Tau Decay validation for Herwig++ using MC-Tester

Zhonghua qin Desy Atlas Group

About MC-Tester

- Originally created to compare tau decays in different versions of tauola
- Written by: P. Golonka, T. Pierzchala, Z. Was
- The tool allows comparisons of decays for any particle or resonance between different Monte-Carlo Programs.
- The Monte-Carlo Generators can be Fortran or C++
- The event record formats can be HEPEVT, LUJETS, PYJETS and recently HepMC
- Interest from the GENSER group for their validation needs
- Recently also interfaced to Athena by Nadia Davidson
- More see: http://mc-tester.web.cern.ch/MC-TESTER
 and the talk given by Nadia on Atlas MC meeting

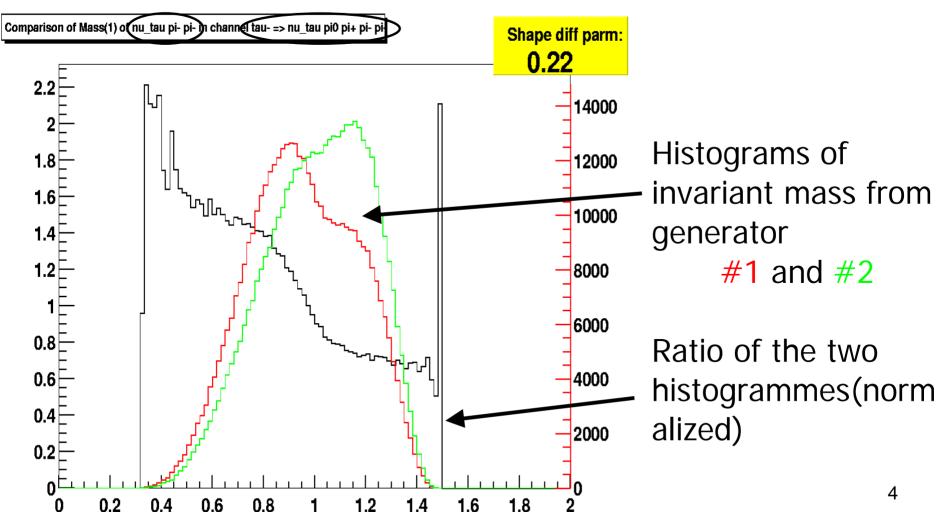
Found decay modes:

Decay channel	Branching Ratio Generator #1	Max. shape dif. param.	
$ au^- ightarrow u_ au \pi^0 \pi^-$	$25.3683 \pm 0.0159\%$	$25.3085 \pm 0.0159\%$	0.04375
$\tau^- \rightarrow e^- \widetilde{\nu_e} \nu_{\tau}$	$17.8479 \pm 0.0134\%$	$18.1093 \pm 0.0135\%$	0.00000
$\tau^- \rightarrow \mu^- \widetilde{\nu_{\mu}} \nu_{\tau}$	$17.3866 \pm 0.0132\%$	$17.6326 \pm 0.0133\%$	0.00000
$\tau^- \to \nu_\tau \pi^-$	$11.0768 \pm 0.0105\%$	$11.1765 \pm 0.0106\%$	0.00000
$ au^- ightarrow u_ au \pi^0 \pi^0 \pi^-$	$9.1865 \pm 0.0096\%$	$9.1171 \pm 0.0095\%$	0.09413
$\tau^- \rightarrow \nu_\tau \pi^+ \pi^- \pi^-$	$8.9837 \pm 0.0095\%$	$8.8828 \pm 0.0094\%$	0.09368
$\tau^- \rightarrow \nu_\tau \pi^0 \pi^+ \pi^- \pi^-$	$4.2973 \pm 0.0066\%$	$4.5319 \pm 0.0067\%$	0.30310
$\tau^- \rightarrow \nu_{\tau} \pi^0 \pi^0 \pi^0 \pi^-$	$1.0765 \pm 0.0033\%$	$1.0090 \pm 0.0032\%$	0.00724
$\tau^- \rightarrow \nu_{\tau} K^-$	$0.7202 \pm 0.0027\%$	$0.7138 \pm 0.0027\%$	0.00000
$\boxed{ \tau^- \rightarrow \nu_\tau \pi^0 \pi^0 \pi^+ \pi^- \pi^-}$	$0.4990 \pm 0.0022\%$	$0.0897 \pm 0.0009\%$	0.00000
$\tau^- \rightarrow \nu_{\tau} \pi^0 K^-$	$0.4785 \pm 0.0022\%$	$0.4617 \pm 0.0021\%$	0.00000
$\tau^- \rightarrow \nu_{\tau} K_L^0 \pi^-$	$0.4624 \pm 0.0022\%$	$0.4444 \pm 0.0021\%$	0.00000
$\tau^- \rightarrow \nu_{\tau} \pi^- K_S^0$	$0.4610 \pm 0.0021\%$	$0.4449 \pm 0.0021\%$	0.00000
$\tau^- \rightarrow \nu_{\tau} \pi^+ \pi^- K^-$	$0.3902 \pm 0.0020\%$	$0.5051 \pm 0.0022\%$	0.52330
$ au^- ightarrow u_{ au} \pi^0 \pi^- \eta$	$0.1707 \pm 0.0013\%$	$0.1696 \pm 0.0013\%$	0.00000
$\tau^- \rightarrow \nu_{\tau} \pi^- K^+ K^-$	$0.1704 \pm 0.0013\%$	$0.1509 \pm 0.0012\%$	0.07360
$\tau^- \rightarrow \nu_{\tau} \pi^0 K_L^0 \pi^-$	$0.1605 \pm 0.0013\%$	$0.2745 \pm 0.0017\%$	0.92850
$\tau^- \rightarrow \nu_{\tau} \pi^0 \pi^- K_S^0$	$0.1592 \pm 0.0013\%$	$0.2734 \pm 0.0017\%$	0.93657
$\tau^- \rightarrow \nu_{\tau} \gamma \pi^0 \pi^-$	$0.1559 \pm 0.0012\%$	$0.1303 \pm 0.0011\%$	0.00000
$\tau^- \to \nu_\tau K_L^0 \pi^- K_S^0$	$0.1510 \pm 0.0012\%$	$0.0763 \pm 0.0009\%$	0.00270
$\tau^- \rightarrow \nu_{\tau} K_L^0 K^-$	$0.1289 \pm 0.0011\%$	$0.0508 \pm 0.0007\%$	0.00000
$\tau^- \rightarrow \nu_{\tau} K_S^0 K^-$	$0.1287 \pm 0.0011\%$	$0.0507 \pm 0.0007\%$	0.00000
$\tau^- \to \nu_{\tau} \pi^0 \pi^0 \pi^0 \pi^+ \pi^- \pi^-$	$0.1094 \pm 0.0010\%$	$0.0506 \pm 0.0007\%$	0.00000
$\tau^- \rightarrow \nu_{\tau} \pi^+ \pi^+ \pi^- \pi^- \pi^-$	$0.0803 \pm 0.0009\%$	$0.0401 \pm 0.0006\%$	0.00000
$\tau^- \rightarrow \nu_{\tau} \pi^0 \pi^0 K^-$	$0.0792 \pm 0.0009\%$	$0.0504 \pm 0.0007\%$	0.29190
$\tau^- \rightarrow \nu_{\tau} K_L^0 K_L^0 \pi^-$	$0.0760 \pm 0.0009\%$	$0.0372 \pm 0.0006\%$	0.00854
$\tau^- \to \nu_\tau \pi^- K_S^0 K_S^0$	$0.0756 \pm 0.0009\%$	$0.0378 \pm 0.0006\%$	0.01189
$\tau^- \to \nu_\tau \pi^0 K_L^0 K^-$	$0.0507 \pm 0.0007\%$	$0.0763 \pm 0.0009\%$	0.85321
$\tau^- \rightarrow \nu_\tau \pi^0 K_S^0 K^-$	$0.0498 \pm 0.0007\%$	$0.0746 \pm 0.0009\%$	0.87506
$\tau^- \to \nu_{\tau} \pi^0 \pi^+ \pi^+ \pi^- \pi^- \pi^-$	$0.0186 \pm 0.0004\%$	$0.0293 \pm 0.0005\%$	0.00000

Example of output: Table of decay modes

Decay channel

Branching ratio for generator #1 and #2


Rough statistical errors of branching ratios

Maximal "Shape Difference Parameter"

Similarity coefficients: T1=1.881148, T2=4.510389

Example of output: histograms

This shows the invariant mass of nu_tau pi- pi- in mode tau -> nu_tau pi0 pi+ pi- pi-

Tau Decays validation for Herwig++

- Compare Tau decay between Herwig++, Herwig and Pythia
- Using the same physics process for the different generators
 - qqbar -> W -> Tau nu_Tau
- Tau decays with different package
 - For Herwig++ and Pythia, tau decayed by the generators themselves,
 - and for Herwig, decayed by Tauola.
- 60000 events produced in Athena

First results for the validation

- 1) see the .pdf output files
- 2) and some branching ratios of decay channel obtained from the three generators listed

Decay Channel	Branching Ratio ± errors				
	PDG(06)	Herwig++	Pythia	Herwig	
$\tau^- \to \pi^- \nu_{\tau}$	10.90 ±0.07%	11.0090 ± 0.2053%	11.0606 ±0.2081%	10.4920 ±0.2037%	
$\tau^- \to \pi^- \pi^0 \nu_{\tau}$	25.50 ±0.10%	25.3254 ±0.3114%	25.2076 ±0.3142%	24.8675 ±0.3136%	
$\tau^- \to \pi^- \pi^0 \pi^0 v_{\tau}$	9.25 ±0.12%	9.4626 ±0.1903%	8.8516 ±0.1862%	8.8231 ±0.1868%	
$\tau^- \to \pi^- \pi^- \pi^+ \nu_{\tau}$	9.33 ±0.08%	9.2329 ±0.1880%	9.2276 ±0.1901%	8.3762 ±0.1820%	
$\tau^- \to \pi^- \pi^- \pi^+ \pi^0 \nu_{\tau}$	4.46 ±0.06%	4.4557 ±0.1306%	4.3397 ±0.1304%	4.4056 ±0.1320%	
$\tau^- \to \pi^- \pi^0 \pi^0 \pi^0 \nu_{\tau}$	1.04 ±0.08%	1.1790 ±0.0672%	1.1750 ±0.0678%	0.7554 ±0.0547%	
$\tau^- \to \nu_{\tau} \tilde{\nu}_{\mu} \mu^-$	17.36 ±0.05%	17.8380 ±0.2613%	17.6563 ±0.2630%	16.9422 ±0.2588%	
$\tau^- \to v_{\tau} \tilde{v}_e e^-$	17.84 ±0.05%	17.9758 ±0.2623%	17.9069 ±0.2648%	15.2495 ±0.2456%	
$\tau^- \to K^- \nu_{\tau}$	(6.91 ±0.23) ×10-3	0.5206 ±0.0446%	0.7520 ±0.0543%	0.7119 ±0.0531%	
$\tau^- \to \pi^- K_L^0 \nu_{\tau}$		0.3981 ±0.0390%	0.4700 ±0.0429%	0.3203 ±0.0356%	
$\tau^- \to \pi^- \pi^- \pi^+ \pi^0 \pi^0 \nu_{\tau}$		0.3828 ±0.0383%	0.5483 ±0.0463%	0.0989 ±0.0198%	
$\tau^- \to K^- \pi^0 \nu_{\tau}$	(4.52 ± 0.27)×10-3	0.3215 ±0.0351%	0.4700 ±0.0429%	0.3401 ±0.0367%	
$\tau^- \to K^- K^+ \pi^- \nu_{\tau}$	(1.53 ±0.10))×10-3	0.1378 ±0.0230%	0.2350 ±0.0303%	0.0989 ±0.0198%	
$ au^- o \pi^- \pi^0 \gamma \nu_{ au}$		0.1378 ±0.0230%	0.1723 ±0.0260%	0.8938 ±0.0595%	
$\tau^- \to K^- K_L^0 \nu_{\tau}$		0.1225 ±0.0217%	0.0313 ±0.0111%	0.0356 ±0.0119%	
$\tau^- \to \pi^- K_L^0 \pi^0 \nu_{\tau}$		0.1072 ±0.0203%	0.1723 ±0.0260%	0.2017 ±0.0282%	
$\tau^- \to K^- \pi^0 \pi^0 \nu_{\tau}$	(5.8 ±2.3)×10-4	0.0766 ±0.0171%	0.0313 ±0.0111%	0.0356 ±0.0119%	
$\tau^- \to K^- K_L^0 \pi^0 \nu_{\tau}$		0.0459 ±0.0133%	0.0627 ±0.0157%	0.0672 ±0.0163% 7	

Conclusions of validation

- Altogether, the branching ratios of tau decay from Herwig++ are more consistent with PDG, Pythia than Herwig
- For Herwig, there are some channels with the ratios lower than the other generators and PDG, need to investigate further for that.

Sumary

- Using MC-tester correctly in Athena and many useful feedback given to the authors
- the first results of tau decay validation for Herwig looks reasonable
- The tool can be used for other particles decay so try it out if interested.