Status of CMS at DESY

Report to the 79th Physics Research Committee

Open Session

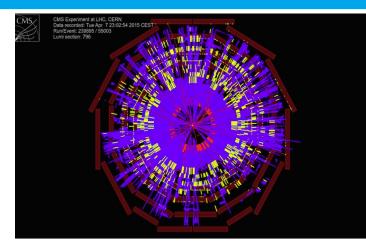
Carmen Diez Pardos On behalf of the DESY CMS group

DESY Hamburg, 11.05.2015

> CMS General status

>DESY-CMS status

- Operation and Components
- Upgrades
- Physics analyses



News from CMS

- > Upgrade and maintenance finished
- > Detector ready for data taking
- > CMS in Data Taking and "Splashes" mode
- > Extended cosmics muon runs with
 - No magnetic field (420h)
 - Magnetic field B= 3.8T (200h)
- > Collected twice as many cosmics as needed for tracker alignment
- > Technical Proposal (TP) for Upgrade Phase II is being prepared \rightarrow expected to be submitted to LHCC in June

The DESY CMS Group

Members:

> 23 staff, 20 postdocs and visitors, 22 PhD students

- 3 Phd thesis defended in the last six months
- > Plus technical staff

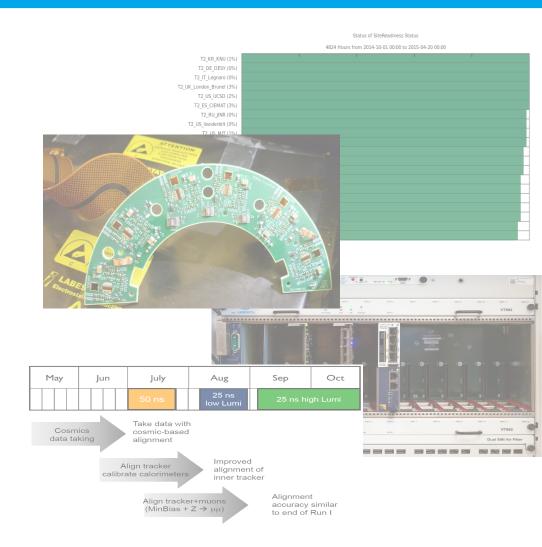
CMS at DESY:

- > Operations, commissioning and components
- > Upgrades
- > Physics analyses

PAS only

- CMS. "Supersymmetry discovery potential in future LHC and HL-LHC running with the CMS detector", PAS-SUS-14-012
- CMS. "Search for a light NMSSM Higgs boson produced in supersymmetric cascades and decaying into b-quark pair", PAS-HIG-14-030

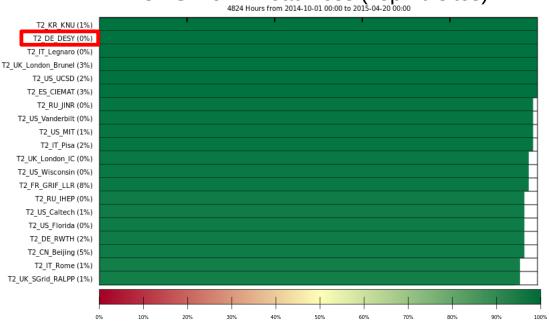
PAS for Publication


- > CMS. "Studies of 2 b-jet + 2 jet production in proton proton collisions at 7 TeV", PAS-FSQ-13-010
- > CMS. "Measurement of the muon charge asymmetry in inclusive pp→ W+ X production at sqrt(s) = 8 TeV", PAS-SMP-14-022

Available on the CERN CDS information server CMS PAS HIG-14-03	Available on the CERN CDS information server CMS PAS SUS-14-012	Available on the CERN CDS information server CMS PAS FSQ-13-	Available on the CERN CDS information server CMS PAS SMP-14-022
CMS Physics Analysis Summary	CMS Physics Analysis Summary	CMS Physics Analysis Summary	CMS Physics Analysis Summary
Contact: cms-pag-conveners-higgs@cern.ch 2015/03/2	Contact: cms-pag-conveners-susy@cern.ch 2015/01/09	Contact: cms-pag-conveners-fsq@cern.ch 2015/04.	Contact: cms-pag-conveners-smp@cern.ch 2015/05/01
Search for a light NMSSM Higgs boson produced in supersymmetric cascades and decaying into a b-quark pair	Supersymmetry discovery potential in future LHC and HL-LHC running with the CMS detector	Studies of 2 b-jet + 2 jet production in proton-proton collisions at 7 TeV	Measurement of the muon charge asymmetry in inclusive $\mathrm{pp} \to \mathrm{W} + \mathrm{X} \ \mathrm{production} \ \mathrm{at} \ \sqrt{s} = 8 \ \mathrm{TeV}$
The CMS Collaboration	The CMS Collaboration	The CMS Collaboration	The CMS Collaboration
Abstract Asserts for a light neutral Higgs boson decaying to a pair of b-quarks, and produced buch Higgs bosons are concervised in the Next-to-Minimal Supersymmetric Model of Minimal Supersymmetric Model in the Next-to-Minimal Supersymmetric Model on additional Higgs single fields in the Next-to-Minimal Supersymmetric Model on additional Higgs single fields used in the analysis of the supersymmetry supersymmetric scalards. The data used in this analysis correspond to an integrated are interpreted in terms of cross section limits and within the parameter space of crutian NMSSM light Higgs boson scenarios.	Abstrat	Abstract Measurements are presented of inclusive differential here b- and inve-jet preduction cross excitones as a function of the transverse momentum p_r , pseudorapidity q_r , and p_r between the preduction of the transverse momentum p_r , pseudorapidity q_r and p_r between the preduction of the transverse momentum p_r , pseudorapidity q_r and p_r between the preduction of the transverse momentum p_r between the preduction and p_r between the preduction of the preduction of the preduction and within the maximum of preduction preduction p_r between the preduction of the required to be in $ p < 42$ without any flavour requirement on the initial quark. Only the prepure to calculations matched to parton abovers bone for event generators and preduction calculations matched to parton abovers bone for low engines of the physical spectrum p_r and p_r a	Abstract Measurements of the muon charge asymmetry in inclusive $pp \rightarrow W^{\pm} + X \rightarrow \mu^{\pm}\nu + X$ production at $\sqrt{5} = 8$ TeV are presented. The data sample corresponds to an inte- grated luminosity of 18.8 kT ⁻¹ recorded with the CMS detectors at the LHC. These new results provide additional constraints on the parton distribution functions of the proton in the range of the Bjorken scaling variable <i>s</i> from 10 ⁻³ to 10 ⁻¹ .

Operations, commissioning and components

- > Alignment
- > BCM1F
- > Computing
- > DAQ developments
- > DQM
- > HLT
- > HO Readout



CMS Computing at DESY

CMS Tier-2 T2_DE_DESY:

- > WLCG pledges for 2015
 - All place since beginning of the year
 - 24.2 kHS06** CPU (+25%)
 - 1.510 TB Disk (+8%)
- > Very reliable resource
- > Ready for Run2

CMS Tier-2 Readiness (Top 20 sites)

National Analysis Facility (NAF)

- > Actively used by CMS local and national groups
- > Service running stable
- > Established Planning meetings with IT and ATLAS twice per year

More details Computing presentation

Reliable Grid and NAF services strongly depends on **continuous expert support** from DESY-IT

** 1 processor core ~ 10HS06

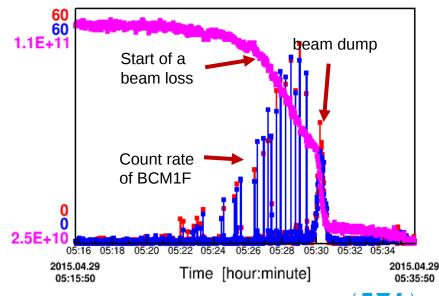
BCM: Beam Conditions Monitor & Luminometer

> Multipurpose device under responsibility of DESY Zeuthen

- Machine Induced Background → impact on tracker and trigger performance
- Online Luminometer → independent of CMS DAQ
- Feedback to LHC machine (LCC) must be on before LHC is filled
- Six completely assembled and tested C-shapes delivered between Sept.-Dec. 2014

Installation in January 2015 in CMS All systems tested and alive

BCM: Beam Conditions Monitor & Luminometer


- > LHC delivered first beam in CMS at Easter Sunday, 10.30 a.m.
- > BCM1F was fully operational and recorded first ,splash events'

> Currently ongoing

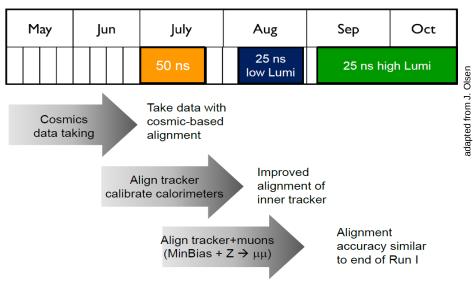
- BCMF1 is integrated in the CMS and LHC diagnostics and monitoring
- First luminosity measurement 5 May
- Commissioning of the backend RHU (Realtime Histogram Unit), the ADC readout and DAQ

Exploitation for CMS and LHC in full Run II

HCAL: HO Readout and DAQ development for µTCA

> Replaced HO photo-detector

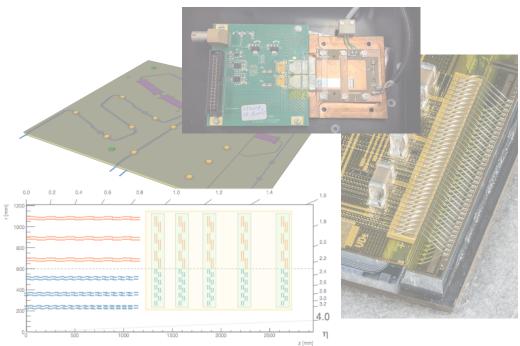
- Upgraded HO has improved muon detection efficiency (~98%)
- This allows design of an improved upgraded L1 muon trigger using HO (improvement ~5%)
- Hardware is in place at P5, commissioning ongoing
- DESY µTCA group actively participating in the µTCA upgrade of the CMS HCAL: development of the next generation Front End Control (ngFEC) system, and the Crate Control Module (CCM) server.


DESY is also contributing to the back end µTCA upgrade by developing a new and efficient crate control software (winCC) interface. The new interface will be deployed in most of the µTCA systems in CMS.

Tracker Alignment

First alignment obtained from cosmic muon run at B=0T ("CRUZET")

- Aligned in particular the replaced BPIX modules
- re-centering of BPIX seen as expected.
- shift of FPIX (5mm on one side) observed and corrected.
- used for cosmic muon data-taking at B=3.8T ("CRAFT")
- Combined CRUZET and CRAFT alignment constants in preparation
 - Essential for first pp collisions

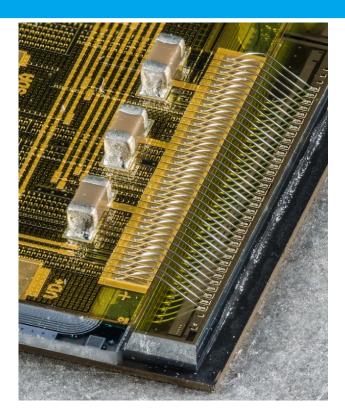


> Later on, tracks from collisions will be used to further improve the alignment

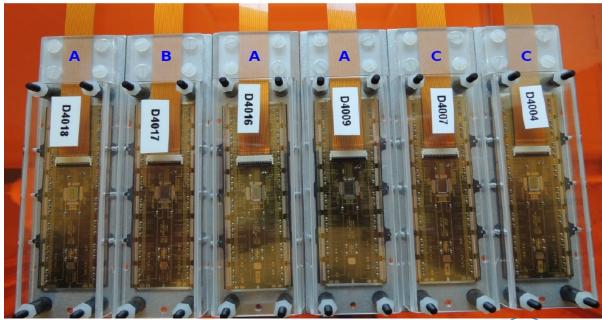
> DESY group involved at all levels on the alignment project and its coordination

- > (BCM1F) now in Operations and Components
- > (HCAL) now in Operations and Components
- > Pixel
- > Sensors
- > Tracker

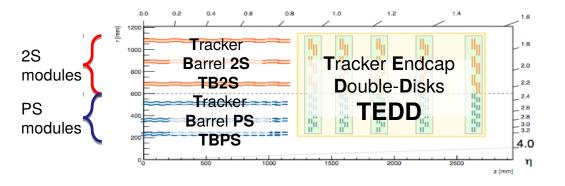
Pixel Upgrade Phase I – General status

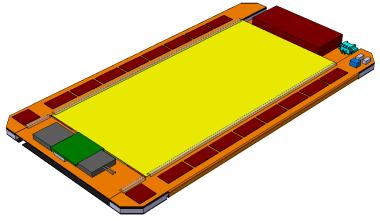

- > Need to maintain tracking efficiency at increased occupancy
 - New readout chip, 4th barrel layer, 3rd endcap disk
- > Installation end-of-year shutdown 2016
- > German institutes build 4th barrel layer

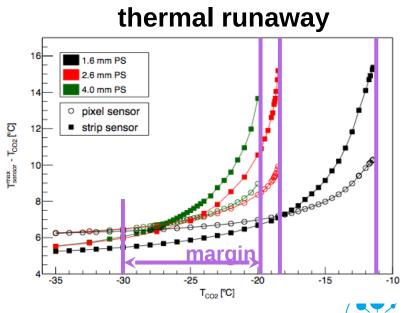
- DESY passed the Barrel Pixel Module Production Readiness Review at end of February: DESY is ready to start module production
 - the whole chain has been exercised on 4 good modules
- > In-house bump bonding has been established
 - sequential placement of solder balls: 2 modules per day
 - re-work of ROCs possible
- Test procedure for bare modules established
- > Wire bonding has been learned
- > Cold and X-ray calibration stands are ready
- > Series production has started and is ramping up in speed



Pixel Phase I – Wire bonding/Module Production


> 6 modules assembled (4 good full)


- > Issue with wire bonding overcome
 - Upgraded high power machine

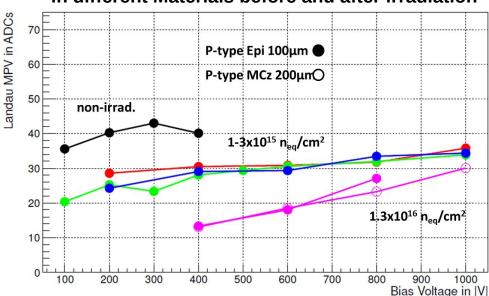


Tracker Phase II – Outer Tracker Modules

- > All module designs have been updated to variants with 320 µm sensors
- Thermal performance slightly improved compared to 200 µm variants
 - ΔT between coolant and hottest point on any sensor is below 10 °C
 - Sufficient margin to thermal runaway
- Baseline and preferred sensor thickness remains 200 µm
- > 320 µm is backup solution in case yield problems with thinner sensors would significantly increase cost

Tracker Phase II – TEDD Prototype Dee

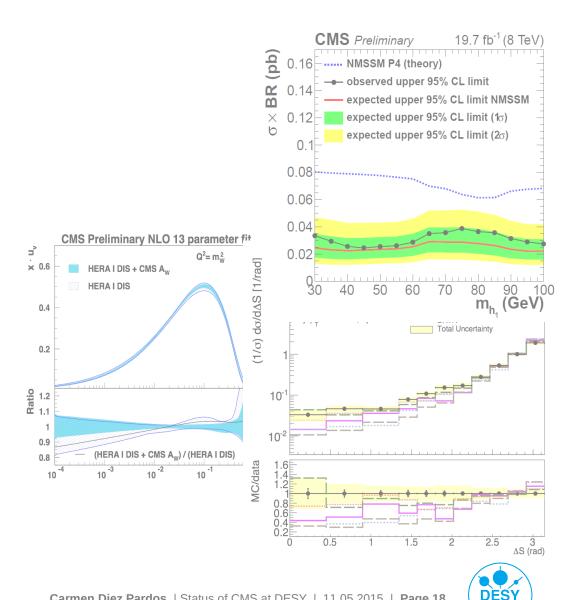
- Endcap support structure combines various functionalities in large objects
 - 2.4 m diameter
 - several cooling loops
 - positioning and cooling elements
- TEDD prototype will prove feasibility of concept: covers all features of a full-sized structure
- > Most part for prototyping available
- > Gluing test ongoing
- Production of prototype will start when all parts are available (middle/end May)


CMS Tracker Upgrade – Sensor R&D

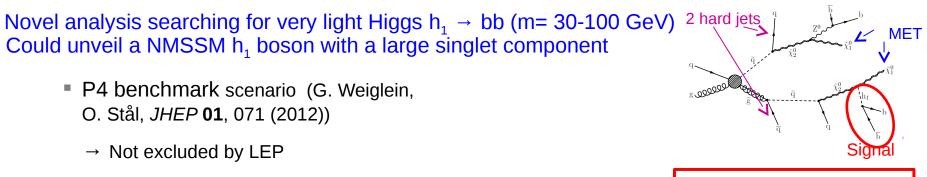
- Sensors from HPK campaign various materials
 - Explore potential of epitaxial silicon for Phase-II Tracker
- > Mini-strip sensors in DESY testbeam analysis finalized
- > Compare with other materials

Strip sensor mounted on AliBaVa

- > Epitaxial sensor collects more than 80% charge after 3x10¹⁵ n_{eq}/cm²
- > Epi is suitable for outer layers of a Phase-II pixel detector



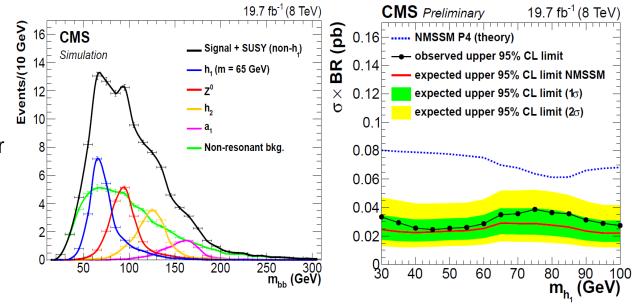
Signal measured in different Materials before and after irradiation


> Higgs

- > PDF
- > QCD
- > SUSY
- > Top

 \rightarrow Finalising Run I analyses \rightarrow Preparation for Run II

Higgs Physics: NMSSM Light Higgs Search

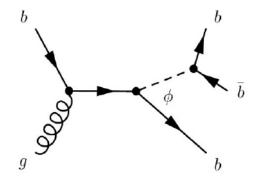


- \rightarrow Suppressed in SM production mechanisms like gluon-gluon fusion
- Search in SUSY cascades
- After unblinding, observed mass spectrum well described by SM background: no indication of a signal

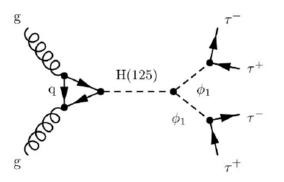
→ Analysis excludes the P4 scenario with $M_3 = M_{SUSY} = 1$ TeV

 Detailed NMSSM parameter scan performed

First analysis of this kind at the LHC!

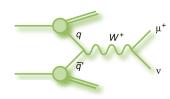


CMS-PAS-HIG-14-030


Higgs: Ongoing Run I & Planned Analyses Run II

- > Publication of two more analyses performed on 8 TeV anticipated
 - Since last PRC: analyses are completed and in final stage of review by collaboration

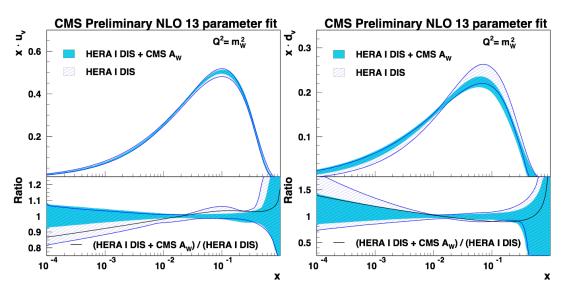
HIG-14-019 : NMSSM Higgs boson search in H(125) \rightarrow 2 $\phi \rightarrow$ 4 τ channel



> Run II analyses:

- study of Higgs properties in ττ decay mode : coupling, mass and parity measurements
- search for SUSY Higgs bosons in fermionic decay modes : $\phi \rightarrow \tau \tau$ and $\phi \rightarrow bb$
 - > analyses are being optimized for 13 TeV data-taking
 - > dedicated triggers are being developed, e.g. multijet trigger with online b-jet tagging for $\phi \rightarrow bb$ search

PDF – Improved valence quark distributions



Lepton asymmetry in W production probes valence quark distributions

 $A_W = \frac{W^+ - W^-}{W^+ + W^-} \approx \frac{u_v - d_v}{u_v + d_v + 2u_{sea}}$

QCD analysis at NLO using HERAFitter

- HERA inclusive DIS [JHEP 1001:109 (2010)]
- CMS muon charge asymmetry in W production

change of PDF and uncertainties similar to 7 TeV result [PRD 90 (2014) 032004]

valence distributions further constrained

 $p_{-}^{\mu} > 25 \text{ GeV}$

2 Muon ml

— Data

1.5

most precise data on A_w to date

probe quark distributions in

 $10^{-3} < x < 10^{-1}$

Charge asymmetry 500

0.15

0.1∟ 0

>Released for DIS2015

NLO FEWZ + NLO PDF. 68% CL

CT10

0.5

NNPDF30 MMHT2014

HERAPDF15

CMS-PAS-SMP-14-022

CMS preliminary, L = 18.8 fb⁻¹ at \sqrt{s} = 8 TeV

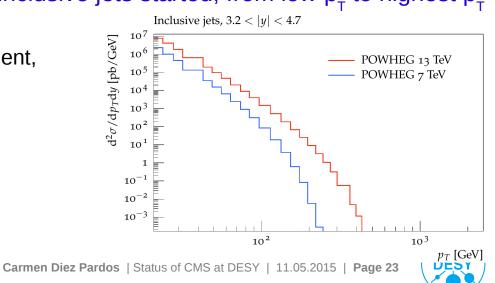
QCD – Publication of Run I analyses

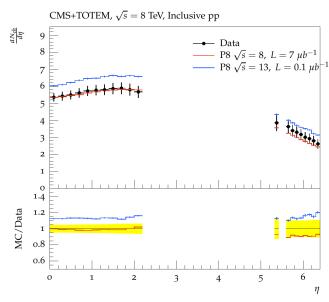
CMS-PAS-FSQ-14-010 > Released for DIS2015 to be published before LHC run2 > First measurement of bb+jj in CMS, sensitive to Double Parton Scattering 3 pb⁻¹ (7 TeV), pp→ 2b+2j+X 10²⁰ CMS MADGRAPH+P6 Z2* 3 pb^{-1} (7 TeV), pp \rightarrow 2 b + 2 j + X 10¹⁹ Preliminary POWHEG+P6 Z2' (1/σ) dσ/dΔS [1/rad] p₋ > 20 GeV CUETP6S1 10² CMS MADGRAPH+P6 Z2*) +10¹⁷ dp/op 10¹⁵ CUETP8S1-CTEQ6L1 Preliminary 1st, 2nd b-iet: POWHEG+PYTHIA6 Z2' 1st b-jet (x 10⁸) CUETP8S1-CTEQ6L1 |m| < 2.4 2^{nd} b-jet (x 10⁶) HERWIG++ UE-EE-5-CTEQ6L1 2 b-j: p₋ > 20 GeV, h_l < 2.4 3^{rd} jet (x 10²) 3rd, 4th jet: CUETP8S1-CTEQ6L1 MPI off 4th iet 10 10¹³ 2 j: p_ > 20 GeV, ml < 4.7 $|\eta| < 4.7$ DATA Total Uncertainty Total Uncertainty 10¹¹ 10^{9} 10⁷ 10 10⁵ 10^{3} 10^{-2} 10 MC/data 10-1 1.6 1.4 1.2 10⁻³ 500 400 0 100 200 300 0.8 0.6 Jet p₊ (GeV) 0.4 0.2> FSQ-13-003 (DY+jets) under collaboration review 2.5 3 ∆S (rad) 0.5 1.5 2 and paper on generator tunes to be published before Run II Carmen Diez Pardos | Status of CMS at DESY | 11.05.2015 | Page 22

QCD – Preparation for Run II

Preparation for first data analysis (first hours/days)

> Prepare for very early day:


charged particle spectra - $dn/d\eta$, dn/dp_{τ} (8 of June)


- Luminosity ~µb
- Development of min-bias trigger using E, ${\rm E_{\tau}}$ in HF
- Analysis developments, tracker alignment

> Within SMP high priority analysis on inclusive jets started, from low p_{τ} to highest p_{τ}

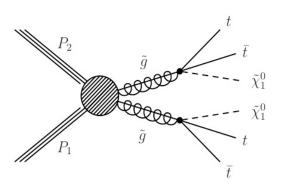
covering for the first time $|\eta| \le 5$

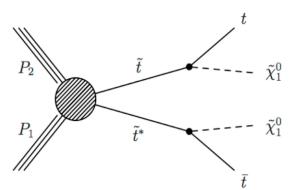
- DESY responsible for code development,
- NP corrections, PS corrections and
- NLO-matched predictions

SUSY Studies

> Technical contributions finalised

CMS-PAS-SUS-14-012


- SUSY Future analysis studies (Full model analyses and SUSY signal generation)
 - $\rightarrow\,$ Public, going to HL-LHC TP


> Started topics/analyses

- Preparation of inclusive single-lepton search, targeting gluino-gluino and gluino-squark production (need 3-4 fb⁻1)
- Follow-up paper on 14 TeV LHC-ILC study (outside CMS – using Snowmass MC samples) - next slide

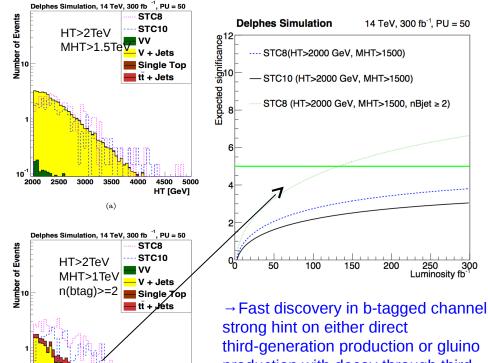
> Targeted topics (long-term for 13 TeV)

- 1-lepton stop analysis (need at least 15 fb⁻¹)
- Search for SUSY in di-tau final states (common framework with Higgs group)
- In collaboration with top group: di-lepton SUSY search by measurement of polarization-sensitive variables (need high luminosity)

SUSY Studies for LHC and ILC

Examples for possible discovery with full SUSY models (preliminary ILC-LHC study going for paper)

2500 3000 3500


2000

Carm

4000

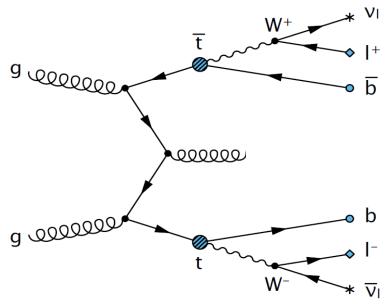
- Stau coannihilation models well motivated as it can account for the correct dark matter density
- > Two models with different mass parameters chosen:
 - STC8 (STC10):
 - M(sbottom) = 795 (1008) GeV
 - M(stop) = 736 (944) GeV
 - M(gluino) = M(squark) = 2.04 TeV (same in both models)
- Investigate several different analyses at LHC (and ILC) and their interplay, DESY CMS group members studied:
 - full-hadronic inclusive search
 - full-hadronic sbottom search
 - single-lepton stop search

Example: discovery sensitivity in full-hadronic search

production with decay through thirdgeneration squarks

4500 5000 HT [GeV] DESY | 11.05.2015 | Page 25

Top Quark Physics – finalizing Run-I publications


All analyses focus on tt dilepton final states

Inclusive tt cross sections Run-I Legacy paper (7 and 8 TeV) → preapproved

- > Full phase space and fiducial cross sections
- > Cross section ratio 7/8 TeV
- > Top pole mass determination from cross section
- > Limits to stop quark models using extracted $\sigma(tt)$

Differential tt cross sections at 8 TeV

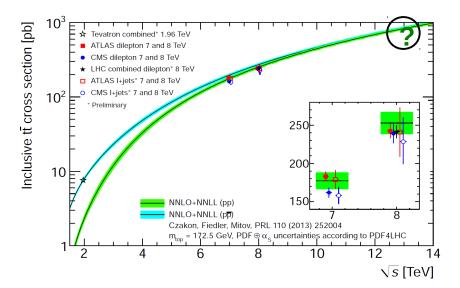
- > Cross section as a function of top, tt, lepton,
 - b-jet kinematic variables \rightarrow Final reading May
- > tt+jets, tt+bb cross sections \rightarrow In publication procedure
- > 2D tt differential cross sections \rightarrow In publication procedure
- > Top quark mass determination from tt+1jet cross section \rightarrow preapproved

Top Quark Physics – Run II analyses

Working on "Early Analysis" with 13 TeV data

- > Total tt cross section (~1 fb⁻¹ of data)
- > Differential tt cross section ($\sim 1 5$ fb⁻¹)
- \rightarrow Aiming at summer 2015 conferences

Started:


tt+H(bb) (full 2015 dataset)

Focus on reconstruction of Higgs mass from jets

Discovery/exclusion limits of tt+H

Planned:

- > tt+jets, tt+bb, tt+Z (full 2015 dataset)
- \rightarrow Aiming at winter 2016 conferences

Summary

> Eagerly waiting for data at 13 TeV!

> Well prepared for the next data taking period

• Many analyses with "very early" data (charged particle spectra - dn/d η , dn/d p_{τ} , jet spectra) to the "early" data few fb⁻¹ (tt, Higgs, SUSY) and in the longer time scale

- > LS1 contributions accomplished
 - HO upgraded, BCML installed ready for exploitation in full Run II
- > Physics Analyses: major results with Run I data

■ novel searches for very light Higgs $h_1 \rightarrow bb$, W production: constraint valence quark distributions, first measurement of bb+jj, etc.

Remaining 7/8 TeV analyses close to finalisation

> On track with contributions to upgrades

Phase I pixel: series production started

Phase II tracker: optimising sensor design, prototype development advanced

Back up

Carmen Diez Pardos | Status of CMS at DESY | 11.05.2015 | Page 29

DESY CMS – Coordinating Roles in CMS

- > Level-1 Management
 - K. Borras: Deputy Spokesperson (Jan. 2014 Aug 2016); FB member
 - M. Kasemann: Chair of the Authorship Board; FB member, CB advisory

> Physics

- H. Jung: FSQ-PRF Pub. Committee, Chair of Theorists in CMS committee, Convener of Physics Comparison and Generator Tunes group (MC group)
- I. Melzer-Pellmann: Convener of SUSY Future subgroup (L3), Member of SUSY
- A. Kalogeropoulos: Dataset Definition Team (DDT) coordinator (L3 within PPD mandate), SUSY Cross-PAG/Trigger/MC Convener (L3)
- A. B. Meyer: Convener of Top group (L2)
- A. Nayak: Convener of tau identification group (L3)

> Computing

- C. Wissing: Operation (L2)
- M. Kasemann: Chair of Computing Resource Board

> Data Quality Monitoring (DQM)

- M.Schröder/T. Schörner-Sadenius: Organizer of remote DQM shifts (L3 coordinate)
- R. Placakyte: Data Certification (L3)
- > Alignment: M.Schröder: Tracker Alignment convenor (L3)
- > Tracker
 - G. Eckerlin: Tracker Upgrade Steering Committee, Tracker Finance Board
 - D. Eckstein, W. Lange: CEC Sensor & Qualifying, Member of Tracker Pub.Comm.
 - A. Mussgiller: Convener of Strip-Tracker Module-Design group
- > Beam Radiation Instrumentation & Luminosity (BRIL)
 - W. Lohmann: Chair of Institutional Board men Diez Pardos | Status of CMS at DESY | 11.05.2015 | Page 30

Collaborations with Other Groups – Upgrade

> BCM1F

CERN

> HCAL

- HO SiPM: Aachen, TIFR
- HO trigger: INFN, Warsaw, Boston
- μTCA: CERN

> Pixel Phase I

4th barrel layer: German Institutes (esp. UHH)

> Sensors Phase II

- UHH, KIT
- > Tracker Phase II
 - Dee prototype: Lyon, CERN

> TOP

- Inclusive cross sections: IFCA, Oviedo, Strasbourg
- Differential cross sections (1D): UHH
- tt+H: KIT, Ohio, Notre Dame, Virginia, ETH, Zurich U., etc.
- > PDF
 - Exchange program: DESY Southern Methodist U
 - Close collaboration with CTEQ, ABM PDF groups
 - Member of physics project of Alliance (UHH, Mainz, Freiburg, Wuppertal, KIT)
 - DiffTop: UHH

> QCD

- Double-parton scattering, forward jets: Antwerp
- Phenomenology: Oxford, Moscow

> SUSY

- 1-lepton stop: UHH
- 13 TeV 1-lepton search: Athens, CERN
- LHC-ILC study: DESY ILC

> Higgs

- $H \rightarrow \tau \tau$: KIT, CERN, Ecole Polytechnique
- MSSM $H \rightarrow bb$: Zurich, Moscow, Bejing
- NMSSM $H \rightarrow bb$: UHH
- $h_{1,2} \rightarrow \phi_1 \phi_1 \rightarrow (\tau \tau)(\tau \tau)$: IC, Rutherford Appleton Lab, Riverside Calmen Diez Pardos | Status of CMS at DESY | 11.052015 | Page 32

Flip chip bonding

16 ROCs ROC solder ball height: 24 μm

sensor

• Femto Fineplacer from Finetech:

- high precision step motors
- automated, with image recognition
- one ROC at a time
- known good die test with probe card
- chuck and bond head heating
- formic acid atmosphere
- tacking: $3 \text{ N} \rightarrow 50 \text{ N} \rightarrow 160 \text{ N}$ at 200°C
- in-situ common reflow at 230°C
- \leq 3 hours per module

