ILC Project at DESY

Jenny List

79. Physics Research Committee DESY, May 11, 2015

The International Linear Collider

- > e^+e^- collider with $\sqrt{s} = 250 500$ GeV, upgradable to $\sqrt{s} = 1$ TeV > L ~2x10³⁴ cm⁻² s⁻¹
- > 31 km long, SCRF technology

> global collaboration (~130 institutes)

- > since August 2013: Kitakami in northern Japan is candidate site
- Following the recommendation by the Science Council of Japan, MEXT currently investigates hosting the ILC

DESY ILC Activities

- strong contributions in a (selected) number of technical systems
 - HCAL
 - TPC
 - FCAL (Zeuthen)
 - Polarimetry

> strong contribution to the physics case for the ILC:

- important basis for students / education
- very important at the moment to continue to sharpen the case for the ILC
- > detector integration and overall management

central support for the ILC community

- test beam and prototype integration
- central software
- MDI
- central documentation facilities

> accelerator

- SCRF (cf last PRC)
- positron source (Zeuthen)

Main topic

for today!

LSP SIG

400

300

Selected R&D Topics

TPC

HCAL

Positron Source

TPC R&D at DESY

picture of an event recorded at the DESY testbeam with the DESY module (GEM based)

measured distortions after alignment, but with local field distortions

focus of the studies:

- understanding field distortions
- understanding calibration and alignment
- understanding reliability issues
- goal: design the next generation of modules closer cooperation with Japanese groups intended: common module?

Hadron Calorimeter R&D at DESY

- finishing analysis of first prototype data
 - drive and validate Geant 4 improvements
 - common analysis analogue and digital HCAL data
- major steps towards second generation prototype
 - first round of beam tests at CERN with partially instrumented ILD-like module
 - sector integration: data concentrator, powering and cooling for 2 full modules
 - scalable DAQ prototype for ILD and with good test beam performance
- technological frontier
 - drastic improvement of SiPM parameters dark noise, interpixel cross-talk, temperature stability, device uniformity
 - towards automated assembly: surface-mounted SiPMs
- > site-dependent detector integration
 - earth-quake stability studies for absorber structure

Positron Source R&D at DESY

- > one of the remaining R&D issues for the ILC
- > helical undulator: the only way to get polarized positron beam (P≈30%)
- > positron target wheel prototyping (at LLNL)
 - Ø 1m, rapidly rotating (100m/s) in vaccuum
 - Vacuum seal problem not yet solved

> alternative: cooling by thermal radiation

- very promising option, no showstopper identified
- optimize design of rotating radiator+target wheel and stationary cooler
- optimize material for best heat transfer
- cyclic load: fatigue load limits including particle irradiation material degradation
- engineering design
- desired: experimental mock up in real size to test the whole system
- unique Zeuthen expertise and activity
- resources are stretched

The Physics Case for the ILC

Higgs

SUSY

Running Scenarios

Why talk once again about the ILC Physics Case?

- > during the past year, Particle & Nuclear Physics WG scrutinized physics case
- LCC Physics Group (2 DESY members): provided input over the last year

> significant contributions from DESY

Higgs Branching Ratios

- > close collaboration with Japanese groups
- > BR(H->bb / cc / gg) :
 - separate ZH and WW-fusion contributions in vvH mode
 - impact of vertex detector geometry and low momentum tracking on H->cc identification

- > global coupling fit of all Higgs σxBR measurements at various centre-ofmass energies: DESY/KEK collaboration
 - evaluate combination of measurements at different centre-of-mass energies & polarisations as function of time
 - fully model-independent or "LHC-style"
 - with / without experimental & theoretical uncertainties
 - to come: include covariance between (partially) correlated measurements / systematics

Higgs Self-Coupling

- crucial to fully establish Higgs mechanism
- > first stage ILC @ 500 GeV: access via ZHH
- again close collaboration with Japan
- DESY: ZHH -> Z bbbb

Preliminary results presented at LCWS14 (without overlay)

decay channel	signal	background	significance	
			excess	measurement
$ZHH \rightarrow l^- l^+ HH$	3.0	4.3	1.16σ	0.91σ
	3.3	6.0	1.12σ	0.91σ
$ZHH \rightarrow \nu \bar{\nu} HH$	5.2	6.9	1.63σ	1.37σ
$ZHH \rightarrow q \bar{q} HH$	9.2	20.9	1.82σ	1.64σ
	7.7	23.5	1.45σ	1.31σ

Iong list of possible improvements

- > first try: kinematic fitting
 - already achieved without much optimisation
 20% relative improvement in Z->II channel
 - other channels to come...

Jenny List | 79th PRC, May 11, 2015| Date | Page 11

[work in progress]

Post LHC-8 Benchmarks for ILC Physics

- New Physics potential of the ILC ? => review implications of LHC results!
- > 10 SUSY benchmarks compatible with LHC 8 TeV and low energy constraints
 - (radiative) Natural SUSY, NUHM2, NUGM, mSugra, NMH, pMSSM, ...
- > conclusions:
 - after LHC-8, there is lot's of stuff left
 - in some cases LHC-13/14 will discover part of spectrum
 - even if no SUSY-like signal at LHC-13/14: well motivated phase-space for ILC

Natural SUSY & Light Higgsinos

[EPJ C73 (2013) 12, 2660]

dM770

- Natural SUSY: µ << M₁, M₂ => three light, near-degenerate Higgsinos
- typical mass splittings few GeV or sub-GeV

GeV

Events/0.1

- ILC fast simulation study:
 - cross-sections to few %
 - mass scale to 1-2 GeV
 - mass splitting to 40 MeV (!)
- > allows to constrain M₁, M₂ even if in multi-TeV regime
- currently: re-do in full simulation
- very interesting detector performance benchmark:
 - Iow momentum tracking, PID
 - hermeticity

2000 0000

LHC – ILC Interplay

ILC smuon threshold scan

joint study with DESY CMS SUSY group – STC benchmark: Dark Matter motivated pMSSM scenario with stau-LSP co-annihilation

Ge/

×2500

2000

1500

1000

500

0

- (HL-)LHC: signals of
 - stop, sbottom, gluino mix
 - electroweakino mix
 - able to isolate sbottom signal => upper edge in contransverse mass!
- ILC: full disentangling and precision profiling of
 - all sleptons
 - lighter electroweakinos
 - continuum vs threshold scans ?

> feeds back into LHC analysis:

- determine sbottom mass
- identify heavier electroweakinos

easy: ILC selectron-R

 $\widetilde{e}_{\mathsf{R}}$

SM

SUSY

100 120 E_{int}[GeV]

Neutrino Physics at the ILC

[EPJ C74 (2014) 2720]

- bi-linear R-parity violating SUSY: neutrino masses via high-scale see-saw mechanism
- ILC: precision measurements of LFV neutralino decays give access to neutrino mixing
 - measure $BR(\tilde{\chi}_1^0 \to W\mu)/BR(\tilde{\chi}_1^0 \to W\tau)$
- > full ILD simulation study yields
 - with 100 fb⁻¹: $\delta M_{\tilde{\chi}_1^0} = 0.13 \,\text{GeV}$
 - with 500 fb⁻¹: $\delta BR = 6.5\%$
 - sin θ₂₃ is accessible with (at least) similar precision as in neutrino oscillations
- verify / falsify bRPV SUSY as origin of neutrino masses!

WIMP Dark Matter

[EPJ C72 (2012) 2213 + update in prep.]

- > mono-photon signature: e⁺e⁻ -> γ X X
- > LHC & direct detection: test X-proton coupling
- > ILC: tests X-electron coupling **fully complementary!**
- > %-level mass & polarised cross-sections => chiral structure of interaction
- reach in effective operator framework....

Status of Physics Case Review

- interim reports from MEXT review process in April 2015
- Particle & Nuclear Physics WG:
 - well received (thanks to continuous input of LCC Physics Group)
 - in particular: BSM potential recognized, whether LHC find New Physics or not
- > TDR WG:
 - TDR costing ~confirmed, additions for beyond-TDR items
 - new working group on human resources to be established
- > final report ~March 2016 reconfirmed
- > during ALCW2015: "Tokyo Event"
 - positive impression, Japan seriously interested
 - inofficial discussions with US started
 - EU more complex, starting with France

LCC Joint WG on ILC Beam Parameters

- > established in spring 2014 to work out running scenarios for the ILC
- "Joint WG": particle and accelerator physicists
- strong DESY participation: 2 out of 7 members
- > objectives:
 - define assumptions on real-time luminosity accumulation
 - define amount of integrated luminosity at various centre-of-mass energies
 - optimise for early (~5 years) and final (~20 years) physics potential
- > first task: prepare for staged ILC construction
 - staging scenarios presented at LCWS 2014
 - report available as ILC-NOTE-2015-066
- second task: running scenarios for full TDR baseline machine
 - running scenarios presented at ALCW 2015
 - currently waiting for comments / approval by LCB

Higgs-Vector Boson Couplings in var. Running Scenarios

Higgs-Fermion Couplings in var. Running Scenarios

Summary

- DESY has a strong in-house ILC programme and is in an excellent position to support this project
- DESY contributions are essential for ILC in key areas
 - detector and accelerator R&D
 - detector design & integration, MDI and overall management
 - physics case
 - new running scenario => update physics projections to higher luminosities!
- > unique contributions to ILC BSM physics case
- important input to MEXT review process (and earlier: Snowmass)
 - physics case got "green light"
 - new working group on human resources to be established
- Japan is seriously investigating the idea of hosting the ILC:
 - original evaluation schedule re-confirmed: March 2016
 - inofficial discussions with other countries have started

Back Up

Outlook on Physics Case

- > Update physics projections
 - from benchmarking luminosities (250 fb⁻¹ / 500 fb⁻¹)
 - to full H-20 luminosities (2 ab⁻¹ / 4 ab⁻¹)
- Continue to improve tricky cases (eg Higgs Self-Coupling)
- > Watch upcoming LHC results
- More detailed estimates of systematic uncertainties wherever statistical uncertainty < 1% => implications on detector design???

> ILD Reorganisation:

- establishing a new, more collaboration-like structure
- currently on-going: election of spokesperson
- > ILD Detector Optimisation:
 - Started to evaluate potential for cost saving
 - Investigating consequences of new L* requested by accelerator
 redesign of forward region

ILD & SiD joint with Accelerator & MDI group:

study of machine-related backgrounds with new accelerator parameters

> SiD:

DESY coordinates SiD part for all EU proposals (RanDALF, etc)

ILC Detector Concepts

> 2 detector concepts for ILC: ILD and SiD

- both optimised for particle flow algorithms
- complementary technologies
- DESY has strong role in ILD
- > Within the concepts
 - Simulation and reconstruction software
 - Engineering and integration
 - Detector optimisation
 - Physics analysis studies
- > Detector R&D
 - R&D collaborations inform the concepts:
 - •LCTPC: Time Projection Chamber (ILD)
 - •CALICE: calorimetry (ILD &SiD)
 - •FCAL: very forward calorimetry (ILD & SiD)
 - Polarimetry
 - Vertex detector

