Similar selection as top pair with cuts to enhance purity, e.g.
 - Use b-tagging for ultimate precision
 - W mass constraint
 - Cut on other invariant mass combinations
- Methods under investigation
 - Top reconstruction with likelihood fitter
 - Use of templates
 - Extract ratio m_{top}/m_W
 - <u>Matrix element method</u>
 - <u>B decay length technique</u>

Matrix-Element method

Idea: interpret differential cross-section as pdf for top mass.

Includes physics process (ME-element) and detector parameterization

B decay length method Idea: Top mass correlated to lisplaced tracks momentum of b-hadron Measure $<L_{xv}>$ to infer m_{top} primary vertex LXY l dv Motivation: JES-independent Need: top mass \rightarrow *b*-quark momentum \rightarrow *B*-hadron momentum Tracking fragmentation: kinematic two-body decay: $E_{\scriptscriptstyle B} = X_{\scriptscriptstyle b} \cdot E_{\scriptscriptstyle b}$ b-tagging \rightarrow if top decays at rest: $\langle X_{\rm b} \rangle = 0.7193 \pm 0.0016^{+0.0038}_{-0.0033}$ $E_{\rm b}\approx 0.6\,m_{\rm top}c^2-36.8\,{\rm GeV}$ (measured at OPAL) The decay length of the *B*-hadrons is given by: universität**bon**r

 $L = eta \gamma c \, au = p_{\scriptscriptstyle
m B} \, au / m_{\scriptscriptstyle
m B}$

with $\beta = v / c$, $\gamma \tau =$ lifetime in laboratory system

technische universität

dortmund

Single top

- Single top production in MC@NLO Patrick Motylinski
- Single top (ATLAS) Gia Khoriauli
- Single top (CMS) Julia Weinelt

Single Top Production in MC@NLO

- p_T of additional b-jet (not from top) is sensitive to NLO effects
 - Consistent treatment important to cover full phase space

Until recently t-channel and s-channel, now also Wt channel

EFFECTS OF SPIN CORRELATIONS

Single-Top and Spin Correlations

where

 θ is the angle between the direction of flight of the lepton (from top decay) and the hardest non-*b* jet

 χ is the the angle between the direction of flight of the lepton (from top decay) and the anti-proton beam.

Patrick Motylinski (Uni. Freiburg)	Single Top Production in MC@NLO	Aachen, Nov. 27th	17 / 26

Single top event topology

- Single top like other processes has its background
- Background is suppressed using cuts determined by the single top event topology

Pre-selection:

Exactly one lepton, n_{jets} in [2,4], b-tagged jet, E_T^{miss}

26-Nov-08

Gia Khoriauli

Markus Cristinziani

Report from the top working group

11

Specific for t-channel

Seitue 0.25

0.2

0.15

0.1

0.05

 $- p_{T} \text{ of b-jet} > 50 \text{ GeV}$

forward leading non-b jet

Ultimately use likelihood and boosted decision trees

$\Delta \sigma / \sigma$ - single-top cross section measurement uncertainty (multivariate analysis)		
	<u>1fb⁻¹</u>	<u>10fb⁻¹</u>
t-channel:	±5.7% _{stat} ±21.7% _{svs}	±1.8% _{stat} ±9.8% _{svs}
Wt-channel:	$\pm 20.6\%_{stat} \pm 48.0\%_{svs}$	$\pm 6.6\%_{stat} \pm 19.4\%_{svs}$
s-channel:	±64.0% _{stat} ±95.0% _{sys}	±20.0% _{stat} ±48.0% _{sys}
Report from the top working group		34/45

Event Yield @ 1/fb

	process	N _{exp}	8000
	t-channel	1226	6000
	ttbar	199	
Ĩ	tW	48	4000
	W+jets	117	2000
Î	Z+jets	4	
	diboson	8	• • • • • • • • • • • • • • • • • • •
Î	Wbb	8	
l	Wcc	2	
Ĩ	Zbb	3	Z[®] - ^{L=1/fb}
Ĩ	Zcc	0	
	QCD	571	
	ΣΒ	960	50 -
	S/B	1.3	
	S/sqrt(S+B)	26.3	. In second like
			0 50
			ulia Weinelt
	11/27/2008		

100

150

m_{T,W} [GeV/c²]

200

11

11/27/2008

BG Estimation Strategies

W+jets:

is charge-asymmetric (pp-collider) - ttbar and QCD BGs are not

W+/W- asymmetry will be measured pretty well with <100/pb, in the high-statistics 0j sample

QCD:

At the moment (*): Demonstrate the feasibility for ST of the methods being worked out for semileptonic ttbar analyses

→ Working on ABCD method e.g. MET vs track isolation

Report from the top working group

$m_{t\bar{t}}$

- Top-quark pair production near threshold, Matthias Steinhauser
- <u>The potential of top invariant mass</u>, Fabio Maltoni
- Resonances decaying into ttbar (CMS) Jan Steggermann
- <u>ttbar resonances with Herwig++</u> Markus Mechtel

Differential $\sigma(m_{tt})$ at production threshold

Factorization of cross section

$$M \frac{d\sigma_{P_1P_2 \to T}}{dM}(S, M^2) = \sum_{i,j} \int_{\rho}^{1} d\tau \Big[\frac{d\mathcal{L}_{ij}}{d\tau} \Big] (\tau, \mu_f^2) M \frac{d\hat{\sigma}_{ij \to T}}{dM} (\hat{s}, M^2, \mu_f^2).$$
Luminosity Partonic cross section
$$M \frac{d\hat{\sigma}_{ij \to T}}{dM} (\hat{s}, M^2, \mu_f^2) = F_{ij \to T} (\hat{s}, M^2, \mu_f^2) \frac{1}{m_t^2} \operatorname{Im} G^{[1,8]}(M + i\Gamma_t),$$
Hard scattering Greens function,
Effects of "would-be"
Bound state

Extension of recent work by Hagiwara et al:

Complete NLO result for hard scattering coefficient Resummation of threshold logarithms All processes included Matt

Matthias Steinhauser

- No sharp resonances due to top width
- Shift of the total cross section (few pb)
- Important modification of m_{tt}-distribution in threshold region
 - Peak in singlet channel useful for mass determination ?

m_{tt} distribution

- (Model independent) discovery potential
- Now possible in MadGraph

Fabio Maltoni

Markus Cristinziani

m_{tt} shape

- Can extract top mass from m_{tt}
 - shape stable wrt scale variation
 - shape sensitive to top mass

Moments

- Additional sensitivity to moments
- Need further studies of systematics from experiment

tt resonances with Herwig++

- Interference between a resonance and QCD[®]
 - Usually neglected
 - Yields characteristic peak/dip structure
- New ME in Herwig++ including interference
 - Just specify resonance parameters
- Example:

Markus Mechtel

To be studied: Detector resolution effects

m_{tt} distribution

- Wide field of activities in Germany (AC, HH, KA involved)
- Searches for new physics at different energies
 - Requires new reconstruction strategy at $m_{t\bar{t}}$ > 1 TeV
- Use kinematic fitting, especially at low mass
- Make sure trigger is efficient
- Example:
 - 1fb⁻¹ of data
 - \rightarrow Good resolution

Jan Steggermann

Markus Cristinziani

Report from the top working group

Conclusion

- Lots of activity in top physics
- Fourth workshop in the LHC-D series, next in Spring 2009
- Lively discussions during workshop
- Key measurements well covered by German groups
- Plan: strengthen common activities

Interested? Register to dlhc_top@desy.de