# **γ-ray astronomy at DESY**



#### Stefan Ohm for the $\gamma$ -ray groups

79<sup>th</sup> PRC Meeting Hamburg, May 11<sup>th</sup>





## How to detect γ rays?

#### From space: Fermi-LAT

- Imaging, wide field-of-view
- Covers energy range from ~20 MeV 300 GeV
- Pair-conversion telescope, with a precision tracker and calorimeter
- Limited detection area





#### From ground: Imaging Atmospheric Cherenkov Telescopes (IACTs)

- Imaging, smallish field-of-view
- Covers energy range from 30 GeV 100 TeV
- Collect Cherenkov radiation produced by charged particles in shower and focus on fast camera
- Large collection area



#### Instruments currently in operation





Stefan Ohm | y-ray astronomy at DESY | 11.05.2015 | Page 3

#### + future instruments

#### HiSCORE



## The γ-ray sky in 2015

- > GeV γ-rays
  - ~3000 sources
  - 1/2 extragalactic
  - ~1000 unassociated
  - 25 extended sources
- > TeV γ-rays
  - >150 sources in total
  - ~50 of extragalactic origin
  - ~100 Galactic sources







#### Who we are

|          | Markus Ackermann | Elisa Bernardini | Rolf Bühler | Markus Garczarczyk | Stefan Klepser | Johannes Knapp | Gernot Maier | Stefan Schlenstedt | Christian Stegmann | Ralf Wischnewski | Anna O'Faoláin de Bhróithe | Matthias Füßling | Lucie Gerard | Gianluca Giavitto | Dariusz Gora | Stefan Ohm | Igor Oya Vallejo | Giovanna Pedaletti | Anneli Schulz | Stephane Vincent | Henrike Fleischhack | Matteo Giomi | Clemens Hoischen | Moritz Hütten | Nathan Kelley-Hoskins | Maria Krause | Eva Leser | Ann Kathrin Mallot | Andrea Porelli | Iryna Lypova | Maria Haupt | Constantin Steppa |
|----------|------------------|------------------|-------------|--------------------|----------------|----------------|--------------|--------------------|--------------------|------------------|----------------------------|------------------|--------------|-------------------|--------------|------------|------------------|--------------------|---------------|------------------|---------------------|--------------|------------------|---------------|-----------------------|--------------|-----------|--------------------|----------------|--------------|-------------|-------------------|
| IceCube  |                  |                  |             |                    |                |                |              |                    |                    |                  |                            |                  |              |                   |              |            |                  |                    |               |                  |                     |              |                  |               |                       |              |           |                    |                |              |             |                   |
| Fermi    |                  |                  |             |                    |                |                |              |                    |                    |                  |                            |                  |              |                   |              |            |                  |                    |               |                  |                     |              |                  |               |                       |              |           |                    |                |              |             |                   |
| HiSCORE  |                  |                  |             |                    |                |                |              |                    |                    |                  |                            |                  |              |                   |              |            |                  |                    |               |                  |                     |              |                  |               |                       |              |           |                    |                |              |             |                   |
| H.E.S.S. |                  |                  |             |                    |                |                |              |                    |                    |                  |                            |                  |              |                   |              |            |                  |                    |               |                  |                     |              |                  |               |                       |              |           |                    |                |              |             |                   |
| VERITAS  |                  |                  |             |                    |                |                |              |                    |                    |                  |                            |                  |              |                   |              |            |                  |                    |               |                  |                     |              |                  |               |                       |              |           |                    |                |              |             |                   |
| MAGIC    |                  |                  |             |                    |                |                |              |                    |                    |                  |                            |                  |              |                   |              |            |                  |                    |               |                  |                     |              |                  |               |                       |              |           |                    |                |              |             |                   |
| СТА      |                  |                  |             |                    |                |                |              |                    |                    |                  |                            |                  |              |                   |              |            |                  |                    |               |                  |                     |              |                  |               |                       |              |           |                    |                |              |             |                   |

# **Recent highlights from current instruments**





### Fermi-LAT all-sky monitor

- > Fermi All-sky Variability Analysis (FAVA) is an all-sky γ-ray monitor
- > Running as real time flare monitor since 1/2 year within LAT collaboration
- > Already discovered and announced 5 new flaring γ-ray sources



Method paper: Ackermann et al., ApJ 771 1, 2013

## The VERITAS long-term observing plan

- Full operations of VERITAS started 2007 no 'low-hanging-fruits' left
- > Almost any science question requires deep exposure of  $50 \rightarrow 100$  hours
- VERITAS developed a long-term observing plan, which covers ~70% of the available observing time for the next five years
  - Focus on a few high-impact science questions
  - Take into account the impact of the new HAWC observatory and the schedule of CTA
  - Galactic long-term plan coordinated by DESY scientists





## Historically bright flares of the γ-ray binary LS I +61 303

- VERITAS observed an unexpected bright and fast flare from the binary system LS I +61 303 in October 2014 (ATel: 6785)
- Publication with DESY lead author in preparation

Binaries are among the most efficient particle accelerators known. How do they work?



## **MAGIC: AGN program and multi-wavelength synergies**

#### Strong AGN program

- 2015 already started as successful flare-catching year (3 ATels on AGN)
- DESY scientists regularly serve as flare advocates
- Large Target-of-Opportunity program
  - With alerts from optical, X-ray, and γ-ray instruments (Fermi-LAT, HESS, VERITAS, HAWC)
  - Agreements with multi-messenger instruments (gravitational waves, neutrinos)
  - → Ligo-Virgo, IceCube (DESY-lead)
- Cosmic-ray diffusion in the W44 region
  - Cooperation with *Fermi*-LAT and NANTEN
  - ICRC contribution, project is DESY-lead





#### H.E.S.S. observations of the Large Magellanic Cloud



#### REPORTS

#### ASTROPHYSICS

# The exceptionally powerful TeV $\gamma$ -ray emitters in the Large Magellanic Cloud

The H.E.S.S. Collaboration\*+



## H.E.S.S. observations of the Large Magellanic Cloud

#### Results

 Discovery of three luminous TeV sources, equally or more powerful than Galactic counterparts

**>** N 157B

Environment very important for production of γ rays

> 30 Dor C

- First superbubble detected at TeV energies
- Superbubbles are blown by stellar winds and SN explosions
- Superbubbles are suspected to be main CR accelerators

#### SNR N132D

- Particle acceleration in SNR shells is more efficient than we thought
- → Observationally a major step forward







## **Towards science with CTA**





## The Cherenkov Telescope Array – Key Science Projects

- Planning the observation using CTA-Consortium's proprietary time
- Legacy data sets, address major science questions
  - What could not be obtained by an individual users proposal
- Key Science Projects (part of Technical Design Report)
- DESY involved in several Key Science Projects (KSPs)
  - Significant contribution to Galactic and Extragalactic surveys
  - Leading in Star-forming systems KSP
  - Close relation to science topics with current instruments







## The Cherenkov Telescope Array – Star-forming systems

#### > CTA Science Theme 1:

*"Understanding the Origin and Role of Relativistic Cosmic Particles"* 

- Cosmic rays
  - are a major ingredient of the interstellar medium
  - are a major source of ionisation
  - regulate astro-chemistry in space
  - are dynamically important in galaxy formation and evolution
- Probe star-forming systems on all scales
- Probe feedback of Cosmic rays with interstellar medium



Measure fraction of CRs that are channeled into γ rays as a function of star-formation rate



# **Upgrading current instruments**





## H.E.S.S.-I upgrade

#### > Goal

- Reduction of dead time and down time
- Replacing all electronics of the old H.E.S.S.-I cameras
- > Huge progress in past 6 months
  - Ventilation, pneumatics, power supply
  - Drawer interface box
  - Testing, testing, testing
- > Green light for upgrade of first camera in July
- > Cameras 2 4: mid-2016











## **TeV/PeV Astronomy: HiSCORE – R&D**

- HISCORE: 1 km<sup>2</sup> array of wide-angle, non-imaging Cherenkov detectors
- Taiga: IACTs with 8° FoV and 4m<sup>2</sup> mirrors

#### HiSCORE

- Installation of 28 stations finished
  - 0.25 km<sup>2</sup>
  - E<sub>th</sub> < 30TeV</li>
  - 1 km<sup>2</sup> in 2015/16
  - Russian MEGA-grant: major source

#### DESY contribution



- Helmholtz-Russian-Joint-Research-Groups-303 (2012-2015): 1 PhD, Project-PI Shower reconstruction, based on sub-nsec array time synchronization working
- White-Rabbit (used in CTA)

Hybrid technology for >10TeV Proof of principle





Stefar

## **Towards construction of CTA**





#### **The Cherenkov Telescope Array**

Next-generation Imaging Atmospheric Cherenkov Telescope

- Critical design review in June, then entering pre-production phase
- First telescopes on southern site in 2016
- First science ~2017



## **DESY involvement in CTA**

- Leader of Medium Size Telescope project
  - New camera support structure mounted
  - Design improvement of dish
  - Pre-production phase imminent → start building
- Leader of Array control and data acquisition
  - Driving the definition of ACTL products to be delivered to CTA
  - Design of network architecture
  - Timing distribution system (White Rabbit)
  - Test cluster installation and synergies with MST activities
- Monte Carlo production
- Production of Instrument Response Functions
- > CTA science tools
- Key Science Projects
- Application to host CTA headquarter







## **DESY involvement in CTA**

MST & ACTL: hundreds of pages written for the Technical Design Review









## **The Cherenkov Telescope Array – MST**

- New camera support structure
  - installed within 3 days
  - much stiffer, oscillations at camera frame down by factor 10
- Three different mirror types currently under testing
- Drive assembly (implementation, optimization and testing of PLC code)
- > Drive health monitoring → develop automatic monitoring system
- Measurement of bending/hysteresis, pointing studies









#### Summary

#### Current Instruments

- Exploitation of large data sets
- Major upgrade of H.E.S.S. imminent
- Important involvement in CTA
  - Leading MST and ACTL projects
  - Significant software contribution
  - Broad contribution to CTA science preparation

## **DESY:** a strong and active γ-ray astroparticle centre



Catania, Sept. 2014: overwhelmed by the amount of work ahead of us...





#### **Summary**

Catania, Sept. 2014: overwhelmed by the amount of work ahead of us...







#### Turku, last week:

People are smiling again, now that TDR is submitted!



## Backup



## H.E.S.S. Galactic γ-ray sources

HESS – Galactic Plane Scan

#### > Zoo of different particle accelerators

- Particle acceleration very common in Galaxy
- Study particle acceleration and γ-ray production
- Population studies

#### Impact

- Feedback of non-thermal particles?
- Environmental effects? (e.g. magnetic fields)
- Cosmic-ray propagation
- Connection to other galaxies?
  - Importance of non-thermal particles for galaxy evolution and dynamics, for cosmology?
  - → Observe Milky Way neighbour galaxy





## **CTA science tools @ Zeuthen**



#### What we have done

- Mainly developed at IRAP, but DESY is involved since >2 years as the largest outside contributer. We have participated in:
  - Adding instrument background
  - Applying ctools to VERITAS and H.E.S.S.
  - → Considered as standard tools in H.E.S.S. and VERITAS
- Validated on Fermi-LAT data
- Developed high level analysis scripts
- Implementation of IACT background methods
- Participated in two and organized one coding sprint
- > Define high level interfaces/structure
- Currently writing the journal paper

