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ﬁ Renormalization — main theorems and their logical connections
9 More on regularizations

9 Renormalizability of gauge theories — QCD

Q Operator renormalization in gg — H

9 Additional topics
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Rant about QFT:

(Alexander Voigt)

@ “physicists” don’t care about serious maths

@ manipulate undefined, divergent integrals in arbitrary ways
@ provocative proposal:
» “regularize” by defining all divergent integrals:=0
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@ divergent! F(p) undefined!
@ serious maths = we should stop here.
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1

F(p) = /OOO dkm

@ divergent! F(p) undefined!
@ serious maths = we should stop here.
@ Let’s press on in a sloppy “physicist’s way”
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Formal manipulation 1 (out of 2)
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Formal manipulation 1 (out of 2)

Difference:
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Formal manipulation 1 (out of 2)

Difference:




Formal manipulation 1 (out of 2)

Difference:

F(p) — F(po)

* P — Po
- [ dk
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Formal manipulation 1 (out of 2)

Difference:

F(p) — F(po)




Formal manipulation 1 (out of 2)

Difference:

F(p) — F(po)

()

@ mathematically well-defined expression
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Formal manipulation 1 (out of 2)

Difference:

F(p) — F(po)

()

@ determines F(p) up to a constant




Formal manipulation 2 (out of 2)

Dominik Stéckinger Renormalization



Formal manipulation 2 (out of 2)

Scaling with factor a > 0:
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Scaling with factor a > 0:
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Formal manipulation 2 (out of 2)

Scaling with factor a > 0:
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Formal manipulation 2 (out of 2)

Scaling with factor a > 0:

F(ap)




Formal manipulation 2 (out of 2)

Scaling with factor a > 0:

F(ap)




Summary of three relations

. N A
0: F(p)._/o dh
1 F(p) — F(po) = —log (:—;)
2: F(p) = const.

Dominik Stéckinger Renormalization



Summary of three relations

. N R
0: F(p)._/o e
1 F(p) - Fin) = ~log (=2 )
2: F(p) = const.

Contradictions!
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Summary of three relations

. N S
0 F(p)._/o k=
1 F(p) - Fin) = ~log (=2 )
2: F(p) = const.

Can derive inconsistent results (“0=1") if we start from mathematically
ill-defined expression
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Summary of three relations

*° 1
0: F(p):= /0 dkﬁp
1: F(p) — F(po) = —log (__—5))
2: F(p) = const.

Let’s assume: fundamental physics requires equation 1
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Turn around the logic

Starting point (from fundamental physics requirements):

F(p) — F(po)= — log (_‘—;)

Consequence: formal manipulation 2 (scale invariance) is wrong:
F(p) # const.

Divergent integral can be viewed as a convenient “abbreviation”:

©
"F(p) = / ok ——
(0)= | kg

which is meaningful only if it is applied to differences etc.

1
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Outline

0 Renormalization — main theorems and their logical connections
@ Fundamental physics requirements and divergences
@ Regularization, Counterterms — Renormalization in Practice
@ Renormalization group
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constants. ..

Fundamental physics requirements define S-matrix up to certain

F(p) — F(po)= - log (

—_P)
—Po
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Fundamental physics requirements define S-matrix up to certain
constants. ..

F(p) ~ Flpo)= ~log (=2 )

These requirements are

Unitarity and Causality

[Bogoliubov, Shirkov; Epstein, Glaser; ...]
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Fundamental physics requirements define S-matrix up to certain
constants. ..

F(p) ~ Flpo)= ~log (=2 )

These requirements are

Unitarity and Causality

[Bogoliubov, Shirkov; Epstein, Glaser; ...]
Plan: explain this with the help of one example!
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Framework: Perturbation theory
For QED: interaction strength e
@ all quantities = power series in e, equations hold order by order
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Framework: Perturbation theory

For QED: interaction strength e
@ all quantities = power series in e, equations hold order by order
@ in fact, use trick: let interaction strength temporarily depend on x:

e — e(x)
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Framework: Perturbation theory

For QED: interaction strength e
@ all quantities = power series in e, equations hold order by order
@ in fact, use trick: let interaction strength temporarily depend on x:

e — e(x)

@ S-operator then can be written as
S=1
+ / d*x e(x) Si(x)

* % / d*x d*y e(x) e(y) Sa(x,y) + ...
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Framework: Perturbation theory

For QED: interaction strength e
@ all quantities = power series in e, equations hold order by order
@ in fact, use trick: let interaction strength temporarily depend on x:

e — e(x)

@ S-operator then can be written as
S=1
+ / d*x e(x) Si(x)

* % / d*x d*y e(x) e(y) Sa(x,y) + ...

@ other quantities similar

Dominik Stockinger Renormalization 11/152



Often, usual “derivation” (which leads to divergences):

S=Texp (i / d4xﬁint(X)) :

Lint = — 91/77“1/}/4“
Here, forget this, except for lowest order

Dominik Stockinger

o
Renormalization

Dac
12/152



Often, usual “derivation” (which leads to divergences):

S=Texp (i / d4X£int(X)) :

Here, forget this, except for lowest order

Ansatz:

Lint = _ed_}’)’“d}A,u
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Often, usual “derivation” (which leads to divergences):
S=Texp (i / d4x£int(x)) : Lint = —ePy'pA,

Here, forget this, except for lowest order

Ansatz:

S=1+ / d*x e(x) S1(x) + O(&?)
Si = —ipy A,
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Often, usual “derivation” (which leads to divergences):
S=Texp (i / d4x[,int(x)) : Lint = —ePy'pA,

Here, forget this, except for lowest order

Ansatz:

S=1+ / d*x e(x) S1(x) + O(&?)
Si = —ipy A,

Question:

Implications of Unitarity and Causality on higher orders?
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Implication of Unitarity S'S = 1 at O(e&?)
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Implication of Unitarity S'S = 1 at O(e&?)

T
1:(1—1-/681—{-%/9682) (1+/eS1+%/eeSZ>
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Implication of Unitarity S'S = 1 at O(e&?)

T
1:(1+/eS1+%/eeSQ> (1+/eS1+%/eeSQ)

1
:1+...+§/GG<SZ+SQ+ZSIS1)+...

Dac
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Implication of Unitarity S'S = 1 at O(e&?)

12(1+/eS1+1

f 1
2/9982) (1 +/eS1 +§/9682)
1
:1+...+§/ee(sg+82+28181)+...

This implies at O(€?)

Sh(x,¥) + Sa(x,y) = —2Si(x)Si(y)
unitarity

Imaginary part of loop contributions completely fixed/predicted by
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Implication of Causality at O(&?)

Suppose x2 > x? (later time).
Then interaction at xo cannot influence interaction at x;:
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Implication of Causality at O(&?)

Suppose x2 > x? (later time).
Then interaction at xo cannot influence interaction at x;:

Mathematical formulation: two switching-on functions e(x), ex(x)
where supp(e») is later than supp(eq). Then:
S(er + e2) = S(e2)S(er)

S-operator factorizes!
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Implication of Causality at O(&?)

Suppose x2 > x? (later time).

Then interaction at xo cannot influence interaction at x;:

This implies at O(€?)

So(X2,X1) = S1(x2)S1(xy)
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Implication of Causality at O(&?)

Suppose x2 > x? (later time).
Then interaction at xo cannot influence interaction at x;:

This implies at O(€?)
Sa(x2,x1) = S1(x2)S1(xy)
Note: if four-vectors xy # x», there is always a reference frame in which

either x2 > x? or x? > x? — so such a factorization must always hold
unless xy = X
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Implication of Causality at O(&?)

Suppose x2 > x? (later time).

Then interaction at xo cannot influence interaction at x;:

This implies at O(€?)

So(X2,X1) = S1(x2)S1(xy)

causality

Non-local part of loop contributions completely fixed/predicted by
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What are these local/non-local terms?

“Local” in position space: o(x),
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What are these local/non-local terms?

“Local” in position space: d(x),
“Local” in momentum space: 1,
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What are these local/non-local terms?

“Local” in position space: 9(x),0x0(X), . ..
“Local” in momentum space: 1.p,...
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What are these local/non-local terms?

“Local” in position space: 0(x),0xd(x), . ..
“Local” in momentum space: 1.p,...
Summary

@ Causality fixes the loop contributions up to local terms
(=polynomials in external momenta)

@ Unitarity fixes the imaginary part of loop contributions
(analogous at all orders)
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Example

generate finite loop integral by combining

) prp” &
i (p) = (1)~ 1(0) - “(0))
fin 2 0Oprop° combine integrands
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Example

generate finite loop integral by combining

) prp” &
i (p) = (1)~ 1(0) - (0))
fin 2 0Oprop° combine integrands

Then, the most general result for the photon self energy allowed by
unitarity and causality is given by

Mg (p) + real polynomial in p*

[ignoring gauge invariance]
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Example

generate finite loop integral by combining

) prp” &
i (p) = (1)~ 1(0) - “(0))
fin 2 0Oprop° combine integrands

Then, the most general result for the photon self energy allowed by
unitarity and causality is given by

Mg (p) + real polynomial in p*

[ignoring gauge invariance]

like F(p) — F(po)= — log (_‘—5))

Dominik Stockinger Renormalization
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Theorem 1:

@ Write down usual Feynman diagrams and loop integrals

@ Apply R-operation (subtraction of polynomial in external momenta
on integrand level, recursively applied also on subdiagrams)

@ In this way, obtain finite S-matrix/Green functions which are in
agreement with unitarity and causality

Theorem 2:

@ The remaining arbitrary real, local terms are in one-to-one
correspondence with terms arising from adding

Ecounterterm

a local, hermitian counterterm Lagrangian

[Bogoliubov, Parasiuk, Hepp, Zimmermann]
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Outline

0 Renormalization — main theorems and their logical connections
@ Fundamental physics requirements and divergences
@ Regularization, Counterterms — Renormalization in Practice
@ Renormalization group

Dominik Stockinger Renormalization 18/152



The correct logic

Starting point (from fundamental physics requirements):

(loop contributions fixed up to real polynomial in external momenta)

F(p) ~ Fipn)=—tog (=2 )

Divergent integral can be viewed as a convenient “abbreviation”:

o0 1 /
“F(p) = / dk——
(p) . %o

which is meaningful only if it is applied to differences etc.

!
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This justifies regularization

Regularization := modification of ill-defined integral

o= (] 95),,.

which satisfies the fundamental physics requirement

F(pic) - F(Poie) = — log (_‘—,’;) L 0(e)

Not every e-dependent modification satisfies this!!!
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This justifies regularization

Regularization := modification of ill-defined integral

= (] ki),

which satisfies the fundamental physics requirement

F(pi) ~ Flpoi ) = ~log =2 )+ 0(0)
Not every e-dependent modification satisfies this!!!
“Dimensional regularization” is a possibility:

F(p;e) := u* / dkk‘2f—k1
0

Dominik Stockinger Renormalization

20/152



This justifies regularization

Regularization := modification of ill-defined integral

= (] ki),

which satisfies the fundamental physics requirement
F(pi) ~ Flpoi ) = ~log =2 )+ 0(0)

Not every e-dependent modification satisfies this!!!
“Dimensional regularization” is a possibility:

F(p;e) == ,ﬁf/ dk k‘25% 1 log (13) + O(e)
0 o

—-p €
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Renormalized, counterterm, bare contributions

The most general allowed F(p) can be obtained as
(lim._,o understood)

F(p) =d(e) + F(p;e) renormalized result
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Renormalized, counterterm, bare contributions

The most general allowed F(p) can be obtained as
(lim._,o understood)

F(p) =d(e) + F(p;e) renormalized result
@ j(e) cancels the divergence counterterm
@ and contains an arbitrary constant renormalization scheme
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Renormalized, counterterm, bare contributions

So, the most general result for tree-level + one-loop is, e.g.
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Renormalized, counterterm, bare contributions
So, the most general result for tree-level + one-loop is, e.g.

=e+de(e) +e3(e)F(p; e)
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Renormalized, counterterm, bare contributions
So, the most general result for tree-level + one-loop is, e.g.

=e+de(e) +e3(e)F(p; e)
=Epare(€) +6%(e)F(p; ¢)
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Renormalized, counterterm, bare contributions

So, the most general result for tree-level + one-loop is, e.g.
=e+de(e)

=Epare(€)

+6%(e)F(p; €)
=6pare(€)

+€%(e)F(pre)

+&3.o(€)F(p; €) + higher orders
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Renormalized, counterterm, bare contributions

So, the most general result for tree-level + one-loop is, e.g.

=e+de(e) +e3(e)F(p; €)
=Epare(€) +e%(e)F(p;e)
=Ebare(€) +&3.o(€)F(p; €) + higher orders

Lessons:

@ can use regularization and counterterms to obtain correct result
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Renormalized, counterterm, bare contributions

So, the most general result for tree-level + one-loop is, e.g.

=e+de(e) +e3(e)F(p; €)
=Epare(€) +e%(e)F(p;e)
=Ebare(€) +&3.o(€)F(p; €) + higher orders

Lessons:

@ here: arbitrary constant is no new parameter
@ theory only depends on bare parameter (for fixed regularization)
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Renormalized, counterterm, bare contributions

So, the most general result for tree-level + one-loop is, e.g.

=e+de(e) +e3(e)F(p; €)
=Epare(€) +e%(e)F(p;e)
=Ebare(€) +&3.o(€)F(p; €) + higher orders

Lessons:

@ equivalence:

€scheme 1 + 0€scheme 1 = Escheme 2 + 9€scheme 2
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Translate to QFT: Correct, practical procedure

@ Choose correct regularization to compute loops
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Translate to QFT: Correct, practical procedure

@ Choose correct regularization to compute loops

“correct” := may differ from BPHZ only by real, local terms order by order
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Translate to QFT: Correct, practical procedure

@ Choose correct regularization to compute loops

“correct” := may differ from BPHZ only by real, local terms order by order

Theorem 3:
dimensional regularization, dimensional reduction, Pauli-Villars ok

['t Hooft, Veltman; Breitenlohner, Maison; Jack, Jones, Roberts; DS]
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Translate to QFT: Correct, practical procedure

@ Choose correct regularization to compute loops

@ Divergences can be absorbed by local terms L
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Translate to QFT: Correct, practical procedure

@ Choose correct regularization to compute loops

@ Divergences can be absorbed by local terms L
Absorb by adding counterterms

Lo+ Leg=...— eQZ”YM¢A;L

+ ... = se(e)yrpA,
+ ...+ 0gsy
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Translate to QFT: Correct, practical procedure

@ Choose correct regularization to compute loops
@ Divergences can be absorbed by local terms L
@ If finite number of terms is sufficient: “renormalizable”
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Translate to QFT: Correct, practical procedure

@ Choose correct regularization to compute loops
@ Divergences can be absorbed by local terms L
@ If finite number of terms is sufficient: “renormalizable”

Theorem 2b:

start with dim< 4 only = dim< 4 remains sufficient

requires gauge theories for spin 1 particles

in general: all terms needed which are not forbidden
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Translate to QFT: Correct, practical procedure

@ Choose correct regularization to compute loops

@ Divergences can be absorbed by local terms L

@ If finite number of terms is sufficient: “renormalizable”

@ Renormalizable theory: « finite number of bare parameters
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Translate to QFT: Correct, practical procedure

@ Choose correct regularization to compute loops

@ Divergences can be absorbed by local terms L

@ If finite number of terms is sufficient: “renormalizable”

@ Renormalizable theory: « finite number of bare parameters

Lo+ Leg=...—¢€ 7;')’#@[}’4#
+ ... —de(e)y A,
= Lpare = ... — ebare(e)zz’)’#wAu
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Translate to QFT: Correct, practical procedure

Choose correct regularization to compute loops

Divergences can be absorbed by local terms Lt

If finite number of terms is sufficient: “renormalizable”
Renormalizable theory: « finite number of bare parameters
Choose renormalization scheme to define split epare(€) = €+ de(e)

Lo+ Leg=...—¢€ 7/_")’#@[}’4#
+ ... —de(e)y A,
= Lpare = ... — ebare(e)iz’)’#leu
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Outline

0 Renormalization — main theorems and their logical connections
@ Fundamental physics requirements and divergences
@ Regularization, Counterterms — Renormalization in Practice
@ Renormalization group
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Turn around the logic

Starting point (from fundamental physics requirements):

F(p) ~ Fipn)=—tog (=2 )

Consequence: formal manipulation 2 (scale invariance) is wrong:
F(p) # const.

Divergent integral can be viewed as a convenient “abbreviation”:

o0 1 /
“F(p) = / dk——
(p) A K p

which is meaningful only if it is applied to differences etc.

!
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Turn around the logic

Starting point (from fundamental physics requirements):

F(p) ~ Fipn)=—tog (=2 )

Consequence: formal manipulation 2 (scale invariance) is wrong:
F(p) # const.

QFT: Feynman rules, £ have symmetry: scale invariance

o] 1 /
“F(p) = / dk——
(P) . o

broken by non-local terms <« unitarity/causality — “Anomaly”

i
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Turn around the logic

Starting point (from fundamental physics requirements):

F(p) ~ Fipn)=—tog (=2 )

Consequence: formal manipulation 2 (scale invariance) is wrong:
F(p) # const.

QFT: Feynman rules, £ have symmetry: scale invariance

o] 1 /
“F(p) = / dk——
(P) . o

broken by non-local terms <« unitarity/causality — “Anomaly”
“Anomaly” is a physical effect, no regularization-artifact!!

i
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F(p) - Fipo)=—tog (=2 )

Momentum dependence Iin
fixed, renormalized theory?
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F(p) - Fipo)=—tog (=2 )

Momentum dependence Iin
fixed, renormalized theory?

L [0 (o] = o
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F(p) - Fipo)=—tog (=2 )

Momentum dependence in
fixed, renormalized theory?
por o+ &F(p)] = -

— ~&%0e |+ &F(p)| +O(z0er)
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F(p) - Fipo)=—tog (=2 )

Momentum dependence Iin
fixed, renormalized theory?

L [0 (o] = o

— ~&%0e |+ &F(p)| +O(z0er)
= B0 e+ F(p)
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F(p) - Fipo)=—tog (=2 )

Momentum dependence Iin
fixed, renormalized theory?

oL [o+ Prp)] = o
— ~&%0e |+ &F(p)| +O(z0er)
= B0 e+ F(p)

— Callan-Symanzik equations, universal 5 for all observables
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Renormalization scale p1
dependence in DREG/MS?




MS: e+ de(e) + e3F(p; €)
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MS: e+ de(e) + e3F(p; €)
—e— el + e (1 —log (i)> - O(e))
€ € 7]
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MS {e+ esF(p)} —e+é° (— log (%’))
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MS:  [e+éF(p)| =e+é° <— log (%’))

Renormalization scale p1
dependence in DREG/MS?

running coupling &, = e for u ~ p tracks physical p-dependence!
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i [erori] e (- ()

Renormalization scale p1
dependence in DREG/MS?

0= #d% e+ &F(p)]

de
= Md_,u + 63 +O(2Ioop)

— renormalization group equations, running coupling (universal!)
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i [erori] e (- ()

Renormalization scale p1
dependence in DREG/MS?

d
0=ng, e+ &F(p)]
_,9e

5._ 96 _ 3
8= /,Ldu = —€ +O(2Ioop)

+ 63 +O(2Ioop)

— renormalization group equations, running coupling (universal!)
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i [erori] e (- ()

Renormalization scale p1
dependence in DREG/MS?

d
0=ng, e+ &F(p)]
_,9e

5._ 96 _ 3
8= /,Ldu = —€ +O(2Ioop)

+ 63 +O(2Ioop)

— renormalization group equations, running coupling (universal!)
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Outline

ﬁ Renormalization — main theorems and their logical connections
9 More on regularizations

9 Renormalizability of gauge theories — QCD

Q Operator renormalization in gg — H

9 Additional topics
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Outline

9 More on regularizations
@ Criteria for possible regularizations
@ Regularized quantum action principle
QCD gauge invariance of dimensional regularization
More details on DREG, DRED, FDH: Consistent definitions
Symmetries in DREG and DRED
Renormalization of e-scalars in FDH/DRED
FDH/DRED and infrared structure
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Remarks on QFT regularizations: Necessary property

@ suppose, theory has been defined up to n-loop level
@ any correct regularization must satisfy at the (n+ 1)-loop level:
» it may differ from BPHZ only by real, local terms
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Remarks on QFT regularizations: Necessary property

@ suppose, theory has been defined up to n-loop level
@ any correct regularization must satisfy at the (n+ 1)-loop level:
» it may differ from BPHZ only by real, local terms

Counter example: set all divergent integrals = 0 — yields finite theory
that violates causality and unitarity
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Remarks on QFT regularizations: Necessary property

@ suppose, theory has been defined up to n-loop level

@ any correct regularization must satisfy at the (n+ 1)-loop level:
» it may differ from BPHZ only by real, local terms

Counter example 2: DREG with anticommuting vs — some loops will
be incorrectly set to zero!!

In practice, check correctness of your calculation!

e.g. 2-loop muon decay [Freitas,Hollik, Walter,Weiglein '02], 2-loop g — 2 [Heinemeyer,DS,Weiglein '04]
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Remarks on QFT regularizations: Necessary property

@ suppose, theory has been defined up to n-loop level

@ any correct regularization must satisfy at the (n+ 1)-loop level:
» it may differ from BPHZ only by real, local terms

Proving the equivalence to BPHZ is a challenge for any scheme

(e.g. for new schemes like Implicit Regularization (cherchigiia Nemes,sampaio et all;
FDR (pitau)
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Remarks on QFT regularizations: Necessary property

@ suppose, theory has been defined up to n-loop level
@ any correct regularization must satisfy at the (n+ 1)-loop level:
» it may differ from BPHZ only by real, local terms

Proving the equivalence to BPHZ is a challenge for any scheme
(e.g. for new schemes like Implicit Regularization (cherchigiia Nemes,sampaio et all;
FDR (pitau)

Dimensional regularization (sreiteniohner, Maison 771,
Dimensional reduction ack, Jones, Roberts '93; Ds '05],
Pauli-Villars. . . are ok
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Remarks on QFT regularizations: Necessary property

@ suppose, theory has been defined up to n-loop level

@ any correct regularization must satisfy at the (n+ 1)-loop level:
» it may differ from BPHZ only by real, local terms

Proving the equivalence to BPHZ is a challenge for any scheme

(e.g. for new schemes like Implicit Regularization (cherchigiia Nemes,sampaio et all;
FDR (pitau)

...can go into more details later
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Further remarks: optional properties

@ gauge invariance/SUSY/other symmetries

@ regularized quantum action principle — would simplify/enable
proof of symmetries ... see later
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@ ‘representation independence”

I A
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Further remarks: optional properties

@ gauge invariance/SUSY/other symmetries

@ regularized quantum action principle — would simplify/enable
proof of symmetries ... see later

@ ‘representation independence”

I A

@ unambiguous also if diagrams appear as subdiagrams?

Dominik Stockinger Renormalization 31/152



Outline

9 More on regularizations
@ Criteria for possible regularizations
@ Regularized quantum action principle
QCD gauge invariance of dimensional regularization
More details on DREG, DRED, FDH: Consistent definitions
Symmetries in DREG and DRED
Renormalization of e-scalars in FDH/DRED
FDH/DRED and infrared structure
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Symmetry transformations of Green functions —
formally

oi(X) = ¢i(x) + dpi(x), L(x) — L(x) + dL(x)

How do Green functions behave?
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Symmetry transformations of Green functions —
formally

oi(X) = ¢i(x) + dpi(x), L(x) — L(x) + dL(x)

Path integral:
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Symmetry transformations of Green functions —
formally

oi(X) = ¢i(x) + dpi(x), L(x) — L(x) + dL(x)
Path integral:

Z(J) = / D¢ el [ £+
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Symmetry transformations of Green functions —
formally

di(X) = ¢i(X) + 60i(x),

L(x) — L(x)+ 0L(x)

Z(J) :/D¢ eif[.‘,—l—J(ﬁ
(measure invariant)

_ / D ei ] L+OL+I6+J50
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Symmetry transformations of Green functions —
formally

oi(X) = ¢i(x) + dpi(x), L(x) — L(x) + dL(x)

Z(J) = / Do ' J £+Jo
(measure invariant) = /Dd) eif£'+6£+J¢+J6¢

(1st order in &) = /Dd) (1 +lf5£+J5¢)elfﬁ+J¢
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Symmetry transformations of Green functions —
formally
oi(X) = 9i(x) + 0¢i(x), L(x) — L(x) + dL(x)
Z(J) = / D¢ el [ £+Jo
(measure invariant) = /Dd) eif£'+6£+J¢+J6¢
(1st order in 8) = /Dd) (1 + jf5£+J5¢)eif£+J¢
result:

0=/D¢ (i [ 0L + Jop)el | £+Ie
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Symmetry transformations of Green functions —
formally

oi(X) = ¢i(x) + dpi(x), L(x) — L(x) + dL(x)

2(J) = / Do i £+99

(measure invariant) = /Dd) eif£'+6£+J¢+J6¢
(1st order in &) = /Dd) (1 +lf6£+J5¢)elf£’+J¢
result: 0= /D¢ (,f&c + J5¢)eif£+J¢

formal “derivation” shows

((0p1)92...) +(P1(d02)...) + —i{p12...([OL))
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Symmetry transformations of Green functions — really

Regularized quantum action principle

((0p1)p2...) + (P1(662) . ..) + —i{p1¢2...([0L))

Interpret this as an identity between regularized Feynman diagrams
@ becomes a property of regularization scheme, does not
necessarily hold (no fundamental QFT requirement)

@ if desired, must be proven for each regularization

DREG: [Breitenlohner, Maison '77],

@ valid in spHz: [Lowenstein et al '71],
DRED: [DS '05]
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Symmetry transformations of Green functions — really

Regularized quantum action principle

((0p1)p2...) + (P1(662) . ..) + —i{p1¢2...([0L))

Interpret this as an identity between regularized Feynman diagrams

Idea of proof in DREG/DRED: look at possible Wick contractions
® 0L = dLquadratic + ILint, 0 Lquadratic = (6¢i) Djjd;

@ Use properties of DREG/DRED: D is inverse propagator even on
regularized level, scaleless integrals vanish

@ then, combinatorics leads to above identity
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Outline

9 More on regularizations
@ Criteria for possible regularizations
@ Regularized quantum action principle
QCD gauge invariance of dimensional regularization
More details on DREG, DRED, FDH: Consistent definitions
Symmetries in DREG and DRED
Renormalization of e-scalars in FDH/DRED
FDH/DRED and infrared structure
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DREG is “gauge invariant” (in QCD)

@ Lagrangian is gauge invariant even in D dimensions (without +s)

@ itis even BRS invariant (see later) and satisfies the Slavnov-Taylor
identity in D dimensions

@ Hence, the appropriate £ =0

@ Therefore, all regularized Green functions satisfy the appropriate
Slavnov-Taylor identities at all orders (for D # 4)

((6p1)2...) + (¢1(0¢2)...) +... =0
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Further examples of regularization schemes and
symmetries

@ DREG breaks gauge invariance in EWSM because of 5
take this into account in renormalizability proof [BRS ’75. .. Kraus '97, Grassi 98]
need symmetry-restoring counterterms, e.g. [Martin, Sanchez-Ruiz 2000]

@ DREG breaks scale invariance because of i

physical breaking by non-local terms, required by theory, cannot be repaired
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Further examples of regularization schemes and
symmetries

@ DREG breaks gauge invariance in EWSM because of 5
take this into account in renormalizability proof [BRS ’75. .. Kraus '97, Grassi 98]

need symmetry-restoring counterterms, e.g. [Martin, Sanchez-Ruiz 2000]
@ DREG breaks scale invariance because of i
physical breaking by non-local terms, required by theory, cannot be repaired
@ DREG breaks SUSY
need SUSY-restoring counterterms, e.g. [Martin,Vaughn '93][Mihaila '09][DS,Varso '11]
@ DRED preserves SUSY to large extent

...[Hollik, DS ’05][Harlander,Kant,Mihaila,Steinhauser'07]
but not completely (avdeev, chochia, viadimirov 81][Ds '05]
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Outline

9 More on regularizations
@ Criteria for possible regularizations
@ Regularized quantum action principle
QCD gauge invariance of dimensional regularization
More details on DREG, DRED, FDH: Consistent definitions
Symmetries in DREG and DRED
Renormalization of e-scalars in FDH/DRED
FDH/DRED and infrared structure
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Common Regularization Schemes for gauge
theories/SUSY

@ Dimensional Regularization (DREG) rtHooft, veltman 72)

@ Dimensional Reduction (DRED)/Four-dimensional helicity scheme
(FDH) sieget'79

Dominik Stockinger Renormalization 39/152



What do we need to define?

@ D-dimensional Integral
Dim. Regularization (DREG)
D dimensions
D Gluon/photon-components
4 Gluino/photino-components

Dim. Reduction (DRED)

D dimensions
4 Gluon/photon-components
4 Gluino/photino-components
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What do we need to define?

@ D-dimensional Integral
Dim. Regularization (DREG)
o D-di riant D dimensions
" m 20\'3'_3 28 D o D Gluon/photon-components
VPN =2 = D)PY") Gluino/photino-components

Dim. Reduction (DRED)

D dimensions
4 Gluon/photon-components
4 Gluino/photino-components

@ D-,4-dim covariants
(P )Y = (2 — 4)(P7")
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What do we need to define?

@ D-dimensional Integral
Dim. Regularization (DREG)
o D-di riant D dimensions
" m 20\'3'_3 28 D o D Gluon/photon-components
VPN =2 = D)PY") Gluino/photino-components

Dim. Reduction (DRED)

D dimensions “D < 4”
4 Gluon/photon-components
4 Gluino/photino-components

@ D-,4-dim covariants
(P )Y = (2 — 4)(P7")
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Definition of external gluons

do not have to regularize external/observed gluons!

| CDR DRED
“internal” gluon a" g
“external” gluon g g
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Definition of external gluons

do not have to regularize external/observed gluons!
3 spaces:

4S QDS Q4S
g;u/ glﬂ/ g;u/ — QIW + g;u/
| CDR DRED
“internal” gluon a" g
“external” gluon g gr
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Definition of external gluons

do not have to regularize external/observed gluons!
3 spaces:

4S QDS Q4s
glﬂ/ glﬂ/ gl“/ _ gm/ + gwj
| CDR HV FDH DRED
“internal” gluon a" i g g™
“external” gluon a" g g g
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Definition of external gluons
do not have to regularize external/observed gluons!

3 . 45 QDS Q4s
P g g gr=g e
| CDR HV FDH DRED
“internal” gluon a" i g g™
“external” gluon a" g g g
s ‘s 0:3. 943
R 9 ~ g ~ g+g g+9
J 9 g 9+3
CDR HV FDH DRED

Renormalization 41/152
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DREG: How does it work?

@ “D-dimensional space” {k*} can be consistently defined as a
truly oco-dimensional space with some D-dim characteristics:

[Wilson’73],[Collins]

@ D-dimensional Integral: linear mapping

o g(P)rv: pilinear form (y-matrices similar)

explicit construction = no contradictions possible
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DREG: How does it work?

@ “D-dimensional space” {k*} can be consistently defined as a
truly oco-dimensional space with some D-dim characteristics:

[Wilson’73],[Collins]

@ D-dimensional Integral: linear mapping

/ dPke™ = 7P/?

o g(P)rv: pilinear form (y-matrices similar)

explicit construction = no contradictions possible
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DREG: How does it work?

@ “D-dimensional space” {k*} can be consistently defined as a
truly oco-dimensional space with some D-dim characteristics:

[Wilson’73],[Collins]

@ D-dimensional Integral: linear mapping

o g(P)rv: pilinear form (y-matrices similar)

p=0,1,2,...00, gP», =D

explicit construction = no contradictions possible
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Dimensional Reduction: We need more!

® also drdim space Dim. Reduction (DRED)
. . D dimensions “D < 4”
@ algebraic identities 4 Gluon/photon-components

4 Gluino/photino-components

g(4)yyg(D)pV — g(D)ﬂP
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Dimensional Reduction: We need more!

® also drdim space Dim. Reduction (DRED)
. . D dimensions “D < 4”
@ algebraic identities 4 Gluon/photon-components

5 4 Gluino/photino-components
g(4)# g(D) — g(D)HP

= Replace ordinary 4-dim space by yet another co-dimensional space
with some 4-dim characteristics — “quasi-4-dim space”

D-dim space C quasi-4-dim space

g(D)pM: D, g(4)uﬂz4’ pw=0,1,2...00

= proof: DRED is mathematically consistent, too! (ps 2005
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Practical consequences

@ In practice one can forget that the “D-dim” and quasi-4-dim
spaces are in reality co-dimensional

@ Algebraic id. for g(P)w g*rv a5 desired

@ Only exception: one cannot rely on 4-dim identities like index
counting or Fierz identities

» For many SUSY loop calculations, this doesn’'t make a difference

Definition of DREG and DRED: The computational rules based on
these constructions will never lead to inconsistent results
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How do we avoid Siegel’s inconsistency?
Siegel: “With

el(i‘:)li2113#4€’(/‘11?/21/3’/4 X det((g;(ﬁlj))
calculate

(Dypwpr () D) (apys

apys € uvpo €
in two different ways

= 0=D(D—-1)*(D—2)*(D-3)%(D - 4)
different calculational steps lead to different results,

mathematical inconsistency!!!” [Siege!80]

Don’t allow explicit index counting (step one) any more, because
g¥,,, equasi-4-dim space!
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Basic properties and practical consequences

@ Consistent definitions exist (= no contradictions arise) rtHooft, vettman

'72] [Wilson 73] [Breitenlohner, Maison '77] [Collins][DS 05]

@ No strictly 4-dim. index counting/Fierz identities possible
(doesn’t make a difference in many applications)

@ regularized quantum action principle valid [Breitenlohner, Maison ‘77][DS ‘05
. DRED,DREG . |
A= ST, ) # 0in both cases!

@ Many highly nontrivial multi-loop calculations performed (Hariander, kant,

Mihaila, Steinhauser, et al]

@ Renormalization: treat (4 — D)-dim. gluons as additional matter
fields (not gauge fields!) — e-scalars with independent couplings

and masses. [Jack, Jones, Roberts '94] [Harlander, Kant, Mihaila, Steinhauser, et al]
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Outline

9 More on regularizations
@ Criteria for possible regularizations
@ Regularized quantum action principle
QCD gauge invariance of dimensional regularization
More details on DREG, DRED, FDH: Consistent definitions
Symmetries in DREG and DRED
Renormalization of e-scalars in FDH/DRED
FDH/DRED and infrared structure
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Interesting Cases

@ Does DREG preserve gauge invariance?
@ Does DRED preserve SUSY?

How do we know?
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Interesting Cases

@ Does DREG preserve gauge invariance?
@ Does DRED preserve SUSY?

How do we know? STI combines all identities of the form

0 = dsym(T 1 ... Pn)

complicated equation between many Green’s functions

Dominik Stockinger

o
Renormalization

48/152



Interesting Cases

@ Does DREG preserve gauge invariance?
@ Does DRED preserve SUSY?

How do we know? STI combines all identities of the form

0 = dsym(T 1 ... Pn)

complicated equation between many Green’s functions

@ check identities explicitly or use regularized quantum action
principle

Dominik Stockinger Renormalization 48/152



Properties of DREG/DRED

SUSY?
Consider SUSY-relation

me:mé

at 1-loop: m?(1L) = m?® — ¥(p? = m?)
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Properties of DREG/DRED
DREG:

me(1L) = me [1 +%(230—1)]

«Q 2
mé(1L) = Mg |:1 + E (230 + 5):|
@ DREG breaks SUSY!

DRED:

me(1L) = my(1L)
@ DRED preserves SUSY in this case!
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Properties of DREG/DRED
DREG:

me(1L) = me 1 + 2= (2Bo — 1)]

! 2 Q@ 5

@ DREG breaks SUSY! SUSY-restoring counterterm omz*
DRED: finally: me(1L, ren) = mg(1L, ren)
me(1L) = my(1L)

@ DRED preserves SUSY in this case!
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DRED current status: has passed many tests

@ A = S(I'DRED) £ 0 in quantum action principle (because of Fierz
identities)

@ Can check SUSY either directly or by using the quantum action
principle (A = Feynman rules):

1'L00p Ward identities [Capper,Jones,van Nieuvenhuizen’80] B—functions [Martin, Vaughn '93]
[Jack, Jones, North *96] 1'L00p S-matrix relation [Beenakker,Hopker,Zerwas’'96] 1-L00p
Slavnov-Taylor identities  [Holiik,Kraus,0S'99] [Hollik,DS'01] [Fischer,Holiik,Roth,Ds'03] Higher
order Ward and Slavnov-Taylor identities (ps, Holik, bs
’05][Harlander,Kant,Mihaila,Steinhauser'07]

» sufficient for many SUSY processes >WWN K

= multiplicative renormalization o.k. S Y
= no SUSY-restoring counterterms
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Transition between DREG and DRED

@ difference MPREP _ [DPREG can be compensated by counterterms

DRED __ DREG transition
I =TI + I

@ can be computed once and for all
» 1-loop couplings [Martin, vaughn 93], 2-loop SUSY-QCD couplings minaila og]
» 1-loop complete MSSM FeynArts model file (varso'11)
(UV transition rules, complementary to IR ones)

@ transition c.t.s act as SUSY-restoring counterterms for DREG
@ realize DR-scheme in context of DREG
@ infrared regularization by DREG, UV reg. by DRED
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Outline

9 More on regularizations
@ Criteria for possible regularizations
@ Regularized quantum action principle
QCD gauge invariance of dimensional regularization
More details on DREG, DRED, FDH: Consistent definitions
Symmetries in DREG and DRED
Renormalization of e-scalars in FDH/DRED
FDH/DRED and infrared structure
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Why are e-scalar couplings independent?

@ because

4) _ D €
A = AP) 1 Al

@ only ALD) is a D-dimensional gauge field in D,
@ but A,(f) transforms like a scalar field (“e-scalars”)

@ general renormalization theory applies: all gauge invariant terms
can (and will) appear as independent counterterms

Lot = 595727”'45?)7# + 5gel/_}’7NA§f)¢
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Why are e-scalar couplings independent?

@ because

4) _ D €
A = AP 4 AlS)

o only A" is a D-dimensional gauge field in D,
@ but A,(f) transforms like a scalar field (“e-scalars”)

@ general renormalization theory applies: all gauge invariant terms
can (and will) appear as independent counterterms

Lot = 095y ALY + 5gepy Ay

Consequence:

treat ge independently, may not set 6ge = 6gs Or Be = fs
(otherwise loss of unitarity, finiteness — has appeared in literature)

[Jack,Jones,Roberts '93][Harlander,Kant,Mihaila, Steinhauser’07] [Kilgore '11]
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Outline

9 More on regularizations
@ Criteria for possible regularizations
@ Regularized quantum action principle
QCD gauge invariance of dimensional regularization
More details on DREG, DRED, FDH: Consistent definitions
Symmetries in DREG and DRED
Renormalization of e-scalars in FDH/DRED
FDH/DRED and infrared structure
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Hadronic Processes and infrared properties of
DREG/DRED

real Born
dog§ ~ Pggg dogg

virt Born
dogs ~ Vg dogs

@ IR singularities should factorize
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Factorization problem and its solution

@ Apparent factorization problem

[Beenakker, Kuijf, van Neerven, Smith '88] [van Neerven, Smith '04]
[Beenakker, Hépker, Spira, Zerwas '96]

1 _
~ % K ——Pg_q9 "% (gg — t)

puzzle
+—k2k3 Kg o
@ Reconcile DRED with factorization by
o"REP(gg — ttg) 2134

decomposing gluon isigner, bs '05;08]

~ Pg_69 095 + Pg—59 095

Dominik Stockinger
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DRED and the gluon

4-component D-component e-scalars
Gluonin DRED = gauge field +
g g g

@ Simple kinematics:

e.g. g9 — qq (massless)
@ in general / here:

gg — tt (massive)

999—q3 = 993—qg — 993—qq
0g9-+q8 7 Tgg—qa 7 gi—qq

g and g have to be treated as seperate partons!
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Definition of external/observed gluons

Beware of different versions of DRED/FDH!

3 spaces: 4S QDS Q4S
P ’ g g’“j gt = QIW + g™
| _CDR DRED
“unobserved” gluon 9" g
“observed” gluon a" g
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Definition of external/observed gluons

Beware of different versions of DRED/FDH!

3 spaces: 4S c QDS Q4S
P . g,uz/ gmj glﬂ/ — gl“/ 4 gm/
| CDR HV FDH DRED
“unobserved” gluon Foad T g o
“observed” gluon g g g™ gr

Dominik Stockinger
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Main Results

! ’ 919, 949
. g _ Y ) g+a 9+d
g9 g9 g9 g+g
CDR HV FDH DRED
9 = J Py-ao o
+ f 9—39
[Catani, S., T. '97] ~
[Kunszt, S., T.'94] ’Y(Q) f 9—09
@ RS dependence: +J Poosg
[Signer, DS '08]

HV—FDH: additional final state g: value of (g) changes
FDH—DRED: additional splitting g: additional v(9)
only in DRED: split g = g + g required to understand factorization
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Consequences

@ Factorization: detailed understanding in CDR, HV, FDH, DRED

» 1-loop differences described by different ~’s
» DRED: split g = § + g required to understand factorization

@ IR translation rules between RSs
@ i.e. compute in DRED, then switch to DREG to use e.g. MS PDFs

@ no PDF for e-scalars g required
(of O(¢) and contributes only at O(¢))
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Two further remarks

@ Outlook 2-loop: Becher/Neubert formula for q/g form factor:
what changes for FDH, DRED? (Gnendiger]

0 1
@ 1 3Cq/g’Yc(us)p50 1 Bor& 3Cq/g’Y§us)p
q/g’pole - 6_3 - | + — —

8 €2 2 8
(1)
1 Tq/9 +1(F(1))2
2 2\ q/9

© FDH as a renormalization scheme
» often: no seperate e-scalar renormalization (b = abare)
» inconsistent, leads to incorrect/non-unitary/divergent results
[Jack, Jones, Roberts 94][Harlander, Kant, Mihaila, Steinhauser 06][Kilgore *11]
» should renormalize like in DRED
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Status DRED and its relation to DREG

@ Both DREG and DRED formulated consistently, quantum action
principle valid

@ Renormalization in DRED understood
@ SUSY of DRED established at 1-loop, in many 2-, 3-loop cases
@ Factorization holds in both schemes

@ UV and IR transition rules = both schemes can be mixed
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Outline

ﬁ Renormalization — main theorems and their logical connections
9 More on regularizations

9 Renormalizability of gauge theories — QCD

Q Operator renormalization in gg — H

9 Additional topics

u]
|
1
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Outline

9 Renormalizability of gauge theories — QCD
@ Reminder and overview
@ Definition and proof of renormalizability
@ Outlook: algebraic renormalization
@ Two small but important applications
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QCD — classical definition
SU(3) gauge theory, massless matter fermion 1

—. 1 v
EQCD,g.inV. = ¢17”Du¢ - ZFg Fa,uz/

Dt = O" + igT2A,
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QCD — classical definition

SU(3) gauge theory, massless matter fermion 1
. 1.
EQCD,g.inV. = ¢I7MD#¢ - ZFg Fa/w
DV = 9" + igT2A,

How to define the quantum
theory?
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QCD — classical definition

SU(3) gauge theory, massless matter fermion 1
. 1.
EQCD,g.inV. = Q;Z}IFYMD,U‘Q# - ZFg Fa/w

Dt = O" + igT2A,

Traditional:
Lqocp —gauge fix—Faddeev-Popov—BRS—Slavnov-Taylor
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QCD — Questions

'Cto be quantized = ﬁQCD,g.inv. + ﬁﬁx,gh

@ Finiteness at all orders:

» multiplicative renormalization of coupling and fields possible?
» only 4 ren. constants sufficient to cancel all divergences?

© Phys. meaning of theory:

» def. of physical states with positive norm?
» phys. S-matrix: unitary, gauge independent?
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QC D - AnSWG rS [t Hooft, ..., BRS, ... Textbooks Weinberg, Kugo, Béhm/Denner/Joos, . ..]

Main tool: STI S(I') = 0 defining theory in regularization-independent
way, describing BRS-invariance of qu. theory

© DREG “is gauge invariant (in QCD)” S(rPREGY =0
@ Div.s at n-loop are “BRS-invariant” sr M =0

© can be cancelled by multiplicative renormalization = finiteness
multiplicative counterterms generally symmetric

© counterterms also BRS-invariant = §(rrerom-) =0

@ S(rremom-) = 0 = phys. states, S-matrix can be defined and
shown to be unitary, gauge-indep.
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QCD — Locp —gauge fixing—Faddeev-Popov

Need gauge fixing and ghosts (Faddeev Popov or BRST)
Liesn = Bal0uAb) + 5B — a0, (D"0)g
= S[Ca((9,45) + 5B2)
Full theory to be quantized

Ly = EQCD,g.inV. =+ Eﬁx,gh
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QCD — Faddeev-Popov—BRS—Slavnov-Taylor

@ Ghosts for all generators — BRS:
Sp = Ca(sgauge,a@
@ BRS transformations of ghosts « s? = 0:
1
SCa = §gfabchCc
@ Slavnov-Taylor operator
or
SN = /d4x si(x
(r) $900) 5o
# Spi(X)

at the quantum level if non-linear

@ Add sources Lex = Y, Spi

or or
0= [ %5y 5
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Outline

9 Renormalizability of gauge theories — QCD
@ Reminder and overview
@ Definition and proof of renormalizability
@ Outlook: algebraic renormalization
@ Two small but important applications
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Definition of QCD

@ field content (SU(3) indices suppressed)

@ Slavnov-Taylor identity
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Definition of QCD

@ field content (SU(3) indices suppressed)

physical Ngn > 0 | aux. Ny, <0
At ) c B |c Yu Yy Yo
Negn 0 O 1 o (1 -1 -1 -2
dimension | 1 3/2 2 |2 3 52 4

@ Slavnov-Taylor identity
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Definition of QCD

@ field content (SU(3) indices suppressed)

physical Ngn > 0 | aux. Ny, <0
At ) c B |C Ya Y, Y
Negn 0 O 1 o (1 -1 -1 -2
dimension | 1 3/2 2 |2 3 52 4

@ Slavnov-Taylor identity

or or or
S0= [ 055y 5o * B =°
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Definition of QCD

@ field content (SU(3) indices suppressed)

physical Ngn > 0 | aux. Ny, <0
At ) c B |c Yu Yy Yo
Negn 0 O 1 o (1 -1 -1 -2
dimension | 1 3/2 2 |2 3 52 4

@ Slavnov-Taylor identity

or or or
S0= [ 055y 5o * B =°

@ can require further constraints
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most general classical solution

@ (only dim< 4-terms)
@ 2 steps: Y-terms, rest
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General classical solution — step 1a: Y.-part

‘ physical ‘ Ny >0 ‘ aux. Ny, <0

Ay c B¢ Yu Y, Y.

1
0

0 0

N
1 32

dimension

@ Only possible ansatz:

1
I_Cl - /d4XYCa§gozFachbCC + . e

@ STl requires

or or
0= S(Ia)|y,terms = /d4X5Y03 5_Ca + ... o< FapcFgaeChCcCe

@ Jacobi id.= F4,c must be structure constants of some Lie algebral

75/152
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General classical solution — step 1b: Ya. ,-part

‘ physical ‘ Ny >0 | aux. Ny, <0
A c B

T Yu Y, Y.
Nen 0 o

1 32

dimension

@ Only possible ansatz:

1
0

rcl == / d4XYAZ Z(aHCa + g1 FébCCbA/CI:)l—i_ Y¢l (—lg2 7-’./ Ca’l,[)j) +
EX{; B
@ STl requires

0 = 38AY = 38y = [T2, TP = iFapc TS

@ T2is representation of Lie algebra, F/,. = Fapc
@ universality go = g1 = 92

® Sis normal BRS transformation; it contains the ordinary gauge
transformation

Dominik Stockinger
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General classical solution — step 2a: no-Y-part

physical Ngn > 0 | aux. N < 0
A v c B[t Ya Y, Vo
N 0o 0 1 o |-t 1t 1 -2
dimension | 1 3/2 0 2 |2 3 52 4

@ We already have

Mg = /d4XY¢,§go,' + [rest

s = ordinary BRS transformation (up to 2)
=2
s=0

@ STl requires

o rrest
c

ol or -
0 = S(Fa)ly—o = / S . ™

Ysoi Pi

@ BRS invariance of rest
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General classical solution — step 2b I jegt

‘ physical ‘ Ny >0 ‘ aux. Ny, <0
V. c B¢ Ya Y, Y.
Nen 0o 0 1 0|1 1 1 2
dimension | 1 3/2 0 2 |2 3 52 4

@ Theorem: due to % = 0, the most general solution of

érrest(dja AM) Ca 37 a) = O

rost(th, AP, €, B,T) = Fqima (16 AF) + / d*xEX (0, A", ¢, B, )

=] 5
Dominik Stockinger
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General classical solution — step 2b I jegt

‘ physical ‘ Ny >0 ‘ aux. Ny, <0
V. c B¢ Ya Y, Y.
Nen 0o 0 1 0|1 1 1 2
dimension | 1 3/2 0 2 |2 3 52 4

@ Theorem: due to % = 0, the most general solution of

érrest(dja AM) Ca 37 a) = o

rost(th, AP, €, B,T) = Fqima (16 AF) + / d*xEX (0, A", ¢, B, )

@ gauge invariant part and gauge fixing+Faddeev-Popov
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General classical solution — step 2b I jegt

physical ‘ Ny >0 | aux. Ny, <0
YT

c | B|C Yu V., Y.

@ Theorem: due to % = 0, the most general solution of

érrest("/’; AN7 C7 37 a) = o

rost(th, AP, €, B,T) = Fqima (16 AF) + / d*xEX (0, A", ¢, B, )

@ gauge invariant part and gauge fixing+Faddeev-Popov

4 conseguences

78/152
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General classical solution — step 2b I jegt

‘ physical ‘ Ny >0 ‘ aux. ‘ Ny, <0
A0

B¢ Ya Y Yo

[V
1 32

1
0

@ Theorem: due to % = 0, the most general solution of

érrest(”(/}a AN7 C7 37 a) = o

rost(th, AP, €, B,T) = Fqima (16 AF) + / d*xEX (0, A", ¢, B, )

@ gauge invariant part and gauge fixing+Faddeev-Popov

STl is beautiful starting point
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General classical solution — step 2b I jegt

‘ physical ‘ Ny >0 ‘ aux. ‘ Ny, <0
A0

B¢ Ya Y Yo

[V
1 32

1
0

@ Theorem: due to % = 0, the most general solution of

érrest(”(/}a AN7 C7 37 a) = o

rost(th, AP, €, B,T) = Fqima (16 AF) + / d*xEX (0, A", ¢, B, )

@ gauge invariant part and gauge fixing+Faddeev-Popov

multiplicative renormalization
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General classical solution — step 2b I jegt

‘ physical ‘ Ny >0 ‘ aux. Ny, <0
A0

c B¢ Yu Y, Y.

[V
1 32

1
0

0
2

-1 12
2 3 52 4

@ Theorem: due to % = 0, the most general solution of

érrest(”(/}a AN7 C7 37 a) = o

rost(th, AP, €, B,T) = Fqima (16 AF) + / d*xEX (0, A", ¢, B, )

@ gauge invariant part and gauge fixing+Faddeev-Popov

origin of renormalizability
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General classical solution — step 2b I jegt

physical ‘ Ny >0 | aux. Ny, <0
YT

c | B|C Yu V., Y.

@ Theorem: due to % = 0, the most general solution of

érrest('(/)a AN7 C7 37 a) = o

rost(th, AP, €, B,T) = Fqima (16 AF) + / d*xEX (0, A", ¢, B, )

@ gauge invariant part and gauge fixing+Faddeev-Popov

but first, gauge fixing

78/152
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Gauge fixing

One possibility: linear gauge fixing

5X = B[Ea((0,A%) + 5Ba)]
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Gauge fixing

One possibility: linear gauge fixing

5X = B[Ea((0,A%) + 5Ba)]

5 B3 — Ca0)u 34,

Dominik Stockinger
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Gauge fixing
One possibility: linear gauge fixing
5X = S[Ca((9A%) + 5Ba)]

= BL0,A4 + gsg — 20,844

B, appears nowhere else — appears only quadratically, no vertices
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Gauge fixing

One possibility: linear gauge fixing

5X = B[Ea((0,A%) + 5Ba)]

:&&%+§£—@&M§

B, appears nowhere else — appears only quadratically, no vertices

or

3B, =EBa+ 0,A%
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Gauge fixing
One possibility: linear gauge fixing
5X = S[Ca((9A%) + 5Ba)]

:&@%+§£—@&M§

B, appears nowhere else — appears only quadratically, no vertices

or

6—Ba = fBa—l—({)uAf;

holds at lowest order and exactly, gauge fixing does not renormalize

Dominik Stockinger Renormalization 79/152



QCD — Renormalization

Multiplicative renormalization transformation of parameters and fields

generates most general classical solution (with this gauge fixing 5‘%3)

g — 9™ =9g+9=29

v o \Z
(4886 = {VZAVZa 'BVZa 6248}

c — Z.C

Bare Lagrangian

La(g;, Aay..) = Loare(gP™; ¢0%e, Aldae )

80/152
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Proof of renormalizability

@ by induction
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Assumption:

@ ("= finite up to (n — 1)-loop level
@ all defining equations valid at (n — 1)-loop level
@ and on the regularized level at n-loop level (e.g. dim. reg.)

Claim:

@ all n-loop divergences can be absorbed by multiplicative
renormalization

@ (only free physical parameter: g)
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Proof:

(<n) _ (gn) | ()
Freg” = Tiin ~ + Tiv
I'gf\z = local, equivalent to Lagrangian terms

Dominik Stockinger
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Proof:

) - 1
r(n)

div —

local, equivalent to Lagrangian terms
(<n)
Hence, rearrange 0 = S(I'ygg ') as

< (<
0= / I—lglnn) éfv) 5(r n)

fin

dIV)

depj

Dominik Stockinger

o
Renormalization

83/152



Proof:

r(ﬁn) _ r(ﬁn) + r(”)

reg fin div

I'g? local, equivalent to Lagrangian terms

Hence, rearrange 0 = S(Fr;")) as

(<n) (n) <n)
0= / I_fln dIV 6(rf|n dIV)
dpi

(<n) (n)
:/5(I'f,n ) (rdlv) + (fin ¢ div) + fin. + O(2n-loop)

Y, O
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Proof:

r(ﬁn) _ r(ﬁn) + r(”)

reg fin div

I'g? local, equivalent to Lagrangian terms

Hence, rearrange 0 = S(Fr;")) as

(<n) (n) <n)
0= / I_fln dIV 6( rf|n d|v )

5@/
(n)
(rC|) 5(rd|v)
Y, e + (cl +» div) +fin. + O((n + 1)-loop)
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Proof:

r(ﬁn) _ r(ﬁn) + r(”)

reg fin div

I'g? local, equivalent to Lagrangian terms

Hence, rearrange 0 = S(Fr;")) as

(<n) (n) <n)
0= / I_fln dIV 6(rf|n dIV)
dpi

=Sy + Fdw) +fin. + O((n + 1)-loop)
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Hence, the divergences are constrained by the STI,

S(fa+T{)=0

@ Can be absorbed by counterterms generated by the most general
classical solution

@ thus by multiplicative renormalization (= claim)
@ the bare action is thus changed as

—1
r(”) _r(” )_i_rg’)

bare = ' bare

@ this change does not invalidate the defining equations (STI) (=
assumption at order n)

proof complete
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QCD — Renormalization
Multiplicative renormalization transformation of parameters and fields

generates most general classical solution (with this gauge fixing %)

g — g™ =g+dg

oo /2w
(488 = {VZAVZa BZa 6 Zu¢)
c — Zc

.
o = Vs Y

Bare Lagrangian generates counterterms

Y.

La(Gin Al ) = Coue(@P e, AL )
= Ecl(g; w’Agv .. ) + ‘Cct(g; 7/’7 Agr 597 6Z¢,A,C’ .- )
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Outline

9 Renormalizability of gauge theories — QCD
@ Reminder and overview
@ Definition and proof of renormalizability
@ Outlook: algebraic renormalization
@ Two small but important applications
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Systematic analysis: algebraic renormalization igeeran

QFT at higher orders: Loops + counterterms

rren — rl‘eg + rCt
" . physical content
e re . unphysical

Precise, regularization-independent definition of theory by symmetries,
e.g. Slavnov-Taylor identities:

S(r") =0
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Theory defined by symmetries: S(I'™¢ + 1) =0

Case 1: S(re¢) =0
Case2a:  §(I"*)=A, S(r'ee + 1) =0
Case 2b: S(ree) = A,

S(I™ + 1) #0

Dominik Stockinger
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Theory defined by symmetries: S(I'™¢ + 1) =0

Case 1: S(re¢) =0
Case 2a: S(rree) = A, S(r™e 1 1) =0
Case 2b: S(rree) = A, S(™e 1 1) £ 0

“Textbook case”: regularization preserves symmetries
@ multiplicative renormalization (cts symmetric)

g—g+d0g9, m—m+dm

@ most common situation, often assumed without proof

Dominik Stockinger Renormalization 91/152



Theory defined by symmetries: S(I'™¢ + 1) =0

Case 1: S(re¢) =0
Case 2a: S(rree) = A, S(r™e 1 1) =0
Case 2b: S(ree) = A, S(ree + 1) £0

Nice but not necessary!
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Theory defined by symmetries: S(I'™¢ + 1) =0

Case 1: S(re¢) =0
Case 2a: S(rree) = A, S(r™e 1 1) =0
Case 2b: S(ree) = A, S(ree + 1) £0

Nice but not necessary!

@ Case 1 & Case 2a < theory renormalizable

@ Renormalizability proof has two steps:
@ Find Slavnov-Taylor id. S(r") = 0 For SUSY:
© Prove that STl can be satisfied [Piguet, Sibold B4], (White '82]
[Piguet et al 96], [Hollik, Kraus, DS '99]...

[Hollik,Kraus,Roth,Rupp,Sibold, DS '02]
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Theory defined by symmetries: S(I'™¢ + 1) =0

Case 1: S(re)y=0

Case2a:  §(I"*)=A, S(r'ee +7) =0

Case2b:  S(I"*) = A, S(I™e +T) #0
In principle, we don’t have to bother whether a
regularization preserves symmetries
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Theory defined by symmetries: S(I'™¢ + 1) =0

Case 1: S(re)y=0
Case 2a: S(Ie) = A,
Case 2b:

S(r™e 4+ 1) = 0
S(r™e) = A, S(™e 4+ 1) £ 0

In practice, life is easier with a symmetry-preserving
regularization!

Dominik Stockinger
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Outline

9 Renormalizability of gauge theories — QCD
@ Reminder and overview
@ Definition and proof of renormalizability
@ Outlook: algebraic renormalization
@ Two small but important applications
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Useful side result: application to QCD g function

p(g) from Z,
@ Possibility 1: from

Quark-Quark-Gluon §Z; + 152,4 + 02y,

2
Quark s.e. 02,
Gluon s.e. 62,

@ Possibility 2: from

. . 1
Yccc-interaction 6Z; + §5Zc,

1 1
c-s.e. E5ZC — E5ZA

Gluon s.e. 62,

Second possibility much simpler!
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How to obtain Ward/Slavnov-Taylor identities for
amplitudes?

Amplitudes
@ on-shell, physical polarization vectors
@ obtained from full Green functions by LSZ reduction (—pole part!)

(0| T ad5Pc ... |O)
(0| Td4®},]0) (0| TOgdLI0Y .

iTagc.. = x norm. wave fct.

" lon-shell
norm. wave fct. = (0|®4|A), ...

Hence, first consider identities for full Green functions, then LSZ
reduction
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Identities for full Green functions

For 1PI:

S(r) = / d*x 5% (X)

Dominik Stockinger Renormalization 97/152



Identities for full Green functions

Y, is source of loop-corrected BRS transformation:

S(1) = [ ¢*xis00) 5155
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Identities for full Green functions

Legendre transformation to full Green functions:

82)= [ d*x ) 0z

0 Y<Pi(X)
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Identities for full Green functions

Legendre transformation to full Green functions:

4
0 Y‘PI(X)

S(2) = / d*x Ji(x)

Taking derivatives of 0 = S(Z) leads to identities like

0= <(S¢A)¢B .. ) + (CDA(S(DB) .. > +...

where (s®) is a renormalized composite operator

Dominik Stockinger Renormalization
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On-shell vs. off-shell

<(S¢A)¢B .. '>|pole-part

Distinguish two cases
@ (sdy4) linear in fields

» above is just linear combination of ordinary Green functions which
have poles for on-shell external momenta

@ (s®y) x cd4 or similar — non-linear
» cannot produce a pole in external momentum (in finite order)

Linear BRS transformations in QCD or in QED:

ol
Il
@

SA*¥ =0otc+ ... s

]
$Ca = 59fabcChCo(= 0(QED)) Sy o ¢t
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Amplitudes with many gluons/photons, and
quarks/electrons (all on-shell)

e'el2 . M,u1u2...(k1 ko, .. ) AEs <Au1 Auz .- '>|on-shell,pole-part
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Amplitudes with many gluons/photons, and
quarks/electrons (all on-shell)

e'el2 . M,u1u2...(k1 ) k2, . ) AEs <Au1 Auz . '>|0n-shell,pole-part

Obtain STI:

0=((sC)Ay,...) +(C(sAL)...)+ ...

other terms in sA,, or sy do not contribute
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Amplitudes with many gluons/photons, and
quarks/electrons (all on-shell)
el My (K1 Koy ) < (A A,

e > |0n-she|l,p0le-part
Obtain STI: note: sc = B = —%6/‘Au; take on-shell,pole-part
0 = ((sC)Ay,

)+ (C(SAL,) . ..) + ..

other terms in sA,, or sy do not contribute

Dominik Stockinger

o
Renormalization

99/152



Amplitudes with many gluons/photons, and
quarks/electrons (all on-shell)

eMet2 Mpmug,,,(k‘l ) k2a
Obtain STI:

) < <Au1 Aug . ~>|0n-she|l,po|e-part

0=((sC)A,, ...) +(C(sAL)..) +..
1 _
0=—=(0"ALA,...)+(C(0y,0)...)+
other terms in sA,, or sy» do not contribute
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Amplitudes with many gluons/photons, and
quarks/electrons (all on-shell)

M2 My, (Kt ko,
Hence, in obvious notation

) A <Au1 Auz e ~>|0n-she|l,po|e-part
.1
Ek‘iuq Mymugm(k'l ) k2a . ) = kz,ugM(_JC...(k‘l ) k2a

)t

Dominik Stockinger

o
Renormalization

99/152



Amplitudes with many gluons/photons, and
quarks/electrons (all on-shell)

M2 My, (Kt ko,
Hence, in obvious notation

) A <Au1 Auz e ~>|0n-she|l,po|e-part
.1
Ek‘iuq Mymugm(k'l ) k2a . ) = kz,ugM(_JC...(k‘l ) k2a

)t
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Amplitudes with many gluons/photons, and
quarks/electrons (all on-shell)

e'el2 . M/,L1u2...(k1 ) k2, . ) AEs <Au1 Auz . '>|0n-shell,pole-part

Hence, in obvious notation

1
R Mg (b1 Ko ) = ey Mo (i R )

In QED, ghosts are free, r.h.s. cannot contribute if ky + ko # 0O:

QED:  K'“"M,,,. (K1 ko,...) =0
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Amplitudes with many gluons/photons, and
quarks/electrons (all on-shell)

e'el2 . M/,L1u2...(k1 ) k2, . ) AEs <Au1 Auz . '>|0n-shell,pole-part

Hence, in obvious notation

1
R Mg (b1 Ko ) = ey Mo (i R )

In QCD, the r.h.s. vanishes after contraction with physical es:
QCD: k{” e’ My, (K ke,...) =0

[discussion and more general QCD result: Leader/Predazzi 2011]
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Outline

ﬁ Renormalization — main theorems and their logical connections
9 More on regularizations

9 Renormalizability of gauge theories — QCD

Q Operator renormalization in gg — H

9 Additional topics

u]
|
1
ul
!

Dac
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@ gg — H is very important process
@ operator renormalization necessary
@ nice application of BRS/ST identities and quantum action principle

[Joglekar, Lee; Kluberg-Stern, Zuber; Spiridonov]

@ changes in FDH/DRED
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Integrate out top-loop — effective operator

1
'Ceff = _Z)‘ H FgVFa,,uV

gauge invariant dimension-5 operator, A\=effective coupling
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Integrate out top-loop — effective operator

1
'Ceff = _Z)‘ H F‘éwFa,;w

gauge invariant dimension-5 operator, A\=effective coupling

@ Interested only in QCD corrections
@ Higgs appears only as external field, no propagator
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Integrate out top-loop — effective operator

1
'Ceff = _Z)‘ H FgVFa,,uV

gauge invariant dimension-5 operator, A\=effective coupling

= Treat
A H(x) = Yi(x)

as external field (source in generating functional)
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Starting point

Left = Y1(x) O1(x)
1 _
O1 = _ZFg Fa,;u/
Task:

@ compute renormalized Green functions with one external Y;
< with one insertion of operator O,
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Starting point

Leit = Y1(x) O1(x)
1

O1 = _ZFéwFa,;u/

Task:

@ compute renormalized Green functions with one external Y;
< with one insertion of operator O,

Difficulty:
@ Lqcp + Less N0t multiplicatively renormalizable!
@ need many more terms in Leg! (eg. H — qa, H — cBeto)
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Correct procedure

Steps:

@ repeat proof of renormalizability of QCD, but one change:
@ additional external field Y;(x), bosonic, dim=0, Ng, = 0
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Correct procedure

@ repeat proof of renormalizability of QCD, but one change:

@ additional external field Y;(x), bosonic, dim=0, Ng, = 0
Steps:

@ write down Slavnov-Taylor identity — literally unchanged
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Correct procedure

@ repeat proof of renormalizability of QCD, but one change:
@ additional external field Y;(x), bosonic, dim=0, Ng, = 0
Steps:
@ write down Slavnov-Taylor identity — literally unchanged
@ most general classical solution — changed, can depend on Y;(x)!
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Correct procedure

@ repeat proof of renormalizability of QCD, but one change:
@ additional external field Y;(x), bosonic, dim=0, Ng, = 0

Steps:
@ write down Slavnov-Taylor identity — literally unchanged
@ most general classical solution — changed, can depend on Y;(x)!
@ most general structure of divergences — same change
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Correct procedure

@ repeat proof of renormalizability of QCD, but one change:
@ additional external field Y;(x), bosonic, dim=0, Ng, = 0
Steps:
@ write down Slavnov-Taylor identity — literally unchanged
@ most general classical solution — changed, can depend on Y;(x)!
@ most general structure of divergences — same change

@ theory QCD# Yi(x) is multiplicatively renormalizable
if we start with most general classical solution of STI
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What needs to be done explicitly?

Find this most general classical solution of QCD® Y1 (x) !
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What needs to be done explicitly?
Find this most general classical solution of QCD® Y;(x) !

@ Step 1: Dependence on sources Y, of BRS transformations
< general BRS transformations Sy;
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What needs to be done explicitly?
Find this most general classical solution of QCD® Y;(x) !

@ Step 1: Dependence on sources Y, of BRS transformations
< general BRS transformations Sy;
as before, arise from standard form by multiplicative
renormalization but

Zay.cg = LAyp,cg(Y1(X))

(power series not only in coupling but also in external field Y7 (x))
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What needs to be done explicitly?
Find this most general classical solution of QCD® Y;(x) !

@ Step 2: Lagrangian without BRS sources, Y, = 0:
as before,

rrest(l/% AM’ Ca B’ a) = rg.inv.(w’ AM) + / d4X§X(¢’ AM’ Ca B’ a)
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What needs to be done explicitly?
Find this most general classical solution of QCD® Y;(x) !
@ Step 2: Lagrangian without BRS sources, Y, = 0:
as before,
rrest(l/% AM’ Ca B’ a) = rg.inv.(w’ AM) + / d4X§X(¢’ AM’ Ca B’ a)

§

8X = §[Cal(9,AL) + 3 Ba)
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What needs to be done explicitly?
Find this most general classical solution of QCD® Y;(x) !

@ Step 2: Lagrangian without BRS sources, Y, = 0:
as before,

rrest(l/% Auv C7 B’ 5) = rg.inv.(w’ AM) + / d4X§X(¢’ Auv C7 B’ 5)

§

8X = §[Cal(9,AL) + 3 Ba)

@ but: BRS and gauge transformations as usual, but for

Goare(X)Abae(X) = v/ Za(Y1(X))Zg(Y1(X))gA" (x), etc
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What needs to be done explicitly?
Find this most general classical solution of QCD® Y;(x) !

@ Step 2: Lagrangian without BRS sources, Y, = 0:
as before,

rrest(w’ AH" C7 B’ 5) = rg.inv.(w’ AM) + / d4X§X(¢’ AH" C7 B’ 5)

§

8X = §[Cal(9,AL) + 3 Ba)

@ but: BRS and gauge transformations as usual, but for

Goare(X)Abae(X) = v/ Za(Y1(X))Zg(Y1(X))gA" (x), etc

@ here: x-dependent prefactors don’t change the possible terms!
different for scalars: Z, (8" ¢)(8. ) — Zp(Y1)(8" ¢)(9u ) + (Oznew(Y1))dd [Gnendiger,Signer,DS]
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What needs to be done explicitly?
Find this most general classical solution of QCD® Y;(x) !

@ Step 2: Lagrangian without BRS sources, Y, = 0:
as before,

rrest(w’ AH" C7 B’ 5) = rg.inv.(w’ AM) + / d4X§X(¢’ AH" C7 B’ 5)

§

8X = §[Cal(9,AL) + 3 Ba)

@ but: BRS and gauge transformations as usual, but for

Goare(X)Abae(X) = v/ Za(Y1(X))Zg(Y1(X))gA" (x), etc

@ here: x-dependent prefactors don’t change the possible terms!
different for scalars: Z, (8" ¢)(8. ) — Zp(Y1)(8" ¢)(9u ) + (Oznew(Y1))dd [Gnendiger,Signer,DS]
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Result:

@ Most general classical solution as for QCD alone, but
Yi-dependent renormalization constants:

@ Obtained from Lqcp (without Y7 and O4!) by applying

g — g™ =g+di9=2,9

b= \JZ

(A" B,c,€} — {\/ZAA“, . (related)}
c — ZcC
Yo — \/Z<p1_1 Yo,
ZA,w,c,g = ZA,w,c,g(Y1(X))

@ the arising Lpare is sufficient to cancel all divergences

FHY(A) — @F”V(gbare/qbare)
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Application to operators and gg — H
only one external Higgs/one external Y;(x)/one insertion of O;(x)

@ Such Green functions will be finite (since everything is finite)
@ but they require only

. bare
£bare|up to one power of Y; =: Lpare,acp + Y1 z Zjoj
J

Dominik Stockinger Renormalization 107/152



Application to operators and gg — H
only one external Higgs/one external Y;(x)/one insertion of O;(x)

@ Such Green functions will be finite (since everything is finite)
@ but they require only

. bare
Ebare|up to one power of Y; =: Lpare,acp + Y1 z Zjoj
J

@ Now compute the most general structure of the Y;-terms

@ have to apply the renormalization transformation to Lqcp and only
take Y;-terms!
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Application to operators and gg — H
only one external Higgs/one external Y;(x)/one insertion of O;(x)

@ Such Green functions will be finite (since everything is finite)
@ but they require only

. bare
»Cbare|up to one power of Y; =: Lpare,acp + Y1 z Zjoj
J

@ Now compute the most general structure of the Y;-terms

@ have to apply the renormalization transformation to Lqcp and only
take Y;-terms!

@ i.e. expand the four ren. constants only as
Zi(Y1)=1+2zY;

@ then the desired result is a linear combination of the z-terms
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Now compute the most general structure of the
Yi-terms

-, 1 _. _
EQCD = QZ}IFYMD/LQ# - ZFg Fap,z/ + S[Ca((aﬂAg) + gBa)]

@ four ren. constants — expand each as Z;(Y;) =1+ zY;
@ then the desired result is a linear combination of the z;-terms
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Now compute the most general structure of the
Yi-terms

-, 1 -
£QCD = W’Y“D;W - ZFg Fa/J,l/ + S[Ca((aﬂA'g) + gBa)]
Start with \/Z,, 1 — (1 + 3z, Y1 +..)yr
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Now compute the most general structure of the
Yi-terms

Lacp = Pir* Dy — F"”Faw + s[Ca((9,A%) + gsa)]
Start with \/Zy, v — (1 + 32z, Yy +...)¢

EQCD—> +Z¢ ((Y1T,[))I")/MDM¢ +¢I'y“D (Yﬂﬂ))
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Now compute the most general structure of the
Yi-terms

Lacp = Pin" Dy — F"”Fa/w + s[Ca((9,A%) + gsa)]
Start with \/Z,, 1 — (1 + 3z, Y1 +..)yr

EQCD—> +Z¢ ((Yﬂ[))l’y‘uD'u?ﬂ +¢I’y“D (Yﬂﬂ))

Patint. 4 2, Yy (Wv (D, — Du)¢)J

-~
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Now compute the most general structure of the
Yi-terms

Lacp = Pin" Dy — F"”Fa/w + s[Ca((9,A%) + gsa)]
Start with \/Z,, 1 — (1 + 3z, Y1 +..)yr

EQCD—> +Z¢ ((Yﬂ[))l’y‘uD'u?ﬂ +¢I’y“D (Yﬂﬂ))

Patint. 4 2, Yy (Wv (D, — Du)¢)J

-~
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Now compute the most general structure of the
Yi-terms

-, 1 _. _
£QCD = W’Y“D;W - ZFg Fa/J,l/ + S[Ca((aﬂA'g) + gBa)]

Next: v/Zs = Z; ' — everything invariant, except F;" (but gF," is)
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Now compute the most general structure of the
Yi-terms

-, 1 _. _
EQCD = W’Y“D;W - ZFg Fa/J,l/ + S[Ca((aﬂA'g) + gBa)]

Next: v/Zs = Z; ' — everything invariant, except F;" (but gF," is)

1w
EQCD—>...+ZAY1 <_ZF5 Fapz/)

=0
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Now compute the most general structure of the
Yi-terms

-, 1 _. _
£QCD = W’Y“D;W - ZFg Fa/J,l/ + S[Ca((aﬂA'g) + gBa)]
Next, Z, alone:

(2(0* A, ) does not renormalize!)
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Now compute the most general structure of the
Yi-terms

. 1 _
EQCD = W’Y“D;W - ZFg Fa/J,l/ + S[Ca((aﬂA'g) + gBa)]
NeXt, ZA alone: (8(8" A,.) does not renormalize!)

lNaco (A‘u) — acop (A‘u + %ZA Y1A‘u>

Dominik Stockinger Renormalization 108/152



Now compute the most general structure of the
Yi-terms

-, 1 _. _
EQCD = QZ}IFYMD/LQ# - ZFg Fap,z/ + S[Ca((aﬂAg) + gBa)]
NeXt, ZA alone: (8(8" A,.) does not renormalize!)
lNaco (A‘u) — acop (A‘u + %ZA Y1A‘u>

ol acp(A*) .
= /zAY1 (x)3 AMW —terms from &, ¢

v~
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Now compute the most general structure of the
Yi-terms

Lacp = Q,/_)ify“D/ﬂ# — %Fg“’ Fauw + s[Ca((0,A5) + gBa)]
Next, Z, alone: (&(0" Ay, ) does not renormalize!)
Moo (A“) s Taco (A“ +1z2Y4 A“)
= /zAY1 (x)3 A“M —terms from &, ¢

JAL(X)
—:04(x)
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Now compute the most general structure of the
Yi-terms

. 1 _
EQCD = Q,Z)l’}”qu,¢ - ZFg Fap,y + S[Ca((aﬂAg) + gBa)]
NeXt, ZA alone: (8(8" A,.) does not renormalize!)

lNaco (A‘u) — acop (A‘u + %ZA Y1A‘u>

ol acp(A*) .
= /zAY1 (x)3 AMW —terms from &, ¢

—:04(x)
Oy = AZ(DﬂFuu)a - QQZ'VMA;ﬂp - (8#5a)(auca)
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Now compute the most general structure of the
Yi-terms

_ 1, _
£QCD = W’Y“D;W - ZFg Fa/J,l/ + S[Ca((aﬂA'g) + gBa)]
Finally, ¢ — (1 + 3z Ys)c

on top of all of this, we can apply ordinary renormalization
transformation!! (O; — o;oare)
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Now compute the most general structure of the
Yi-terms
. 1 i} Y
£QCD = U}”Y Dp¢ - ZFa Fa/J,l/ + S[Ca((aﬂAa) + EBa)]
Finally, ¢ — (1 + 3z Ys)c

1
ﬁQCD—) . ZCE Y, (—05)
05 - (Duaua)aCa.
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Result: most general terms linear in Yi(x)

[Kluberg-Stern, Zuber '74; Joglekar, Lee '75]

Loare = £QCD bare + Y1 z Z/Obare + O( Yz)

1w
O = _ZFg F;w,aa
0, =0,
j —
O3 = 5 U7 D v
Oy = AY(D"Fp)a — QE’YMAMP — (0"Ca)(0,ca),

05 == (Duaua)aCa.

u]
|
1
ul
!
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Result: most general terms linear in Yi(x)

[Kluberg-Stern, Zuber '74; Joglekar, Lee '75]

Loare = £QCD bare + Y1 z Z/Obare + O( Yz)

01 =~ {Fi Fuua

0, =0,

O3 = é@v“ﬁ;ﬂ/}

Os = AY(D"Fu)a — G Ayt — (9"Ca)(9uCa).
O5 = (D"9,€)aCa.

basis of operators required to cancel divergences
O4 5 not gauge invariant, Oz vanishes by eq. of motion
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Study the renormalization of these operators in more
detail — notation

.bare
DIRLEY
J

@ z;= bare quantities, contain % depend on couplings
@ New parameters: z'*®
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Study the renormalization of these operators in more
detail — notation

.bare
>_ "0
J

@ z;= bare quantities, contain % depend on couplings
@ New parameters: z'*®
@ these enter precisely in products with Y;. Here: linearly!
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Study the renormalization of these operators in more
detail — notation

.bare
>_ "0
J

@ z;= bare quantities, contain % depend on couplings
@ New parameters: z'*®
@ these enter precisely in products with Y;. Here: linearly!
@ Can write
z = Z}ree +5Zj — Z,t'ree(5ij+5zij)
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Study the renormalization of these operators in more
detail — notation
Z y1zjo})are
J
@ z;= bare quantities, contain % depend on couplings
@ New parameters: z'*®
@ these enter precisely in products with Y;. Here: linearly!

@ Can write
Zj — Z}ree +5Zj — Z,t'ree(5U+5ZIj)

Notation: operator
renormalization

Z Z/Obare Z Ztree 5// + 52’/)Obare _ Z Ztree O: ren
ij
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Next question: what is the result of this operator
renormalization? Answered in DREG by trick

[Kluberg-Stern, Zuber *74][Spiridonov '84]
Desired:

o result of Ojren = (Jj + 5Z,-,-)OI'Palre ?2?7?

Idea: could be possible to obtain from QCD, since all operators already
exist in Lqcp
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Next question: what is the result of this operator
renormalization? Answered in DREG by trick

[Kluberg-Stern, Zuber *74][Spiridonov '84]
Desired:

o result of Ojren = (Jj + (SZ,-,-)OI'Pa1re ?7?7?
Idea: could be possible to obtain from QCD, since all operators already
exist in EQCD
Observation (valid here, not in general):

@ If we know | Y; szO}’are for Y7 =const, we know it in general! (o

total derivative appears)

@ All operators can be expressed by differential operators
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Example: Oy = —1F4"Fa,,

B-field is eliminated now
1 0
/01 = (g/Aﬁ"f'DO/ﬁQCD

1
D1 = —Egag-i-fag
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Example: Oy = —1F4"Fa,,

B-field is eliminated now
1 1)
/01: E/Am+D1 /*COCD

1
Dy = —§g89 + 685
Spiridonov: Now use regularized quantum action principle in DREG
finite = D Z(J) = / Do Dy el Loaetdo

B /,DQ5 i (D1 fﬁbare) eifﬁbare—i_J(b
———
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Example: Oy = —1F4"Fa,,

B-field is eliminated now
1 1)
/01: E/Am+D1 /*COCD

1
Dy = —§g89 + 685
Spiridonov: Now use regularized quantum action principle in DREG
finite = D Z(J) = / Do Dy el Loaetdo

B /,DQ5 i (D1 fﬁbare) eifﬁbare—i_J(b
———

finite operator!— Oy en
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Operator renormalization: results
Can represent

J Ot en = D1 [ Loare = (D197 224 %) [ g°ZZ OR™ + rest
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Operator renormalization: results
Can represent

J Ot en = D1 [ Loare = (D197 224 %) [ g°ZZ OR™ + rest

f O ren = Dy fﬁbare = Z(D1 log Zj) f Ojk)are
J
Z,=9°%7,°
Zy=2g\/Zn

25 =2;2;"?
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Operator renormalization: results
Can represent

J Ot en = D1 [ Loare = (D197 224 %) [ g°ZZ OR™ + rest

J Ot ron = D1 [Loare = »_(D1logZ)) [ O = [ 37, Z; 00
J
Z,=9°%7,°
Z; =2,
Z,=Z4\/Zx

25 =2;2;"?
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Operator renormalization: results
Can represent

J Ot en = D1 [ Loare = (D197 224 %) [ g°ZZ OR™ + rest

[ o0 = D1 [ o = Y (DilogZ) | OF
j
Z,=9°%7,°
Zy=2g\/Zn
In particular, often used result:

Zyy =1+ Dylog Z;? =1+ a5, l0g Z,,
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Outline

ﬁ Renormalization — main theorems and their logical connections
9 More on regularizations

9 Renormalizability of gauge theories — QCD

Q Operator renormalization in gg — H

9 Additional topics

u]
|
1
ul
!

Dac
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Outline

@ Additional topics
@ Algebraic renormalization of SUSY

@ More information on operator renormalization
@ Custodial symmetry

@ renormalization of vevs

=] 5
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on non invariant regularizations

@ QFT at higher orders: Loops + counterterms [ren — [reg 4 [ct
@ Theory defined by symmetries: S(rree 4 1) =0

Case 1: S(re¢) =0
Case 2a: S(rree) = A, S(r™e 1 1) =0
Case 2b: S(ree) = A, S(ree + 1) £0

@ Case 1: “Textbook case”, case 2a: equally good.
Decide algebraically whether possible
(“Algebraic renormalization” (ers, piguet, ...1)
symmetry-restoring c.t.s uniquely fixed; rest: multiplicative renorm.

@ Case 2b: anomaly — theory inconsistent
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Questions/Tasks

@ as for QCD: finiteness, physical meaning (gauge invariance,
SUSY)?

@ minimal or full field renormalization?

Tasks:
@ Find suitable STI for gauge invariance + SUSY
@ Prove that STl can be satisfied (even if regularization breaks it)
@ Use STI to obtain answers
@ Can draw further interesting conclusions
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Difficult to find STI

Gauge fixing required
@ SUSY gauge in superfield formalism — solved (piguet, sibold 's4]

@ Wess-Zumino gauge: fewer unphysical d.o.f.
Breaks SUSY — Renorm., sym. identities difficult

[Breitenlohner, Maison *85][White '92, Maggiore, Piguet, Wolf '96]
Peculiarities of the WZ gauge
@ Algebra modified

{Qu, Qs} = 20%.P, + ~ dsmuge
[Qaaégauge] = 07 [P,uy(sgauge] 7é 0

@ Gauge fixing —2%(3“/4“)2 breaks SUSY
Must treat gauge invariance, SUSY together
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Construction of STI

Generalize BRST, Batalin/Vilkovisky formalism to gauge
invariance+SUSY, then STI follows as usual white ‘92, Maggiore, Piguet, Wolt ‘96

@ Ghosts for all generators in symmetry algebra — BRS:
Sp = (Ca(sgauge,a +€e*Qn + édgd - WHP;L)QO
@ BRS transformations of ghosts « s? = 0:
1 . .
sc; = 3 GfabcChCec + 2iect €Ay, — iwh 0, Ca

swlt = 2eotE

& {Qn, Qi} = 20", (P, — iAgulsage.a)
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MSSM specifics

@ abelian subgroup (simpler but less constraining) olik, kraus, os ‘9]
@ soft SUSY breaking, e.g.

HQD+ H,QU — allowed
HiQD + H!QU — forbidden

use coupling to spurions [Maggiore,Piguet, Wolf '96][Hollik, Kraus, DS '01][Golterman, Shamir '10]
e R 0 0 l"'
@ Gauge fixing vs mixing A”/G°/Z,,

Resulting STI describes softly broken SUSY, and gauge invariance,
WZ gauge fixing (Holik, kraus, Roth, Rupp, Sibold, DS '02]
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Results very satisfactory

Renormalizability/answers to questions:  (Holi, kraus, Roth, Rupp, Sibold, DS 02]
@ STl can be satisfied: no SUSY or gauge anomalies

@ If regularization symmetric: mult., minimal renormalization
sufficient

@ If not: symmetry-restoring counterterms uniquely determined
@ Full field renormalization possible

@ complete on-shell unmixing possible (also for unphysical d.o.f.)
@ no infrared off-shell div.s
MSSM renormalizable, all above renormalization tranformations ok
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Results very satisfactory

Renormalizability/answers to questions:  (Holi, kraus, Roth, Rupp, Sibold, DS 02]
@ STl can be satisfied: no SUSY or gauge anomalies

@ If regularization symmetric: mult., minimal renormalization
sufficient

@ If not: symmetry-restoring counterterms uniquely determined
@ Full field renormalization possible
& after renormalization: ( I > — R( 4 ) also in STI
fr fo
@ complete on-shell unmixing possible (also for unphysical d.o.f.)
@ no infrared off-shell div.s
MSSM renormalizable, all above renormalization tranformations ok
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Results very satisfactory

Physical meaning:

@ Gauge invariant, SUSY, finite theory, renormalized gauge/SUSY
transformations defined

@ can define S-matrix, phys. Hilbert space, SUSY operator Q"
[QY, 8] =[Q%,.. ]

= Q" conserved on phys. Hilbert space {rupp, schar, sivoid 01]
Further results possible on:
@ gauge dependence
@ non-renormalization theorems
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Outline

@ Additional topics
@ Algebraic renormalization of SUSY

@ More information on operator renormalization
@ Custodial symmetry

@ renormalization of vevs
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Various statements on operator renormalization

@ use equations of motion of lower orders to modify
higher-dimension terms

0 Sef
oo
this is a field redefinition and thus does not change physical

quantities but only Green functions

@ non-gauge invariant operators (which have to be total
BRS-variations) do not contribute to observables (but to Green
functions)

Seit = Seff + Ap——t + O((A0)?)
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Outline

@ Additional topics
@ Algebraic renormalization of SUSY

@ More information on operator renormalization
@ Custodial symmetry

@ renormalization of vevs

=] 5
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Properties of general, non-SM electroweak theory

SU(2)L X U(1)y — U(1)Q:T3+Y
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Properties of general, non-SM electroweak theory
SU@2), x U(1)y = U(1)g=1s4v

@ gauge invariance has four generators, four gauge bosons:
TA:(Ta’Y), A=1,234; a=1,2,3.
Vi = (Ws,B")
DH:aH_FigATAVX: QA:(Q797979/)

@ commutators are defined by SU(2); x U(1)y
@ vacuum invariant under Q = T3 + Y
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Properties of general, non-SM electroweak theory
SU@2), x U(1)y = U(1)g=1s4v

@ gauge invariance has four generators, four gauge bosons:

TA:(Ta’Y), A=1,234; a=1,2,3.
Vi = (W, B")
DF = oF + I'gATAVIé\L’ gA — (g’ 9.9, g/)

@ commutators are defined by SU(2); x U(1)y
@ vacuum invariant under Q = T3 + Y

Option 1: elementary scalar fields ¢ exist and break symmetry at
tree-level
Option 2: different
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Theorem 1: state general mass matrix

92\/2
Mig = (g TA, g°TP}9) =
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Theorem 1: state general mass matrix

922
2 tfnATA BTB gev?
Mag = (®)'{9"T",9° T }¢) = P2 —ggu?
—ggi®  g2u?
. Mz V2
v and u are two unknowns: p = Voot o = 17
V4

@ mass matrix has U(1)q invariance «» O(2) invariance:
@ p =1 would mean u = v — an additional O(3) or SU(2)

custodial symmetry!
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Theorem 1: state general mass matrix

Restriction: elementary scalar fields ¢, work at tree-level

922
2 tfnATA BTB gev?
Mag = (®)'{9"T",9° T }¢) = P2 —ggu?
—ggi®  g2u?
} Mz V2 ’
v and u are two unknowns: p = Voot o = 17
V4

@ mass matrix has U(1)q invariance «» O(2) invariance:

@ p =1 would mean u = v — an additional O(3) or SU(2)
custodial symmetry!
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Theorem 1: state general mass matrix

Restriction: elementary scalar fields ¢, work at tree-level
Only have to compute |D*|?, set ¢ — (¢)

922
2 tfnATA BTB gev?
Mag = (®)'{9"T",9° T }¢) = P2 —ggu?
—ggi®  g2u?
} Mz V2 ’
v and u are two unknowns: p = Voot o = 17
V4

@ mass matrix has U(1)q invariance «» O(2) invariance:

@ p =1 would mean u = v — an additional O(3) or SU(2)
custodial symmetry!
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Theorem 1: state general mass matrix

Restriction: elementary scalar fields ¢, work at tree-level
Only have to compute |D*|?, set ¢ — (¢)

Result: always has the form 1 V4 M35V, with

922
2 tfnATA BTB gev?
Mag = (®)'{9"T",9° T }¢) = P2 —ggu?
—ggi®  g2u?
} Mz V2 ’
v and u are two unknowns: p = Voot o = 17
V4

@ mass matrix has U(1)q invariance «» O(2) invariance:

@ p =1 would mean u = v — an additional O(3) or SU(2)
custodial symmetry!
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Proof of this general form of the mass matrix

2 i AATA BTBY
Mag = (®){9" T, 9°T" o) = Pu? —ggu?
_g/guz g/2U2

Use U(1)g_rs. y invariance of vacuum: (73 + Y)(¢) =0
® MGy = —J M5, etc = lower right block
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Proof of this general form of the mass matrix

Mg = (&) {g"TA, g°TE}(6) = T
~g'gu?
Use U(1)g_rs. y invariance of vacuum: (73 + Y)(¢) =0
® MGy = —J M5, etc = lower right block
@ 0= ()T [T3+ Y,g"TAgBTB|(¢) leads to
(A=1,B=2): M3, = M5,
(A=B=1,2): M, = Mz, =0
(A=1,B=3): M2, =M%, =0efc
@ this proves the block structure
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Theorem 2: Goldstone boson kinetic terms in the
corresponding non-gauge theory

Answer: the 3 x 3-submatrix M2,

Line = (T2 T2H8) (0 G(3,G°) =

2
322(0GY(0,6")
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Theorem 2: Goldstone boson kinetic terms in the
corresponding non-gauge theory

o still work at tree level, with elementary scalar fields
@ consider the corresponding non-gauge theory with
9=9g =
SU2), xU(1)y = U(1)g_rs,y

@ three physical, massless Goldstone bosons G4, a=1,2,3:

Answer: the 3 x 3-submatrix M2,

M2,

Liine = 5 < YT T2He) (0" G*)(9,G") = 242 e (0"G*)(9,G")
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Theorem 2: Goldstone boson kinetic terms in the
corresponding non-gauge theory

o still work at tree level, with elementary scalar fields
@ consider the corresponding non-gauge theory with
9=9g =
SU2), x U(1)y = U(1)g_1s,y
@ three physical, massless Goldstone bosons G4, a=1,2,3:
What are their kinetic terms?

Answer: the 3 x 3-submatrix M2,

M2,

Liine = 5 < YT T2He) (0" G*)(9,G") = 242 e (0"G*)(9,G")
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Proof of this general form of the kinetic terms
Define Goldstone boson fields in nonlinear form by splitting off factor

from ¢:

o(x) = &TFN(x) = U(x)d(x)

@ such that ¢ only transforms under Q = T3 + Y
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Define Goldstone boson fields in nonlinear form by splitting off factor
from ¢:

o(x) = &TFN(x) = U(x)d(x)

@ such that ¢ only transforms under Q = T3 + Y
o fixes gauge transformations of matrix field U = e'7°¢" completely

@ for constant G?: U corresponds to global gauge transformation
and drops out of £, hence G2 only appear with derivatives and are
really the massless Goldstone modes.
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Proof of this general form of the kinetic terms

Define Goldstone boson fields in nonlinear form by splitting off factor
from ¢:

o(x) = &TFN(x) = U(x)d(x)

@ such that ¢ only transforms under Q = T3 + Y
o fixes gauge transformations of matrix field U = e'7°¢" completely

@ for constant G?: U corresponds to global gauge transformation
and drops out of £, hence G2 only appear with derivatives and are
really the massless Goldstone modes.

Kinetic terms:

Lhiggs = [0"0[2 = (¢)T0" U, U(d) + ...

lead to the above statement!
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Consequence: relation to custodial symmetry
What is custodial symmetry?

A symmetry of the non-gauge theory for g = g’ = 0, under which
the Goldstone bosons transform as an SU(2) (or SO(3)) triplet:

G? — RGP, R € SO(3)
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Consequence: relation to custodial symmetry
What is custodial symmetry?

A symmetry of the non-gauge theory for g = g’ = 0, under which
the Goldstone bosons transform as an SU(2) (or SO(3)) triplet:

G? — RGP, R € SO(3)

If custodial symmetry holds, then the Goldstone kinetic terms are
o M2, o< dgp
and thus u = v in the vector boson mass matrix:

92 v2
21,2
Mg = () {g*TA gBTE}p) = gv
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Custodial Symmetry in SM

@ rewrite SM Higgs doublet and Higgs potential using

()= (% )

¢~ ¢°
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Custodial Symmetry in SM

@ rewrite SM Higgs doublet and Higgs potential using

gt s ¢+)
¢‘(¢°)_>¢‘(—¢— ¢

V(®) = p2Tr(dTd) + ATr(dTd)2
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Custodial Symmetry in SM

@ rewrite SM Higgs doublet and Higgs potential using
+ 0 +

o= (%) e (5 %)
V(®) = p2Tr(dTd) + ATr(dTd)2

@ symmetric under SU(2); xSU(2)r, ® — LOR!

0
@ (U(1)y and U(1)q are subgroups)

@ vacuum (®)yac = ( v 8 ) invariant under SU(2),_pg
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Violation of Custodial Symmetry by Higgs Triplet
@ Triplet ¢, Y=0, SU(2)<0O(3)-rotations

0
@ but in vacuum: (¢) = ( 0 ) no remnant SU(2) or O(3)
v

@ mass term

2,2
gV
2

My = () (T2, TP} () = %"

o o
o o

o M2, =gsvi, M2 =0

... but it can be well motivated to consider such models
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Outline

@ Additional topics
@ Algebraic renormalization of SUSY

@ More information on operator renormalization
@ Custodial symmetry

@ renormalization of vevs

=] 5
Dominik Stockinger
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Renormalization of VEVs

Higgs/spontaneously broken gauge invariance:

p—=>¢d+Vv
such that (¢) = 0, i.e. tadpoles vanish
Need to renormalize:

¢ — VZg,

V= V+ov

Dominik Stockinger
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Details and questions

Most generic renormalization transformation:

(p+Vv) > VZp+v+ov
or (¢4 V) = VZ(d+ Vv +V)

Ultimately dv is important for § tan 3, 5 functions, etc.

0v characterizes to what extent v renormalizes differently from ¢.
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Details and questions

Most generic renormalization transformation:

(p+Vv) > VZp+v+ov
or (¢4 V) = VZ(d+ Vv +V)

Ultimately dv is important for § tan 3, 5 functions, etc.

0v characterizes to what extent v renormalizes differently from ¢.
Questions:

@ When/why 6v # 0?

© Properties of 6v?

© 73, and applications.
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Details and questions

Most generic renormalization transformation:

(p+Vv) > VZp+v+ov
or (¢4 V) = VZ(d+ Vv +V)

Ultimately dv is important for § tan 3, 5 functions, etc.

0v characterizes to what extent v renormalizes differently from ¢.
Questions:
@ When/why 6v # 0?
© Properties of 6v?
© 73, and applications.

Idea:
@ 6V =viZ
@ compute §Z (using STI)
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Current status for RGE coefficients

needed by SUSY spectrum generators (Spheno, Softsusy, SuseFlav,
FlexibleSUSY, Sarah)

Model B(phys. parameter) ~(fields)
V gauge theory Machacek,Vaughn 83, Luo et al ‘03

v SUSY model Martin, Vaughn; Jack, Jones; Yamada '93  partially

. ?
Note n SUSY ’}/( scalar in WZ gauge+Landau or R gauge) # ’)’( superfield) = ’)’( light cone gauge)

Model (" (2)

MSSM Chankowski Nucl.Phys. B423 Yamada 94 O(g®Y?)
Athron, DS, Voigt ’12

V gauge theory ?

v SUSY model ?

Here: fill the gaps
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Meaning of running v, alternative treatment

Fix renormalization scale u, renormalize all divergences in MS or DR
@ adjust v such that tadpoles (¢) =0
@ v=minimum of renormalized effective scalar potential at scale u

Change p, change all parameters, including v, according to 5
functions

@ all Green functions unchanged, including (¢) = 0

Minimum of renormalized effective scalar potential is u-dependent and
gauge dependent = not an observable
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Meaning of running v, alternative treatment

Fix renormalization scale u, renormalize all divergences in MS or DR
@ adjust v such that tadpoles (¢) =0
@ v=minimum of renormalized effective scalar potential at scale u

Change p, change all parameters, including v, according to 5
functions

@ all Green functions unchanged, including (¢) = 0

Minimum of renormalized effective scalar potential is u-dependent and
gauge dependent = not an observable

Very different treatment of v possible,

e.g. [Jegerlehner, Kalmykov, Kniehl '13][Bednyakov, Pikelner, Velizhanin '13].
@ always define ware =Minimum of bare eff. scalar potential
@ then wye=abbreviation of combination of bare parameters

@ In this scheme, dv, sMyy, § tan S=gauge independent,
but tadpoles are divergent (physical quantities unchanged)
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Influence of global gauge invariance in a nutshell

When does dv appear?

I3
>,
<
1

o

global gauge invariance
no global gauge invariance

i3
>,
<i
h
o

R. gauge fixing:
F=0"A, —¢ev(2Ilmg)

R. breaks global gauge invariance for £ # 0 = 6v # 0.

Dominik Stockinger Renormalization 141/152



Sketch of the usual counterterm procedure

Compute loops in one of the possible regularizations.
@ all divergences correspond to local terms in the Lagrangian
@ can be absorbed by adding counterterms

Ecl + ﬁct =...—¢€ T/_}’)’M'IPAM
+ ... = de(e)y A,
@ by choosing e-dependence appropriately, all divergences cancel
@ arbitrary finite parts «» local terms allowed by unitarity/causality
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@ results take a form like
e? + 6€2(e) — €°N(q; ¢)
@ concrete (|g?| > m2):

N(g;e) = % (—1; —log (_ﬂ—;’z) + g + O(e))
5e%(e) «a (

1 .
= :377 ——+f|n.const.)

€
@ Now two directions:

» renormalization schemes
» first, play around a little; bare quantities
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Play around a little with the expression

regroup in two ways

e? +6€%(e) — €211(q; €)
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Play around a little with the expression

regroup in two ways
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Play around a little with the expression

regroup in two ways

e +6€%(e) — e°N(q; €)
:egare(e) - ez(e)l‘l(q; €)
:egare(e) - ekz)are(e)n(q; €) +

» manifestly finite
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Play around a little with the expression

regroup in two ways

e +6€%(e) — e°N(q; €)
:egare(e) - ez(e)l‘l(q; €)
:egare(e) - ekz)are(e)n(q; €) +

» manifestly finite
o« ONly epgre Matters

Ecl + ﬁct =...— € T/_}’)’M'IPAM
+ ... = de(e)y A,
= Lpare = ... — ebare(e)@Z’YMZbAu
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Outline

@ Renormalization schemes, scheme independence
@ DRED, quantum action principle, and Higgs mass
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N(g;e) = % (_1; — log (_p,—zz) * g * O(E))

de(e) _ (_1 + fin.conSt-)
e em €
oe
Mren(q) = N(q) — 2

Renormalization scheme = choice of fin.const.

on-shell Mren(0) = 0
MS fin.const. =0

e ,
“DNa(Mz)’ 2; _ nfermlon(MZ) 4 I'IreSt(O)

for Mren, @ QED Ward identity was used to eliminate field renormalization
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N(g;e) = % (_1; — log (_p,—zz) * g * O(e))

de(e) _ (__ + fin.conSt-)
e or €
oe
I_|ren(q) = I'I(q) B 2?

Renormalization scheme = choice of fin.const.
Possibilities (all equivalent):

on-shell Mren(0) = 0
MS fin.const. =0
e ,
“AOé(MZ)” 2; _ I—lfermlon(MZ) + I—Il’eSt(O)

for Myen, @ QED Ward identity was used to eliminate field renormalization
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@ Lagrangian contains e-dependent, “bare” quantities:

Loare = ... — ebare(e)d_”)’#wAu

which can be split into renormalized and counterterm quantities

ebare(E) = eren + 56“‘ + 662L + ...
= €ren + &1 (E)e?en +..
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@ Renormalization group

@ power counting/multiplicative renormalization
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Outline

@ Renormalization schemes, scheme independence
@ DRED, quantum action principle, and Higgs mass
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Another possibility: Quantum Action Principle
Task: consider e.g. SUSY of Green’s functions

SUSY Ward/ST identities: idsusy(Td1...6n) = O

Quantum action principle:  idsusy(T¢1...¢n) = (Td1...0n)

® A = [ésusyL in D dimensions

@ if A = 0 were true, all SUSY Ward and Slavnov-Taylor identities
would be satisfied on the regularized level

Very useful theorem, valid at all orders
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Proof of Quantum Action Principle

Depends on regularization:

P 6oym(Td1 .. dn) = (T ... dnA), A:/ésymﬁ

Proofs:

BPHZ
DREG
DRED

[Lowenstein et al '71]

[Breitenlohner, Maison *77]

[DS '05]
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Application of Quantum action principle

Example 1: QCD and gauge invariance!
A = SprsLocn. = 0 vanishes!!
Quantum action principle:  idsusy(T¢1...¢n) = (Td1...0nA)
=0

= We know for decades that DREG preserves QCD gauge invariance
at a" OrderS! [Breitenlohner, Maison *77]

Dominik Stockinger Renormalization 152/152



Application of Quantum Action Principle

Example 2: SUSY of DRED:
A = Ssysy LPREP £ 0

gives rise to Feynman rules ps-os
@ DRED might break some SUSY-identities — study each case
seperately

@ quantum action principle still useful to check which identities are
valid

Dominik Stockinger Renormalization 153/152



Higgs boson mass and quartic coupling

X N . X
""" YT Higgs mass
0 @ M), governed by quartic Higgs
DN 7 self coupling A
! @ )\ x g%in SUSY
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Quartic coupling and SUSY

o b Slavnov-Taylor identity
. @ expresses \ x g°
o @ Needs to be verified
I
o NS H
= w i
xg finite

0 < Ssusy (hhhH)
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Quartic coupling and SUSY

STl valid if
(AhhhH) = 0 &
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Quartic coupling and SUSY

I _-h Results:
JON @ Two-loop STI valid in DRED
w” “h (in Yukawa-approximation,
g O(O‘%b, at,bas))
1 @ for Mp-calculation at this order,

multiplicative renormalization

M~ M~ ]
~ i ~ correct
W - Tt . . -
A e . @ Previous calculations sufficient

Explicit computation = STl valid in DRED at two-loop level Holik, s 0s)
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Practical consequences

® DREG preserves QCD gauge invariance but breaks SUSY
@ DRED preserves SUSY in many but not all cases

@ The Quantum Action Principle holds and is useful

Current status ok but should be improved in view of future more
precise SUSY computations
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