

Stationary Energy Storage Systems

Nina Munzke

Competence E

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

www.kit.edu

Competence E

- Competence E combines research activities along the value chain for Li-Ion Batteries
- stationary and mobile applications
- **Aim:** Cost-effective product design and production technologies

Research activities : High-energy materials, Compact cell designs, Modular battery designs, System integration

Installation of BESS in DC coupling 50-250 kWp

PV field 37 kWp

System will start its operation on an Greek island beginning of 2015! Replacement of diesel generators

Fluctuating energy production can be controlled by an intelligent predictive control!

Battery Energy Storage System "BESS"

Areas where challenges are faced according to "Big Data":

- System control
- Data analysis
- System sizing

Characteristic Fluctuation Frequencies of PV-Generators

Measurement 1st July 2014 - Constant Load Profile

9

Karlsruher Institut für Technologie

Importance of Fast Data in Storage Systems

Importance of Fast Data in Storage Systems

- Reliable and accurate control algorithms \rightarrow fast and accurate data
- Slow data \rightarrow to dead time in the control algorithm
 - Changes in the process variable are only observed after they take place
 - System is slow to respond to control commands
- - Battery storage systems can compensate these fluctuations but data rates of around 5 - 10 Hz are required
- Factors that affect data rates
 - Sensors: many current sensors on the market operate at much slower rates (around 1 – 5 Hz)
 - Hardware-software interface
 - Time synchronization of system components

Data Analysis - Status and Performance of PV-Storage Systems

Adei: Web based tool to visualize and export data

- Data is updated every 1 minute 5 minutes
- Data sampling rate: 500 ms
- DC-coupled storage system: ~90 status bits, ~ 90 process variables

Experience in Data Analytics in PV and PV-Storage Systems

1 MW PV-plant at KIT starting its operation in July 2014

→ 502liftiffæren attabless - 30 different variables per table
 → 4 different types of converters, 6 different types of solar panels

Effect of the Eclipse of last Week over 72 different Array Configurations

Different Converters Sampling Rates & Time "Framing"

[4:30 - 23:30] every day

(SR = 5 min) -> 230 values every day

7 kB per table

(SR = 1 sec) -> 68.401 every day

~2065 kB per table

Calculating the Daily Peak Power

Example of Out of Sync Data

Typical Worst-Case-Scenario of AC Power Noisy Readings during the Day

Filtering Noise and Filling Missing Data

Sensors "Blackouts"

Experience in Data Analytics in PV Systems

- Dealing with missing and erroneous data
 → repeated time-stamps, converters that are out of service
- Resampling data to a different Sampling Rate
 comparison or just for compressing.

Experience in Data Analytics in PV Systems

- Run Test of all the converters avoid errors due to extraordinary scenarios, e.g. no working array (empty array)
- Visualizing and plotting tools must be efficient
- Data processing and filtering is important
 - Large volumes of data need to be filtered
 - Desired information should be extracted from data before plotting

Simulation and Sizing of Systems

Simulation and Sizing of Systems

Components of the System: PV (size and orientation) + Battery (size) + power electronics (size)

- Aim: Identifying the optimal size of the different components
 Adjusted to the load profile of the future system operator
 - ➔ most cost effective combination

Input data: Load curve of the system operator Solar radiation at the specific location

February June

Simulations and Sizing of PV-Storage Systems

Variety of different configurations :

PV:

- 10 different sizes of the total PV field
- 10 different sizes of PV field one
- 8 different angels of orientation
- 4 different angels of inclination
- Battery:
 - 10 different sizes
- DCDC:
 - 5 different sizes
- DCAC
 - 5 different sizes

Energy Costs - Comparison of Different Orientations of the PV Plant and Battery Sizes

Optimal size of a PV-storage system can be detected out of around 2.5 Mio alternatives

Storage and big data

- Simulation and data analysis are becoming important parts of storage system development
- Many software tools used in industry struggle to handle large volumes of data
- Computing power affects simulation:
 - Software must be correctly designed to use memory effectively
 - Software tools with graphic user interfaces are often too slow

Thank you very much for your attention!