Introduction to statistics / statistical tools

Max Baak (CERN), Geert-Jan Besjes (Nijmegen/Nikhef), Jeanette Lorenz (LMU/Excellence Cluster Universe), Sophio Pataraia (Bergische Universitaet Wuppertal)

+ many other people

30 March 2015

Overview

- Introduction to statistics (short)
- Introduction to statistical analysis (RooFit, RooStats, HistFactory)

Introduction to HEP statistics

Largely borrowed from lectures/slides by W. Verkerke

Basic questions

- Physics questions we want to answer...
 - Is the new discovered particle a 'vanilla' Higgs boson?
 - What is its production cross section and couplings?
 - Is there any SUSY in ATLAS data?
 - If not, what models do not agree with data?
- Enormous efforts in many channels, millions of plots with signal/backgrounds expectations, with systematics and observed data
- How do you conclude on these questions?
- Statistical tests construct probabilistic statements/models on P(theory|data) or P(data|theory)
 - Likelihood fits
 - Systematics/uncertainties
 - Hypothesis testing
 - Setting limits ...
- <u>Result</u>: decisions based on these tests

As a layman I would now say, I think we have it

M. Baak, G.J. Besjes, A. Koutsman, J. Lorenz, S. Pataraia

m_H [GeV]

HEP workflow

HEP data analysis

W. Verkerke

- HEP Data Analysis is (should be) for a large part the reduction of a physics theory(s) to a statistical model
- Statistical/probability model: Given a measurement x (eg N events), what is the probability to observe each possible x, under the hypothesis that the physics theory is true?

M. Baak, G.J. Besjes, A. Koutsman, J. Lorenz, S. Pataraia

HistFitter

Simple statistical example

- Central concept in statistics is the 'probability model' : assigns a probability to each possible experimental outcome
- <u>Example</u>: a HEP counting experiment
 - Count number of events in your signal region (SR) in your data (specific lumi): Poisson distribution
 - Given the expected(MC) event count, the probability model is fully specified

- Suppose we measure N = 7 events (Nobs), then can calculate the probability
- P(Nobs|hypothesis) is called LIKELIHOOD L(Nobs|b), L(Nobs|s+b), L(observed data|theory)

p(Nobs|b) = 2.2%

p(Nobs|s+b) = 14.9%

• Data is more likely under s+b hypothesis than bkg-only

W. Verkerke

HistFitter

p-value

- **P-VALUE:** probability to obtain observed data, or more extreme, given the hypothesis in future repeated identical experiments
- For our example from previous page:
 - For the bkg-only hypothesis: $\mathbf{p}_{\mathbf{b}}$ = Fraction of future measurements with N=Nobs (or larger) if s=0

• Frequentist p-values (apologies to Bayesians) -- see links later

Excess over background

- **Pb** or p-values of background hypothesis is used to quantify 'discovery'
- 'discovery' = excess of events over background expectation
- One more example:
 - Nobs=15 for same model, what is **P**_b?

• Results customarily expressed as odds of a Gaussian fluctuation with equal p-value: significance, Zn, z-value

Fig. 1. Relationship between *p*-value and *z*-value.

M. Baak, G.J. Besjes, A. Koutsman, J. Lorenz, S. Pataraia

HistFitter

Upper limits

- Can also define p-value for s+b hypothesis p_{s+b}
 - Note convention change: integration range in \mathbf{p}_{s+b} is flipped

- Convention: express result as value (upper limit) of **s** for which $\mathbf{p}_{s+b} = 5\%$ or excluded at 95% confidence level (95% C.L.)
- Our example:
 - s>6.8 is excluded at 95% C.L.

Modified Upper limits : CLs

- Interpretation of \mathbf{p}_{s+b} in terms of inference on signal only is problematic ٠
 - Since \mathbf{p}_{s+b} quantifies consistency with data of signal + background •
 - Problem apparent when observed data has downward fluctuation wrt background expectation ٠
- Example: Nobs = $2 \rightarrow \mathbf{p}_{s+b}(s=0) = 0.04$ ٠
 - s≥0 excluded at 95% C.L. ??? •
- Modified approach to protect against such • inference on signal (LHC convention):
 - Instead of requiring $\mathbf{p}_{s+b} = 5\%$, • require

- Example: Nobs = $2 \rightarrow$ s>3.4 excluded at 95% CLs •
- For large Nobs effect on limit is small as $\mathbf{p}_{\mathbf{b}} \rightarrow 0$ •

More complex examples

- Typical analysis is not a simple counting experiment
 - Many intrinsic uncertainties on signal and bkg
 - Result is a distribution, not a single number
 - SUSY searches: discovery is cut&count, but many exclusion limits are shape-fits/multi-bin

- Any result can be converted into a single number by constructing a **test statistic**
 - A test statistic compresses all signal-to-background discrimination power into one number
 - Most powerful discriminators are

Likelihood Ratios

(Neyman-Pearson lemma)

• \mathbf{q}_{μ} is a common test statistic (LHC convention)

$$q_{\mu} = -2 \ln \frac{L(data \mid \mu)}{L(data \mid \hat{\mu})}$$

Likelihood ratio test statistic

- Signal strength μ = signal rate / nominal signal rate (also know as μ sig)
 - Bkg-only hypothesis: $\mu = 0$
 - Bkg + signal hypo: $\mu = I$

- Bkg + 2 X signal hypo: μ = 2
- Likelihood with nominal signal strength ($\mu = I$)

'likelihood assuming nominal signal strength'

$$q_1 = -2 \ln \frac{L(data \mid \mu = 1)}{L(data \mid \hat{\mu})} \quad \hat{\mu} \text{ is best fit value of } \mu$$

'likelihood of best fit'

Example: simple s + b model with no uncertainties

Distribution of test statistic

- Value of q_1 on data is now the *measurement*
- Distribution of q_1 is **not** calculable \rightarrow But can be obtained from pseudo-experiments (toys)
 - Generate a large number of pseudo-experiments with a given value of μ , calculate q_1 for each, plot distribution

- From q_{obs} and these test statistic distributions, f(q_{μ}), can then set limits or calculate discovery significance similar to what was shown for Poisson example
- Typically CPU-intensive to run many toy-experiments → approximate with asymptotic formulae, aka asimov data (only works in cases when Nobs≈10, see links for details)

Systematic uncertainties

• Typically HEP models will have uncertainties: experimental (JES, trigger eff.) or theoretical (Q, σ)

 $L(data \mid \mu) \rightarrow L(data \mid \mu, \vec{\theta}) \qquad L(data \mid \mu, \theta) = Poisson(N_i \mid \mu \cdot s_i(\theta) + b_i(\theta)) \cdot p(\tilde{\theta}, \theta)$

- Models w/ uncertainties, described by additional parameters θ that describe effect of uncert.
- Likelihood includes *auxiliary measurement* terms that constrain the nuisance parameters θ
 - Auxiliary measurement given by performance group (jet perf.) or theory variations (renorm. scale up/down)

 Likewise uncertainties quantified by nuisance parameters are incorporated into test statistic using Profile Likelihood Ratio

$$q_{\mu} = -2\ln\frac{L(data \mid \mu)}{L(data \mid \hat{\mu})}$$

$$\widetilde{q}_{\mu} = -2 \ln \frac{L(data \mid \mu, \hat{\theta}_{\mu})}{L(data \mid \hat{\mu}, \hat{\theta})}$$

'likelihood of best fit for a given fixed value of μ'

'likelihood of best fit'

(with a constraint $0 \leq \hat{\mu} \leq \mu$)

Overview for a search

- Take Higgs search as example, and put it all together
- Result from data is a distribution (eg m(4l))
- Model signal and background by PDF (probability density function) for a given Higgs mass hypothesis
- Construct likelihood(s) by joining data and model(s)
- Construct test statistic \boldsymbol{q}_{μ} from likelihoods

$$\widetilde{q}_{\mu}(m_{H}) = -2\ln\frac{L(data \mid \mu, m_{H}\hat{\theta}_{\mu})}{L(data \mid \hat{\mu}, m_{H}\hat{\theta})}$$

- Obtain expected distributions of \boldsymbol{q}_{μ}
- Determine discovery \mathbf{p}_0 and signal exclusion limit
- Repeat for each assumed m_H

Links

- Statistics lectures (CERN school, 2014, W. Verkerke):
 - Part-I: https://indico.cern.ch/event/287744/contribution/7/material/slides/0.pdf
 - Part-2: https://indico.cern.ch/event/287744/contribution/11/material/slides/1.pdf
 - Part-3: https://indico.cern.ch/event/287744/contribution/14/material/slides/0.pdf
- Plotting the Differences Between Data and Expectation, G. Choudalakis, D. Casadei <u>http://arxiv.org/abs/1111.2062</u>
- CLs: <u>https://twiki.cern.ch/twiki/pub/AtlasProtected/StatisticsTools/CLsInfo.pdf</u>

- [28] A. Read, Presentation of search results: the CL s technique, Journal of Physics G: Nuclear and Particle Physics 28 (10) (2002) 2693.
- [29] G. Cowan, K. Cranmer, E. Gross, O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur.Phys.J. C71 (2011) 1554. arXiv:1007.1727, doi:10.1140/epjc/ s10052-011-1554-0.
- [30] S. Wilks, The large-sample distribution of the likelihood ratio for testing composite hypotheses, Ann. Math. Statist. 9 (1938) 60–62.

Introduction to statistics tools

Largely borrowed from lectures/slides by W. Verkerke

LIKELIHOOD, LIKELIHOOD, LIKELIHOOD...

 All fundamental statistical procedures are based on the likelihood function as 'description of the measurement'

Modular software design

- **RooFit:** tool/language for building probability models: datasets, likelihoods, minimization, toy data, visualization
- HistFactory: tool to construct binned template models of arbitrary complexity using classes of physics concepts: channel/region, sample, uncertainties Builds a RooFit stat. model from

HistFactory physics model

- RooWorkspace: persistent RooFit

 object to transport a likelihood,
 containing model/data. Completely
 factorizes process of building and using
 likelihood functions.
- RooStats: tool/suite to calculate intervals and perform hypothesis tests using a variety of statistical techniques; easy to use with RooWorkspace

 All fundamental statistical procedures are based on the likelihood function as 'description of the measurement'

M. Baak, G.J. Besjes, A. Koutsman, J. Lorenz, S. Pataraia

7

RooFit

- <u>Focus:</u> coding a probability density function PDF : how do you formulate a PDF in ROOT?
- Simple example: gauss (signal) + polynomial (bkg)
- Quickly becomes complicated: multidimensional, unbinned fits, non-trivial functions, non-analytic functions
- <u>Core design philosophy:</u> mathematical objects represented as C++ objects

RooFit - model building

• Easy to use standard components to build more complex/realistic models

HistFactory

- Structured building of complex models based on binned templates (histograms)
- Classes of physics concepts:
 - Channel = region of phase space
 - One or more channels are combined to form a measurement
 - Sample = physics process: either data-driven or described by Monte Carlo (MC) simulation
 - Systematics = intrinsic uncertainty on your model

Systematics : nuisance parameters

- Empirical modeling of your model is easy to do, but expect some hard questions
 - Gaussian for signal + polynomial for background

 $L(x \mid f, m, \sigma, a_0, a_1, a_2) = fG(x, m, \sigma) + (1 - f)Poly(x, a_0, a_1, a_2)$

- Is your model correct?
 - Is the true signal distribution captured by a Gaussian?
- Is your model flexible enough?
 - Why use 4th order polynomial and not 6th order?
- How do your model parameters connect to known detector/theory uncertainties for your distribution?
 - What conceptual uncertainty does what parameter represent? And are all conceptual uncertainties represented?

Systematics modeling - interpolation

- A common solution is to introduce degrees of freedom in model that describe specific systematic/uncertainty!
- The +1/-1 σ variations sampled from MC simulation are compared to nominal MC response
 - (corrected/checked/double-checked to data by Perf. Groups)
- Interpolation, performed between $+ I \sigma \leftrightarrow nominal \leftrightarrow I \sigma$ taken into the model as nuisance parameter

 $L(data \mid \mu, \theta) = Poisson(N_i \mid \mu \cdot s_i(\theta) + b_i(\theta)) \cdot p(\tilde{\theta}, \theta)$

M. Baak, G.J. Besjes,

RooWorkspace

- Complete description of likelihood persistable in a ROOT file
- Factorizes building and using likelihood functions
 - In setup, team member, place and time
- Construct RooFit model **sum** and persist to ROOT file

```
RooWorkspace w("w") ;
w.import(sum) ;
w.writeToFile("model.root") ;
```

• Pass file to your colleague

 Colleague resurrects likelihood, runs fit and produces plots

```
// Resurrect model and data
TFile f("model.root") ;
RooWorkspace* w = f.Get("w") ;
RooAbsPdf* model = w->pdf("sum") ;
RooAbsData* data = w->data("xxx") ;
```

```
// Use model and data
model->fitTo(*data) ;
```

```
RooPlot* frame =
    w->var("dt")->frame() ;
data->plotOn(frame) ;
model->plotOn(frame) ;
```


M. Baak, G.J. Besjes, A. Koutsman, J. Lorenz, S. Pataraia

HistFitter

RooStats

- RooFit/HistFactory give tools to construct (complex) probability density functions
- RooWorkspace makes it possible to decouple statistical test tools from model contruction
- **RooStats** project/tools suite delivers a series of tools that can calculate intervals and perform hypothesis tests using a variety of statistical techniques Confidence intervals: $[\theta_{,}, \theta_{,}]$, or $\theta < X$ at 95% C.L.
 - Frequentist/Bayesian/Likelihood-based methods (confidence/credible Hypothesis testing: \rightarrow p(data $\theta = 0$) = 1.10⁻⁷

RooStats class structure

Overview

- **Step-0:** define signal/control/validation regions
 - Input TTrees (derived from xAOD), histograms, numbers
- <u>Step-I</u>: Construct PDF and the likelihood function
 RooFit or HistFactory + RooFit
 - Result from data is a distribution
 - Model signal and background by PDF (prob. density func.)
 - Construct likelihood(s) by joining data and model(s)
- ↓
- RooWorkspace
- ↓
- <u>Step-2</u>: Statistical tests on parameter of interest μ
 RooStats
 - Construct test statistic \boldsymbol{q}_{μ} from likelihoods
 - Obtain expected distributions of \boldsymbol{q}_{μ} for various $\boldsymbol{\mu}$ values
 - Determine discovery \mathbf{p}_0 and signal exclusion limit
- <u>Step-3</u>: Repeat for each model (assumed value m_н)

HistFitter

adds steps-0 and 3
allows full analysis
chain from simple
configuration file

Links

- RooFit overview (2004): <u>http://www.nikhef.nl/~verkerke/talks/chep03/chep2003_v4.pdf</u>
- ATLAS Statistics Forum page on Stat. Tools: https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/StatisticsTools
- RooFit/RooStats at ACAT 2014: https://indico.cern.ch/event/258092/session/0/contribution/140/material/slides/1.pdf
- Higgs Combination procedure/explanation of CLs observed/expected and error bands: <u>http://cds.cern.ch/record/1375842</u>
- HistFactory documentation: <u>https://cdsweb.cern.ch/record/1456844/</u> <u>https://twiki.cern.ch/twiki/bin/view/RooStats/HistFactory</u>

- [23] K. Cranmer, G. Lewis, L. Moneta, A. Shibata, W. Verkerke, HistFactory: A tool for creating statistical models for use with RooFit and RooStats, CERN-OPEN-2012-016.
- [24] L. Moneta, K. Belasco, K. S. Cranmer, S. Kreiss, A. Lazzaro, et al., The RooStats Project, PoS ACAT2010 (2010) 057. arXiv:1009.1003.
- [25] W. Verkerke, D. P. Kirkby, The RooFit toolkit for data modeling, eConf C0303241 (2003) MOLT007. arXiv:physics/0306116.
- [26] R. Brun, F. Rademakers, ROOT: An object oriented data analysis framework, Nucl.Instrum.Meth. A389 (1997) 81-86. doi:10.1016/S0168-9002(97)00048-X.
- [27] I. Antcheva, M. Ballintijn, B. Bellenot, M. Biskup, R. Brun, et al., ROOT: A C++ framework for petabyte data storage, statistical analysis and visualization, Comput.Phys.Commun. 182 (2011) 1384–1385. doi:10.1016/j.cpc.2011.02.008.

Backup