Lectures on Renormalization?

Dominik Stöckinger, TU Dresden

Graduiertenkolleg block course March 2015

Outline

- Renormalization main theorems and their logical connections
- More on regularizations
- Renormalizability of gauge theories QCD
- lacktriangledown Operator renormalization in gg o H
- 6 Additional topics

Rant about QFT:

(Alexander Voigt)

- "physicists" don't care about serious maths
- manipulate undefined, divergent integrals in arbitrary ways
- provocative proposal:
 - "regularize" by defining all divergent integrals:=0

$$F(p) := \int_0^\infty dk \frac{1}{k - p}$$

- divergent! F(p) undefined!
- serious maths ⇒ we should stop here.

$$F(p) := \int_0^\infty dk \frac{1}{k - p}$$

- divergent! F(p) undefined!
- serious maths ⇒ we should stop here.
- Let's press on in a sloppy "physicist's way"

- mathematically well-defined expression
- determines F(p) up to a constant

- mathematically well-defined expression
- determines F(p) up to a constant

$$F(p) - F(p_0) = \int_0^\infty dk \left(\frac{1}{k - p} - \frac{1}{k - p_0} \right)$$

- mathematically well-defined expression
- determines F(p) up to a constant

$$F(
ho)-F(
ho_0)$$

$$=\int_0^\infty dk rac{
ho-
ho_0}{k^2-k(
ho+
ho_0)+
ho
ho_0}$$

- mathematically well-defined expression
- determines F(p) up to a constant

$$F(p) - F(p_0)$$

$$=-\log\left(\frac{-p}{-p_0}\right)$$

- mathematically well-defined expression
- determines F(p) up to a constant

$$F(p) - F(p_0)$$

$$=-\log\left(\frac{-p}{-p_0}\right)$$

- mathematically well-defined expression
- determines F(p) up to a constant

$$F(p) - F(p_0)$$

$$=-\log\left(\frac{-p}{-p_0}\right)$$

- mathematically well-defined expression
- determines F(p) up to a constant

Scaling with factor a > 0:

Scaling with factor a > 0:

$$F(ap) = \int_0^\infty dk \frac{1}{k - ap}$$

Scaling with factor a > 0:

$$= \int_0^\infty a \, dk \frac{1}{ak - ap}$$

Scaling with factor a > 0:

$$= F(p)$$

Scaling with factor a > 0:

$$= F(p)$$

0:
$$F(p) := \int_0^\infty dk \frac{1}{k-p}$$
1:
$$F(p) - F(p_0) = -\log\left(\frac{-p}{-p_0}\right)$$
2:
$$F(p) = \text{const.}$$

0:
$$F(p) := \int_0^\infty dk \frac{1}{k-p}$$
1:
$$F(p) - F(p_0) = -\log\left(\frac{-p}{-p_0}\right)$$
2:
$$F(p) = \text{const.}$$

Contradictions!

0:
$$F(p) := \int_0^\infty dk \frac{1}{k-p}$$
1:
$$F(p) - F(p_0) = -\log\left(\frac{-p}{-p_0}\right)$$
2:
$$F(p) = \text{const.}$$

Can derive inconsistent results ("0=1") if we start from mathematically ill-defined expression

0:
$$F(p) := \int_0^\infty dk \frac{1}{k-p}$$
1:
$$F(p) - F(p_0) = -\log\left(\frac{-p}{-p_0}\right)$$
2:
$$F(p) = \text{const.}$$

Let's assume: fundamental physics requires equation 1

Turn around the logic

Starting point (from fundamental physics requirements):

$$F(p) - F(p_0) = -\log\left(\frac{-p}{-p_0}\right)$$

Consequence: formal manipulation 2 (scale invariance) is wrong:

$$F(p) \neq \text{const.}$$

Divergent integral can be viewed as a convenient "abbreviation":

"
$$F(p) = \int_0^\infty dk \frac{1}{k-p}$$
"

which is meaningful only if it is applied to differences etc.

Outline

- Renormalization main theorems and their logical connections
 - Fundamental physics requirements and divergences
 - Regularization, Counterterms Renormalization in Practice
 - Renormalization group

Fundamental physics requirements define S-matrix up to certain constants...

$$F(p) - F(p_0) = -\log\left(\frac{-p}{-p_0}\right)$$

Fundamental physics requirements define S-matrix up to certain constants...

$$F(p) - F(p_0) = -\log\left(\frac{-p}{-p_0}\right)$$

These requirements are

Unitarity and Causality

[Bogoliubov, Shirkov; Epstein, Glaser; ...]

Fundamental physics requirements define S-matrix up to certain constants...

$$F(p) - F(p_0) = -\log\left(\frac{-p}{-p_0}\right)$$

These requirements are

Unitarity and Causality

[Bogoliubov, Shirkov; Epstein, Glaser; ...]

Plan: explain this with the help of one example!

For QED: interaction strength e

all quantities = power series in e, equations hold order by order

For QED: interaction strength e

- all quantities = power series in e, equations hold order by order
- in fact, use trick: let interaction strength temporarily depend on x:

$$e \rightarrow e(x)$$

For QED: interaction strength e

- all quantities = power series in e, equations hold order by order
- in fact, use trick: let interaction strength temporarily depend on x:

$$e \rightarrow e(x)$$

S-operator then can be written as

$$S = 1$$

+ $\int d^4x \ e(x) \ S_1(x)$
+ $\frac{1}{2} \int d^4x \ d^4y \ e(x) \ e(y) \ S_2(x,y) + ...$

For QED: interaction strength e

- all quantities = power series in e, equations hold order by order
- in fact, use trick: let interaction strength temporarily depend on x:

$$e \rightarrow e(x)$$

S-operator then can be written as

$$S = 1$$

+ $\int d^4x \ e(x) \ S_1(x)$
+ $\frac{1}{2} \int d^4x \ d^4y \ e(x) \ e(y) \ S_2(x,y) + ...$

other quantities similar

Often, usual "derivation" (which leads to divergences):

$${\cal S} = {\cal T} \exp \left(i \int {\it d}^4 x {\cal L}_{
m int}(x)
ight), \qquad {\cal L}_{
m int} = - {\it e} ar \psi \gamma^\mu \psi {\it A}_\mu$$

Here, forget this, except for lowest order

Often, usual "derivation" (which leads to divergences):

$$\mathcal{S} = \mathcal{T} \exp \left(i \int d^4 x \mathcal{L}_{ ext{int}}(x)
ight), \qquad \qquad \mathcal{L}_{ ext{int}} = - oldsymbol{e} ar{\psi} \gamma^\mu \psi oldsymbol{A}_\mu$$

Here, forget this, except for lowest order

Ansatz:

Often, usual "derivation" (which leads to divergences):

$$\mathcal{S} = \mathcal{T} \exp \left(i \int d^4 x \mathcal{L}_{ ext{int}}(x)
ight), \qquad \qquad \mathcal{L}_{ ext{int}} = - e ar{\psi} \gamma^\mu \psi \mathcal{A}_\mu$$

Here, forget this, except for lowest order

Ansatz:

$$S=1+\int d^4x~e(x)~S_1(x)+\mathcal{O}(e^2)$$
 $S_1=-iar{\psi}\gamma^\mu\psi A_\mu$

Often, usual "derivation" (which leads to divergences):

$${\cal S} = {\it T} \exp \left(i \int {\it d}^4 x {\cal L}_{
m int}(x)
ight), \qquad {\it L}_{
m int} = - {\it e} ar \psi \gamma^\mu \psi {\it A}_\mu$$

Here, forget this, except for lowest order

Ansatz:

$$S=1+\int d^4x~e(x)~S_1(x)+\mathcal{O}(e^2)$$
 $S_1=-iar{\psi}\gamma^\mu\psi A_\mu$

Question:

Implications of Unitarity and Causality on higher orders?

$$1 = \left(1 + \int eS_1 + \frac{1}{2} \int eeS_2\right)^{\dagger} \left(1 + \int eS_1 + \frac{1}{2} \int eeS_2\right)$$

$$egin{aligned} 1 &= \left(1 + \int eS_1 + rac{1}{2} \int eeS_2
ight)^\dagger \left(1 + \int eS_1 + rac{1}{2} \int eeS_2
ight) \ &= 1 + \ldots + rac{1}{2} \int ee\left(S_2^\dagger + S_2 + 2S_1^\dagger S_1
ight) + \ldots \end{aligned}$$

$$egin{aligned} 1 &= \left(1 + \int eS_1 + rac{1}{2} \int eeS_2
ight)^\dagger \left(1 + \int eS_1 + rac{1}{2} \int eeS_2
ight) \ &= 1 + \ldots + rac{1}{2} \int ee\left(S_2^\dagger + S_2 + 2S_1^\dagger S_1
ight) + \ldots \end{aligned}$$

This implies at $\mathcal{O}(e^2)$

$$S_2^{\dagger}(x,y) + S_2(x,y) = -2S_1^{\dagger}(x)S_1(y)$$

Imaginary part of loop contributions completely fixed/predicted by unitarity

Suppose $x_2^0 > x_1^0$ (later time). Then interaction at x_2 cannot influence interaction at x_1 :

Suppose $x_2^0 > x_1^0$ (later time). Then interaction at x_2 cannot influence interaction at x_1 :

Mathematical formulation: two switching-on functions $e_1(x)$, $e_2(x)$ where $supp(e_2)$ is later than $supp(e_1)$. Then:

$$S(e_1+e_2)=S(e_2)S(e_1)$$

S-operator factorizes!

Suppose $x_2^0 > x_1^0$ (later time). Then interaction at x_2 cannot influence interaction at x_1 :

This implies at $\mathcal{O}(e^2)$

$$S_2(x_2,x_1) = S_1(x_2)S_1(x_1)$$

Suppose $x_2^0 > x_1^0$ (later time). Then interaction at x_2 cannot influence interaction at x_1 :

This implies at $\mathcal{O}(e^2)$

$$S_2(x_2,x_1)=S_1(x_2)S_1(x_1)$$

Note: if four-vectors $x_1 \neq x_2$, there is always a reference frame in which either $x_2^0 > x_1^0$ or $x_1^0 > x_2^0$ — so such a factorization must always hold unless $x_1 = x_2$

Suppose $x_2^0 > x_1^0$ (later time). Then interaction at x_2 cannot influence interaction at x_1 :

This implies at $\mathcal{O}(e^2)$

$$S_2(x_2,x_1)=S_1(x_2)S_1(x_1)$$

Non-local part of loop contributions completely fixed/predicted by causality

"Local" in position space: $\delta(x)$,

"Local" in position space: $\delta(x)$,

"Local" in momentum space: 1,

"Local" in position space: "Local" in momentum space:

$$\delta(x),\partial_x\delta(x),\ldots$$

1,*p*,...

"Local" in position space: $\delta(x), \partial_x \delta(x), \dots$

"Local" in momentum space: $1,p,\ldots$

Summary

- Causality fixes the loop contributions up to local terms (=polynomials in external momenta)
- Unitarity fixes the imaginary part of loop contributions (analogous at all orders)

Example

generate finite loop integral by combining

$$\Pi_{\text{fin}}^{\mu\nu}(\textbf{\textit{p}}) := \left(\Pi^{\mu\nu}(\textbf{\textit{p}}) - \Pi^{\mu\nu}(\textbf{\textit{0}}) - \frac{\textbf{\textit{p}}^{\rho}\textbf{\textit{p}}^{\sigma}}{2} \frac{\partial^{2}}{\partial \textbf{\textit{p}}^{\rho}\partial \textbf{\textit{p}}^{\sigma}} \Pi^{\mu\nu}(\textbf{\textit{0}})\right)_{\text{combine integrands}}$$

Example

generate finite loop integral by combining

$$\Pi_{\text{fin}}^{\mu\nu}(\textbf{\textit{p}}) := \left(\Pi^{\mu\nu}(\textbf{\textit{p}}) - \Pi^{\mu\nu}(0) - \frac{\textbf{\textit{p}}^{\rho}\textbf{\textit{p}}^{\sigma}}{2} \frac{\partial^{2}}{\partial\textbf{\textit{p}}^{\rho}\partial\textbf{\textit{p}}^{\sigma}} \Pi^{\mu\nu}(0)\right)_{\text{combine integrands}}$$

Then, the most general result for the photon self energy allowed by unitarity and causality is given by

$$\Pi_{\mathsf{fin}}^{\mu
u}(p) + \mathsf{real} \; \mathsf{polynomial} \; \mathsf{in} \; p^{\mu}$$

[ignoring gauge invariance]

Example

generate finite loop integral by combining

$$\Pi_{\text{fin}}^{\mu\nu}(\textbf{\textit{p}}) := \left(\Pi^{\mu\nu}(\textbf{\textit{p}}) - \Pi^{\mu\nu}(0) - \frac{\textbf{\textit{p}}^{\rho}\textbf{\textit{p}}^{\sigma}}{2} \frac{\partial^{2}}{\partial \textbf{\textit{p}}^{\rho}\partial \textbf{\textit{p}}^{\sigma}} \Pi^{\mu\nu}(0)\right)_{\text{combine integrands}}$$

Then, the most general result for the photon self energy allowed by unitarity and causality is given by

$$\Pi_{\mathsf{fin}}^{\mu
u}(\pmb{p}) + \mathsf{real}$$
 polynomial in \pmb{p}^{μ}

[ignoring gauge invariance]

like
$$F(p) - F(p_0) = -\log\left(\frac{-p}{-p_0}\right)$$

Theorem 1:

- Write down usual Feynman diagrams and loop integrals
- Apply R-operation (subtraction of polynomial in external momenta on integrand level, recursively applied also on subdiagrams)
- In this way, obtain finite S-matrix/Green functions which are in agreement with unitarity and causality

Theorem 2:

 The remaining arbitrary real, local terms are in one-to-one correspondence with terms arising from adding

 $\mathcal{L}_{\mathsf{counterterm}}$

a local, hermitian counterterm Lagrangian

[Bogoliubov, Parasiuk, Hepp, Zimmermann]

Outline

- Renormalization main theorems and their logical connections
 - Fundamental physics requirements and divergences
 - Regularization, Counterterms Renormalization in Practice
 - Renormalization group

The correct logic

Starting point (from fundamental physics requirements):

(loop contributions fixed up to real polynomial in external momenta)

$$F(p) - F(p_0) = -\log\left(\frac{-p}{-p_0}\right)$$

Divergent integral can be viewed as a convenient "abbreviation":

"
$$F(p) = \int_0^\infty dk \frac{1}{k-p}$$
"

which is meaningful only if it is applied to differences etc.

This justifies regularization

Regularization := modification of ill-defined integral

$$F(p;\epsilon) := \left(\int_0^\infty dk \frac{1}{k-p}\right)_{\text{reg. }\epsilon}$$

which satisfies the fundamental physics requirement

$$F(p;\epsilon) - F(p_0;\epsilon) = -\log\left(\frac{-p}{-p_0}\right) + \mathcal{O}(\epsilon)$$

Not every ϵ -dependent modification satisfies this!!!

This justifies regularization

Regularization := modification of ill-defined integral

$$F(p;\epsilon) := \left(\int_0^\infty dk \frac{1}{k-p}\right)_{\text{reg. }\epsilon}$$

which satisfies the fundamental physics requirement

$$F(p; \epsilon) - F(p_0; \epsilon) = -\log\left(\frac{-p}{-p_0}\right) + \mathcal{O}(\epsilon)$$

Not every ϵ -dependent modification satisfies this!!! "Dimensional regularization" is a possibility:

$$\mathsf{F}(\mathsf{p};\epsilon) := \mu^{2\epsilon} \int_0^\infty \mathsf{d} k \, k^{-2\epsilon} rac{1}{k-\mathsf{p}}$$

This justifies regularization

Regularization := modification of ill-defined integral

$$F(p;\epsilon) := \left(\int_0^\infty dk \frac{1}{k-p}\right)_{\text{reg. }\epsilon}$$

which satisfies the fundamental physics requirement

$$F(p; \epsilon) - F(p_0; \epsilon) = -\log\left(\frac{-p}{-p_0}\right) + \mathcal{O}(\epsilon)$$

Not every ϵ -dependent modification satisfies this!!!

"Dimensional regularization" is a possibility:

$$F(p;\epsilon) := \mu^{2\epsilon} \int_0^\infty dk \, k^{-2\epsilon} \frac{1}{k-p} = \frac{1}{\epsilon} - \log\left(\frac{-p}{\mu}\right) + \mathcal{O}(\epsilon)$$

The most general allowed F(p) can be obtained as

 $(\lim_{\epsilon \to 0} \text{ understood})$

$$F(p) = \delta(\epsilon) + F(p; \epsilon)$$

renormalized result

The most general allowed F(p) can be obtained as

 $(\lim_{\epsilon \to 0} \text{ understood})$

$$F(p) = \delta(\epsilon) + F(p; \epsilon)$$

renormalized result

- $\delta(\epsilon)$ cancels the divergence
- and contains an arbitrary constant

counterterm

renormalization scheme

$$=e + \delta e(\epsilon)$$
 $+e^{3}(\epsilon)F(p;\epsilon)$

$$= e + \delta e(\epsilon) + e^{3}(\epsilon)F(p;\epsilon)$$

$$= e_{\text{bare}}(\epsilon) + e^{3}(\epsilon)F(p;\epsilon)$$

$$\begin{aligned} &= e + \delta e(\epsilon) & + e^{3}(\epsilon) F(p; \epsilon) \\ &= e_{\text{bare}}(\epsilon) & + e^{3}(\epsilon) F(p; \epsilon) \\ &= e_{\text{bare}}(\epsilon) & + e_{\text{bare}}^{3}(\epsilon) F(p; \epsilon) + \text{higher orders} \end{aligned}$$

So, the most general result for tree-level + one-loop is, e.g.

$$\begin{split} &= e + \delta e(\epsilon) & + e^3(\epsilon) F(p; \epsilon) \\ &= e_{\text{bare}}(\epsilon) & + e^3(\epsilon) F(p; \epsilon) \\ &= e_{\text{bare}}(\epsilon) & + e_{\text{bare}}^3(\epsilon) F(p; \epsilon) + \text{higher orders} \end{split}$$

Lessons:

can use regularization and counterterms to obtain correct result

So, the most general result for tree-level + one-loop is, e.g.

$$\begin{split} &= e + \delta e(\epsilon) & + e^3(\epsilon) F(p; \epsilon) \\ &= e_{\text{bare}}(\epsilon) & + e^3(\epsilon) F(p; \epsilon) \\ &= e_{\text{bare}}(\epsilon) & + e_{\text{bare}}^3(\epsilon) F(p; \epsilon) + \text{higher orders} \end{split}$$

Lessons:

- here: arbitrary constant is no new parameter
- theory only depends on bare parameter (for fixed regularization)

So, the most general result for tree-level + one-loop is, e.g.

$$\begin{aligned} &= e + \delta e(\epsilon) & + e^3(\epsilon) F(p; \epsilon) \\ &= e_{\text{bare}}(\epsilon) & + e^3(\epsilon) F(p; \epsilon) \\ &= e_{\text{bare}}(\epsilon) & + e_{\text{bare}}^3(\epsilon) F(p; \epsilon) + \text{higher orders} \end{aligned}$$

Lessons:

• equivalence:

$$e_{\text{scheme 1}} + \delta e_{\text{scheme 1}} = e_{\text{scheme 2}} + \delta e_{\text{scheme 2}}$$

Translate to QFT: Correct, practical procedure

Choose correct regularization to compute loops

Translate to QFT: Correct, practical procedure

Choose correct regularization to compute loops

"correct" := may differ from BPHZ only by real, local terms order by order

Translate to QFT: Correct, practical procedure

Choose correct regularization to compute loops

"correct" := may differ from BPHZ only by real, local terms order by order Theorem 3:

dimensional regularization, dimensional reduction, Pauli-Villars ok

['t Hooft, Veltman; Breitenlohner, Maison; Jack, Jones, Roberts; DS]

- Choose correct regularization to compute loops
- ullet Divergences can be absorbed by local terms $\mathcal{L}_{\mathsf{ct}}$

- Choose correct regularization to compute loops
- \bullet Divergences can be absorbed by local terms \mathcal{L}_{ct}

Absorb by adding counterterms

$$\begin{split} \mathcal{L}_{\text{cl}} + \mathcal{L}_{\text{ct}} &= \ldots - \textbf{\textit{e}} \; \bar{\psi} \gamma^{\mu} \psi \textbf{\textit{A}}_{\mu} \\ &+ \ldots - \delta \textbf{\textit{e}}(\epsilon) \bar{\psi} \gamma^{\mu} \psi \textbf{\textit{A}}_{\mu} \\ &+ \ldots + \delta \textbf{\textit{g}}_{6} \bar{\psi} \psi \bar{\psi} \psi \end{split}$$

- Choose correct regularization to compute loops
- ullet Divergences can be absorbed by local terms \mathcal{L}_{ct}
- If finite number of terms is sufficient: "renormalizable"

- Choose correct regularization to compute loops
- ullet Divergences can be absorbed by local terms \mathcal{L}_{ct}
- If finite number of terms is sufficient: "renormalizable"

Theorem 2b:

start with dim \leq 4 only \Rightarrow dim \leq 4 remains sufficient

requires gauge theories for spin 1 particles

in general: all terms needed which are not forbidden

- Choose correct regularization to compute loops
- \bullet Divergences can be absorbed by local terms \mathcal{L}_{ct}
- If finite number of terms is sufficient: "renormalizable"

- Choose correct regularization to compute loops
- \bullet Divergences can be absorbed by local terms \mathcal{L}_{ct}
- If finite number of terms is sufficient: "renormalizable"

$$\begin{split} \mathcal{L}_{\text{cl}} + \mathcal{L}_{\text{ct}} &= \ldots - \textbf{\textit{e}} \; \bar{\psi} \gamma^{\mu} \psi \textbf{\textit{A}}_{\mu} \\ &+ \ldots - \delta \textbf{\textit{e}}(\epsilon) \bar{\psi} \gamma^{\mu} \psi \textbf{\textit{A}}_{\mu} \\ &= \mathcal{L}_{\text{bare}} = \ldots - \textbf{\textit{e}}_{\text{bare}}(\epsilon) \bar{\psi} \gamma^{\mu} \psi \textbf{\textit{A}}_{\mu} \end{split}$$

- Choose correct regularization to compute loops
- ullet Divergences can be absorbed by local terms \mathcal{L}_{ct}
- If finite number of terms is sufficient: "renormalizable"
- ullet Choose renormalization scheme to define split $e_{\mathsf{bare}}(\epsilon) = e + \delta e(\epsilon)$

$$\begin{split} \mathcal{L}_{\mathsf{cl}} + \mathcal{L}_{\mathsf{ct}} &= \ldots - \boldsymbol{e} \, \bar{\psi} \gamma^{\mu} \psi \boldsymbol{A}_{\mu} \\ &+ \ldots - \delta \boldsymbol{e}(\epsilon) \bar{\psi} \gamma^{\mu} \psi \boldsymbol{A}_{\mu} \\ &= \mathcal{L}_{\mathsf{bare}} = \ldots - \boldsymbol{e}_{\mathsf{bare}}(\epsilon) \bar{\psi} \gamma^{\mu} \psi \boldsymbol{A}_{\mu} \end{split}$$

Outline

- Renormalization main theorems and their logical connections
 - Fundamental physics requirements and divergences
 - Regularization, Counterterms Renormalization in Practice
 - Renormalization group

Turn around the logic

Starting point (from fundamental physics requirements):

$$F(p) - F(p_0) = -\log\left(\frac{-p}{-p_0}\right)$$

Consequence: formal manipulation 2 (scale invariance) is wrong:

$$F(p) \neq \text{const.}$$

Divergent integral can be viewed as a convenient "abbreviation":

"
$$F(p) = \int_0^\infty dk \frac{1}{k-p}$$
"

which is meaningful only if it is applied to differences etc.

Turn around the logic

Starting point (from fundamental physics requirements):

$$F(p) - F(p_0) = -\log\left(\frac{-p}{-p_0}\right)$$

Consequence: formal manipulation 2 (scale invariance) is wrong:

$$F(p) \neq \text{const.}$$

QFT: Feynman rules, \mathcal{L} have symmetry: scale invariance

"
$$F(p) = \int_0^\infty dk \frac{1}{k-p}$$
"

broken by non-local terms \leftrightarrow unitarity/causality — "Anomaly"

Turn around the logic

Starting point (from fundamental physics requirements):

$$F(p) - F(p_0) = -\log\left(\frac{-p}{-p_0}\right)$$

Consequence: formal manipulation 2 (scale invariance) is wrong:

$$F(p) \neq \text{const.}$$

QFT: Feynman rules, \mathcal{L} have symmetry: scale invariance

"
$$F(p) = \int_0^\infty dk \frac{1}{k-p}$$
"

broken by non-local terms ↔ unitarity/causality — "Anomaly" "Anomaly" is a physical effect, no regularization-artifact!!

$$F(p) - F(p_0) = -\log\left(\frac{-p}{-p_0}\right)$$

$$F(p) - F(p_0) = -\log\left(\frac{-p}{-p_0}\right)$$

$$\rho \frac{\partial}{\partial \rho} \left[e + e^3 F(\rho) \right] = -e^3$$

$$F(p) - F(p_0) = -\log\left(\frac{-p}{-p_0}\right)$$

$$\begin{split} \rho \frac{\partial}{\partial \rho} \left[e + e^3 F(\rho) \right] &= -e^3 \\ &= -e^3 \partial_e \left[e + e^3 F(\rho) \right] \right. \\ + \mathcal{O}(\text{\tiny 2loop}) \end{split}$$

$$F(p) - F(p_0) = -\log\left(\frac{-p}{-p_0}\right)$$

$$egin{aligned}
horac{\partial}{\partial
ho}\left[e+e^3F(
ho)
ight] &=-e^3\ &=-e^3\partial_e\left[e+e^3F(
ho)
ight] \,+\mathcal{O}(ext{\tiny 2loop})\ &=eta\,\partial_e\left[e+e^3F(
ho)
ight] \end{aligned}$$

$$F(p) - F(p_0) = -\log\left(\frac{-p}{-p_0}\right)$$

$$egin{aligned}
horac{\partial}{\partial p}\left[e+e^3F(p)
ight] &=-e^3\ &=-e^3\partial_e\left[e+e^3F(p)
ight] +\mathcal{O}(ext{2loop})\ &=eta\partial_e\left[e+e^3F(p)
ight] \end{aligned}$$

 \rightarrow Callan-Symanzik equations, universal β for all observables

$$\overline{\mathsf{MS}}: \quad \boldsymbol{e} + \delta \boldsymbol{e}(\epsilon) \quad + \boldsymbol{e}^3 F(\boldsymbol{p}; \epsilon)$$

$$\begin{split} \overline{\mathsf{MS}} : & \quad \bar{\mathbf{e}}_{(\mu)} + \delta \bar{\mathbf{e}}_{(\mu)}(\epsilon) & \quad + \bar{\mathbf{e}}_{(\mu)}{}^3 F(p; \epsilon) \\ = & \bar{\mathbf{e}}_{(\mu)} - \bar{\mathbf{e}}_{(\mu)}{}^3 \frac{1}{\epsilon} & \quad + \bar{\mathbf{e}}_{(\mu)}{}^3 \left(\frac{1}{\epsilon} - \log\left(\frac{-p}{\mu}\right) + \mathcal{O}(\epsilon)\right) \end{split}$$

$$\overline{\text{MS}}: \qquad \left[e + e^3 F(p)\right] = e + e^3 \left(-\log\left(\frac{-p}{\mu}\right)\right)$$

$$\overline{\text{MS}}: \qquad \left[e + e^3 F(p)\right] = e + e^3 \left(-\log\left(\frac{-p}{\mu}\right)\right)$$

Renormalization scale μ dependence in DREG/MS? running coupling $\bar{\mathbf{e}}_{(\mu)} = e$ for $\mu \approx p$ tracks physical p-dependence!

$$\overline{\text{MS}}: \qquad \left[e + e^3 F(p)\right] = e + e^3 \left(-\log\left(\frac{-p}{\mu}\right)\right)$$

$$egin{aligned} 0 &= \mu rac{d}{d\mu} \left[e + e^3 F(p)
ight] \ &= \mu rac{de}{d\mu} + e^3 + \mathcal{O}(ext{\tiny 2loop}) \end{aligned}$$

 $\rightarrow \text{renormalization group equations, running coupling (universal!)} \\$

$$\overline{\text{MS}}: \qquad \left[e + e^3 F(p)\right] = e + e^3 \left(-\log\left(\frac{-p}{\mu}\right)\right)$$

$$egin{align} 0 &= \mu rac{d}{d\mu} \left[e + e^3 F(p)
ight] \ &= \mu rac{de}{d\mu} + e^3 + \mathcal{O}(ext{2loop}) \ ar{eta} &:= \mu rac{de}{d\mu} = -e^3 + \mathcal{O}(ext{2loop}) \end{split}$$

 $\rightarrow \text{renormalization group equations, running coupling (universal!)} \\$

Dominik Stöckinger Renormalization 2

$$\overline{\text{MS}}: \qquad \left[e + e^3 F(p)\right] = e + e^3 \left(-\log\left(\frac{-p}{\mu}\right)\right)$$

$$egin{align} 0 &= \mu rac{d}{d\mu} \left[e + e^3 F(p)
ight] \ &= \mu rac{de}{d\mu} + e^3 + \mathcal{O}(ext{2loop}) \ ar{eta} &:= \mu rac{de}{d\mu} = -e^3 + \mathcal{O}(ext{2loop}) \end{split}$$

 $\rightarrow \text{renormalization group equations, running coupling (universal!)} \\$

Dominik Stöckinger Renormalization 27

Outline

- Renormalization main theorems and their logical connections
- More on regularizations
- Renormalizability of gauge theories QCD
- lacktriangledown Operator renormalization in gg o H
- 5 Additional topics

Outline

- More on regularizations
 - Criteria for possible regularizations
 - Regularized quantum action principle
 - QCD gauge invariance of dimensional regularization
 - More details on DREG, DRED, FDH: Consistent definitions
 - Symmetries in DREG and DRED
 - Renormalization of ϵ -scalars in FDH/DRED
 - FDH/DRED and infrared structure

- suppose, theory has been defined up to *n*-loop level
- any correct regularization must satisfy at the (n + 1)-loop level:
 - it may differ from BPHZ only by real, local terms

- suppose, theory has been defined up to *n*-loop level
- any correct regularization must satisfy at the (n + 1)-loop level:
 - it may differ from BPHZ only by real, local terms

Counter example: set all divergent integrals = 0 — yields finite theory that violates causality and unitarity

- suppose, theory has been defined up to *n*-loop level
- any correct regularization must satisfy at the (n + 1)-loop level:
 - it may differ from BPHZ only by real, local terms

Counter example 2: DREG with anticommuting γ_5 — some loops will be incorrectly set to zero!!

In practice, check correctness of your calculation!

e.g. 2-loop muon decay [Freitas, Hollik, Walter, Weiglein '02], 2-loop g-2 [Heinemeyer, DS, Weiglein '04]

- suppose, theory has been defined up to *n*-loop level
- any correct regularization must satisfy at the (n + 1)-loop level:
 - it may differ from BPHZ only by real, local terms

Proving the equivalence to BPHZ is a challenge for any scheme (e.g. for new schemes like Implicit Regularization [Cherchiglia, Nemes, Sampaio et al]; FDR [Pittau])

- suppose, theory has been defined up to *n*-loop level
- any correct regularization must satisfy at the (n + 1)-loop level:
 - it may differ from BPHZ only by real, local terms

Proving the equivalence to BPHZ is a challenge for any scheme (e.g. for new schemes like Implicit Regularization [Cherchiglia, Nemes, Sampaio et al]; FDR [Pittau])

Dimensional regularization [Breitenlohner, Maison '77], Dimensional reduction [Jack, Jones, Roberts '93; DS '05], Pauli-Villars...are ok

- suppose, theory has been defined up to *n*-loop level
- any correct regularization must satisfy at the (n + 1)-loop level:
 - ▶ it may differ from BPHZ only by real, local terms

Proving the equivalence to BPHZ is a challenge for any scheme (e.g. for new schemes like Implicit Regularization [Cherchiglia, Nemes, Sampaio et al]; FDR [Pittau])

... can go into more details later

Further remarks: optional properties

- gauge invariance/SUSY/other symmetries
- regularized quantum action principle would simplify/enable proof of symmetries ... see later

Further remarks: optional properties

- gauge invariance/SUSY/other symmetries
- regularized quantum action principle would simplify/enable proof of symmetries ... see later
- "representation independence"

$$\int \frac{k^2}{k^2 - m^2} \stackrel{?}{=} \int 1 + \int \frac{m^2}{k^2 - m^2}$$

Further remarks: optional properties

- gauge invariance/SUSY/other symmetries
- regularized quantum action principle would simplify/enable proof of symmetries ... see later
- "representation independence"

$$\int \frac{k^2}{k^2 - m^2} \stackrel{?}{=} \int 1 + \int \frac{m^2}{k^2 - m^2}$$

unambiguous also if diagrams appear as subdiagrams?

Outline

- More on regularizations
 - Criteria for possible regularizations
 - Regularized quantum action principle
 - QCD gauge invariance of dimensional regularization
 - More details on DREG, DRED, FDH: Consistent definitions
 - Symmetries in DREG and DRED
 - Renormalization of ϵ -scalars in FDH/DRED
 - FDH/DRED and infrared structure

$$\phi_i(x) \to \phi_i(x) + \delta\phi_i(x), \qquad \mathcal{L}(x) \to \mathcal{L}(x) + \delta\mathcal{L}(x)$$

How do Green functions behave?

$$\phi_i(x) \rightarrow \phi_i(x) + \delta\phi_i(x), \quad \mathcal{L}(x) \rightarrow \mathcal{L}(x) + \delta\mathcal{L}(x)$$
Path integral:

$$\phi_i(x) o \phi_i(x) + \delta \phi_i(x), \quad \mathcal{L}(x) o \mathcal{L}(x) + \delta \mathcal{L}(x)$$
Path integral:
$$Z(J) = \int \mathcal{D}\phi \ e^{i \int \mathcal{L} + J\phi}$$

$$\phi_i(\mathbf{x}) \to \phi_i(\mathbf{x}) + \delta\phi_i(\mathbf{x}), \qquad \mathcal{L}(\mathbf{x}) \to \mathcal{L}(\mathbf{x}) + \delta\mathcal{L}(\mathbf{x})$$

$$Z(J)=\int {\cal D}\phi \; {m e}^{i\int {\cal L}+J\phi} \ =\int {\cal D}\phi \; {m e}^{i\int {\cal L}+\delta {\cal L}+J\phi+J\delta\phi}$$
 (measure invariant)

$$\phi_i(\mathbf{x}) \to \phi_i(\mathbf{x}) + \delta\phi_i(\mathbf{x}), \qquad \mathcal{L}(\mathbf{x}) \to \mathcal{L}(\mathbf{x}) + \delta\mathcal{L}(\mathbf{x})$$

$$Z(J) = \int \mathcal{D}\phi \; m{e}^{i\int \mathcal{L} + J\phi}$$
 (measure invariant) $= \int \mathcal{D}\phi \; m{e}^{i\int \mathcal{L} + \delta\mathcal{L} + J\phi + J\delta\phi}$ $= \int \mathcal{D}\phi \; (1 + i\int \delta\mathcal{L} + J\delta\phi) m{e}^{i\int \mathcal{L} + J\phi}$

$$\phi_i(x) \to \phi_i(x) + \delta\phi_i(x), \qquad \mathcal{L}(x) \to \mathcal{L}(x) + \delta\mathcal{L}(x)$$

$$Z(J) = \int \mathcal{D}\phi \; e^{i\int \mathcal{L} + J\phi}$$
 (measure invariant) $= \int \mathcal{D}\phi \; e^{i\int \mathcal{L} + \delta\mathcal{L} + J\phi + J\delta\phi}$ $= \int \mathcal{D}\phi \; (1+i\int \delta\mathcal{L} + J\delta\phi) e^{i\int \mathcal{L} + J\phi}$ result: $0 = \int \mathcal{D}\phi \; (i\int \delta\mathcal{L} + J\delta\phi) e^{i\int \mathcal{L} + J\phi}$

$$\phi_i(\mathbf{x}) \to \phi_i(\mathbf{x}) + \delta\phi_i(\mathbf{x}), \qquad \mathcal{L}(\mathbf{x}) \to \mathcal{L}(\mathbf{x}) + \delta\mathcal{L}(\mathbf{x})$$

$$Z(J) = \int \mathcal{D}\phi \; e^{i\int \mathcal{L} + J\phi}$$
 (measure invariant) $= \int \mathcal{D}\phi \; e^{i\int \mathcal{L} + \delta\mathcal{L} + J\phi + J\delta\phi}$ $= \int \mathcal{D}\phi \; (1+i\int \delta\mathcal{L} + J\delta\phi) e^{i\int \mathcal{L} + J\phi}$ result: $0 = \int \mathcal{D}\phi \; (i\int \delta\mathcal{L} + J\delta\phi) e^{i\int \mathcal{L} + J\phi}$

formal "derivation" shows

$$\langle (\delta\phi_1)\phi_2\ldots\rangle + \langle \phi_1(\delta\phi_2)\ldots\rangle + \ldots = -i\langle \phi_1\phi_2\ldots(\int \delta\mathcal{L})\rangle$$

Regularized quantum action principle

$$\langle (\delta\phi_1)\phi_2\ldots\rangle + \langle \phi_1(\delta\phi_2)\ldots\rangle + \ldots = -i\langle \phi_1\phi_2\ldots(\int\delta\mathcal{L})\rangle$$

Interpret this as an identity between regularized Feynman diagrams

- becomes a property of regularization scheme, does not necessarily hold (no fundamental QFT requirement)
- if desired, must be proven for each regularization
- Valid in BPHZ: [Lowenstein et al '71], DRED: [DS '05]

Regularized quantum action principle

$$\langle (\delta\phi_1)\phi_2\ldots\rangle + \langle \phi_1(\delta\phi_2)\ldots\rangle + \ldots = -i\langle \phi_1\phi_2\ldots(\int\delta\mathcal{L})\rangle$$

Interpret this as an identity between regularized Feynman diagrams

Idea of proof in DREG/DRED: look at possible Wick contractions

- $\delta \mathcal{L} = \delta \mathcal{L}_{\text{quadratic}} + \delta \mathcal{L}_{\text{int}}, \qquad \delta \mathcal{L}_{\text{quadratic}} = (\delta \phi_i) D_{ij} \phi_j$
- Use properties of DREG/DRED: D is inverse propagator even on regularized level, scaleless integrals vanish
- then, combinatorics leads to above identity

Outline

- More on regularizations
 - Criteria for possible regularizations
 - Regularized quantum action principle
 - QCD gauge invariance of dimensional regularization
 - More details on DREG, DRED, FDH: Consistent definitions
 - Symmetries in DREG and DRED
 - Renormalization of ϵ -scalars in FDH/DRED
 - FDH/DRED and infrared structure

DREG is "gauge invariant" (in QCD)

- Lagrangian is gauge invariant even in D dimensions (without γ_5)
- it is even BRS invariant (see later) and satisfies the Slavnov-Taylor identity in D dimensions
- Hence, the appropriate $\delta \mathcal{L} = \mathbf{0}$
- Therefore, all regularized Green functions satisfy the appropriate Slavnov-Taylor identities at all orders (for $D \neq 4$)

$$\langle (\delta\phi_1)\phi_2\ldots\rangle + \langle \phi_1(\delta\phi_2)\ldots\rangle + \ldots = 0$$

Further examples of regularization schemes and symmetries

- DREG breaks gauge invariance in EWSM because of γ_5 take this into account in renormalizability proof [BRS '75... Kraus '97, Grassi '98] need symmetry-restoring counterterms, e.g. [Martin, Sanchez-Ruiz 2000]
- \bullet DREG breaks scale invariance because of μ physical breaking by non-local terms, required by theory, cannot be repaired
- DREG breaks SUSY
 need SUSY-restoring counterterms, e.g. [Martin, Vaughn '93][Mihaila '09][DS, Varso '11
- ... [Hollik, DS '05][Harlander, Kant, Mihaila, Steinhauser'07]

 but not completely [Avdeev, Chochia, Vladimirov '81][DS '05]

Further examples of regularization schemes and symmetries

- DREG breaks gauge invariance in EWSM because of γ_5 take this into account in renormalizability proof [BRS '75... Kraus '97, Grassi '98] need symmetry-restoring counterterms, e.g. [Martin, Sanchez-Ruiz 2000]
- ullet DREG breaks scale invariance because of μ physical breaking by non-local terms, required by theory, cannot be repaired
- DREG breaks SUSY
 need SUSY-restoring counterterms, e.g. [Martin, Vaughn '93][Mihaila '09][DS, Varso '11]
- DRED preserves SUSY to large extent
 ... [Hollik, DS '05][Harlander, Kant, Mihaila, Steinhauser'07]
 - but not completely [Avdeev, Chochia, Vladimirov '81][DS '05]

Outline

- More on regularizations
 - Criteria for possible regularizations
 - Regularized quantum action principle
 - QCD gauge invariance of dimensional regularization
 - More details on DREG, DRED, FDH: Consistent definitions
 - Symmetries in DREG and DRED
 - Renormalization of ϵ -scalars in FDH/DRED
 - FDH/DRED and infrared structure

Common Regularization Schemes for gauge theories/SUSY

- Dimensional Regularization (DREG) ['t Hooft, Veltman '72]
- Dimensional Reduction (DRED)/Four-dimensional helicity scheme (FDH) [Siegel '79]

What do we need to define?

D-dimensional Integral

Dim. Regularization (DREG)

D dimensions

D Gluon/photon-components

4 Gluino/photino-components

Dim. Reduction (DRED)

D dimensions

4 Gluon/photon-components

4 Gluino/photino-components

What do we need to define?

- D-dimensional Integral
- *D*-dim covariants $\gamma^{\mu}(p_{\rho}\gamma^{\rho})\gamma_{\mu}=(2-D)(p_{\rho}\gamma^{\rho})$

• D-,4-dim covariants $\gamma^{\mu}(p_{\rho}\gamma^{\rho})\gamma_{\mu}=(2-4)(p_{\rho}\gamma^{\rho})$

Dim. Regularization (DREG)

D dimensions

D Gluon/photon-components

4 Gluino/photino-components

Dim. Reduction (DRED)

D dimensions

4 Gluon/photon-components

4 Gluino/photino-components

What do we need to define?

- D-dimensional Integral
- *D*-dim covariants $\gamma^{\mu}(p_{\rho}\gamma^{\rho})\gamma_{\mu}=(2-D)(p_{\rho}\gamma^{\rho})$

• *D*-,4-dim covariants $\gamma^{\mu}(p_{\rho}\gamma^{\rho})\gamma_{\mu}=(2-4)(p_{\rho}\gamma^{\rho})$

Dim. Regularization (DREG)

D dimensions

D Gluon/photon-components

4 Gluino/photino-components

Dim. Reduction (DRED)

D dimensions "D < 4"

4 Gluon/photon-components

4 Gluino/photino-components

do not have to regularize external/observed gluons!

	CDR	DRED
"internal" gluon	$\hat{\boldsymbol{g}}^{\mu\nu}$	${\cal g}^{\mu u}$
"external" gluon	$\hat{\boldsymbol{g}}^{\mu\nu}$	${\cal g}^{\mu\nu}$

do not have to regularize external/observed gluons!

3 spaces:
$$ar{g}^{\mu
u}$$
 \subset $ar{g}^{\mu
u}$ \subset $ar{g}^{\mu
u}$ \subset $ar{g}^{\mu
u}$ \subset $ar{g}^{\mu
u}$ \in $ar{g}^{\mu
u}$ \in $ar{g}^{\mu
u}$

	CDR	DRED
"internal" gluon	$\hat{\boldsymbol{g}}^{\mu\nu}$	${\cal g}^{\mu u}$
"external" gluon	$\hat{\boldsymbol{g}}^{\mu\nu}$	${\cal g}^{\mu u}$

do not have to regularize external/observed gluons!

3 spaces:
$$ar{g}^{\mu
u}$$
 \subset $ar{g}^{\mu
u}$ \subset $ar{g}^{\mu
u}$ \subset $ar{g}^{\mu
u}$ \subset $ar{g}^{\mu
u}$ \in $ar{g}^{\mu
u}$ \in $ar{g}^{\mu
u}$

	CDR	HV	FDH	DRED
"internal" gluon	$\hat{\boldsymbol{g}}^{\mu\nu}$	$\hat{\boldsymbol{g}}^{\mu\nu}$	${\cal g}^{\mu u}$	$\mathcal{g}^{\mu\nu}$
"external" gluon	$\hat{\boldsymbol{g}}^{\mu\nu}$	$\bar{\boldsymbol{g}}^{\mu\nu}$	$\bar{\boldsymbol{g}}^{\mu\nu}$	${\cal g}^{\mu\nu}$

do not have to regularize external/observed gluons!

3 spaces:

$$\subset$$

$$\subset$$

$$g^{\mu
u}=\hat{g}^{\mu
u}+ ilde{g}^{\mu
u}$$

	CDR	HV	FDH	DRED
"internal" gluon	$\hat{\boldsymbol{g}}^{\mu\nu}$	$\hat{\boldsymbol{g}}^{\mu\nu}$	$\mathcal{g}^{\mu\nu}$	${\cal g}^{\mu u}$
"external" gluon	$\hat{\boldsymbol{g}}^{\mu\nu}$	$\bar{\boldsymbol{g}}^{\mu\nu}$	$\bar{\boldsymbol{g}}^{\mu\nu}$	${\cal g}^{\mu\nu}$

DREG: How does it work?

• "D-dimensional space" $\{k^{\mu}\}$ can be consistently defined as a truly ∞ -dimensional space with some D-dim characteristics:

[Wilson'73],[Collins]

D-dimensional Integral: linear mapping

• $g^{(D)\mu\nu}$: bilinear form (γ -matrices similar)

explicit construction \Rightarrow no contradictions possible

DREG: How does it work?

• "D-dimensional space" $\{k^{\mu}\}$ can be consistently defined as a truly ∞ -dimensional space with some D-dim characteristics:

[Wilson'73],[Collins]

D-dimensional Integral: linear mapping

$$\int d^D k e^{-k^2} = \pi^{D/2}$$

• $g^{(D)\mu\nu}$: bilinear form (γ -matrices similar)

explicit construction \Rightarrow no contradictions possible

DREG: How does it work?

• "D-dimensional space" $\{k^{\mu}\}$ can be consistently defined as a truly ∞ -dimensional space with some D-dim characteristics:

[Wilson'73],[Collins]

• D-dimensional Integral: linear mapping

• $g^{(D)\mu\nu}$: bilinear form (γ -matrices similar)

$$\mu = 0, 1, 2, \dots \infty, \quad g^{(D)\mu}{}_{\mu} = D$$

explicit construction \Rightarrow no contradictions possible

Dimensional Reduction: We need more!

- also 4-dim space
- algebraic identities

$$g^{(4)}{}_{\mu
u} g^{(D)}{}_{
ho}{}^{
u} = g^{(D)}{}_{\mu}{}^{
ho}$$

Dim. Reduction (DRED)

- D dimensions "D < 4"
- 4 Gluon/photon-components
- 4 Gluino/photino-components

Dimensional Reduction: We need more!

- also 4-dim space
- algebraic identities

$$g^{(4)}{}_{\mu
u} g^{(D)}{}_{
ho}{}^{
u} = g^{(D)}{}_{\mu}{}^{
ho}$$

Dim. Reduction (DRED)

- D dimensions "D < 4"
- 4 Gluon/photon-components
- 4 Gluino/photino-components

 \Rightarrow Replace ordinary 4-dim space by yet another ∞ -dimensional space with some 4-dim characteristics \rightarrow "quasi-4-dim space"

D-dim space \subset quasi-4-dim space

$$g^{(D)\mu}_{\mu} = D, \quad g^{(4)\mu}_{\mu} = 4, \quad \mu = 0, 1, 2, \dots \infty$$

⇒ proof: DRED is mathematically consistent, too! [DS 2005]

Practical consequences

- In practice one can forget that the "D-dim" and quasi-4-dim spaces are in reality ∞ -dimensional
- ullet Algebraic id. for $g^{(D)\mu
 u},\,g^{(4)\mu
 u}$ as desired
- Only exception: one cannot rely on 4-dim identities like index counting or Fierz identities
 - For many SUSY loop calculations, this doesn't make a difference

Definition of DREG and DRED: The computational rules based on these constructions will never lead to inconsistent results

How do we avoid Siegel's inconsistency?

Siegel: "With

$$\epsilon_{\mu_1\mu_2\mu_3\mu_4}^{(4)}\epsilon_{
u_1
u_2
u_3
u_4}^{(4)} \propto \det((g_{\mu_i
u_j}^{(4)}))$$

calculate

$$\epsilon^{(D)}_{\mu\nu\rho\sigma} \epsilon^{(\epsilon)}_{\alpha\beta\gamma\delta} \epsilon^{(D)}_{\mu\nu\rho\sigma} \epsilon^{(\epsilon)\alpha\beta\gamma\delta}$$

in two different ways

$$\Rightarrow 0 = D(D-1)^2(D-2)^2(D-3)^2(D-4)$$

different calculational steps lead to different results,

mathematical inconsistency!!!"

[Siegel'80]

Don't allow explicit index counting (step one) any more, because $g^{(4)}{}_{\mu\nu}$ \in quasi-4-dim space!

Basic properties and practical consequences

- Consistent definitions exist (⇒ no contradictions arise) ['t Hooft, Veltman '72] [Wilson '73] [Breitenlohner, Maison '77] [Collins][DS '05]
- No strictly 4-dim. index counting/Fierz identities possible (doesn't make a difference in many applications)
- regularized quantum action principle valid [Breitenlohner, Maison '77][DS '05] $\Delta = S(\Gamma_{cl}^{DRED,DREG}) \neq 0 \text{ in both cases!}$
- Many highly nontrivial multi-loop calculations performed [Harlander, Kant, Mihaila, Steinhauser, et all
- Renormalization: treat (4-D)-dim. gluons as additional matter fields (not gauge fields!) $\to \epsilon$ -scalars with independent couplings and masses. [Jack, Jones, Roberts '94] [Harlander, Kant, Mihaila, Steinhauser, et al]

Outline

- More on regularizations
 - Criteria for possible regularizations
 - Regularized quantum action principle
 - QCD gauge invariance of dimensional regularization
 - More details on DREG, DRED, FDH: Consistent definitions
 - Symmetries in DREG and DRED
 - Renormalization of ϵ -scalars in FDH/DRED
 - FDH/DRED and infrared structure

Interesting Cases

- Does DREG preserve gauge invariance?
- Does DRED preserve SUSY?

How do we know?

Interesting Cases

- Does DREG preserve gauge invariance?
- Does DRED preserve SUSY?

How do we know? STI combines all identities of the form

$$0 = \delta_{\text{sym}} \langle T\phi_1 \dots \phi_n \rangle$$

complicated equation between many Green's functions

Interesting Cases

- Does DREG preserve gauge invariance?
- Does DRED preserve SUSY?

How do we know? STI combines all identities of the form

$$0 = \delta_{\text{sym}} \langle T\phi_1 \dots \phi_n \rangle$$

complicated equation between many Green's functions

 check identities explicitly or use regularized quantum action principle

Properties of DREG/DRED

SUSY?

Consider SUSY-relation

$$m_e = m_{\tilde{e}}$$

at 1-loop:
$$m^2(1L) = m^2 - \Sigma(p^2 = m^2)$$

Properties of DREG/DRED

DREG:

$$m_{e}(1L) = m_{e} \left[1 + \frac{\alpha}{4\pi} (2B_{0} - 1) \right]$$

$$m_{\tilde{e}}(1L) = m_{e} \left[1 + \frac{\alpha}{4\pi} \left(2B_{0} + \frac{2}{3} \right) \right]$$

DREG breaks SUSY!

DRED:

$$m_e(1L) = m_{\tilde{e}}(1L)$$

DRED preserves SUSY in this case!

Properties of DREG/DRED

DREG:

$$m_{e}(1L) = m_{e} \left[1 + \frac{\alpha}{4\pi} (2B_0 - 1) \right]$$

$$m_{\tilde{e}}(1L) = m_{e} \left[1 + \frac{\alpha}{4\pi} \left(2B_0 + \frac{2}{3} \right) \right] - \frac{\alpha}{4\pi} m_{e} \frac{5}{3}$$

• DREG breaks SUSY! SUSY-restoring counterterm $\delta m_{\tilde{e}}^{\rm rest}$

DRED:

finally:
$$m_e(1L, ren) = m_{\tilde{e}}(1L, ren)$$

$$m_e(1L) = m_{\tilde{e}}(1L)$$

DRED preserves SUSY in this case!

DRED current status: has passed many tests

- $\Delta = S(\Gamma_{cl}^{DRED}) \neq 0$ in quantum action principle (because of Fierz identities)
- Can check SUSY either directly or by using the quantum action principle (Δ ⇒ Feynman rules):

1-Loop Ward identities [Capper,Jones, van Nieuvenhuizen'80] \$\beta\$-functions [Martin, Vaughn '93] [Jack, Jones, North '96] 1-Loop S-matrix relation [Beenakker,H\(\tilde{o}\)pker,Zerwas'96] 1-Loop Slavnov-Taylor identities [Hollik,Kraus,DS'99] [Hollik,DS'01] [Fischer,Hollik,Roth,DS'03] Higher order Ward and Slavnov-Taylor identities [DS, Hollik, DS

'05][Harlander,Kant,Mihaila,Steinhauser'07]

- sufficient for many SUSY processes
 multiplicative renormalization o.k.
 - \Rightarrow no SUSY-restoring counterterms

Transition between DREG and DRED

• difference $\Gamma^{DRED} - \Gamma^{DREG}$ can be compensated by counterterms

$$\Gamma^{DRED} = \Gamma^{DREG} + \Gamma_{ct}^{transition}$$

- can be computed once and for all
 - ▶ 1-loop couplings [Martin, Vaughn '93], 2-loop SUSY-QCD couplings [Mihaila '09]
 - 1-loop complete MSSM FeynArts model file [Varso '11]
 (UV transition rules, complementary to IR ones)
- transition c.t.s act as SUSY-restoring counterterms for DREG
- realize \overline{DR} -scheme in context of DREG
- infrared regularization by DREG, UV reg. by DRED

Outline

- More on regularizations
 - Criteria for possible regularizations
 - Regularized quantum action principle
 - QCD gauge invariance of dimensional regularization
 - More details on DREG, DRED, FDH: Consistent definitions
 - Symmetries in DREG and DRED
 - Renormalization of ϵ -scalars in FDH/DRED
 - FDH/DRED and infrared structure

Why are ϵ -scalar couplings independent?

because

$$A_{\mu}^{(4)} = A_{\mu}^{(D)} + A_{\mu}^{(\epsilon)}$$

- only $A_{\mu}^{(D)}$ is a D-dimensional gauge field in D_{μ}
- but $A_{\mu}^{(\epsilon)}$ transforms like a scalar field (" ϵ -scalars")
- general renormalization theory applies: all gauge invariant terms can (and will) appear as independent counterterms

$$\mathcal{L}_{\mathsf{ct}} = \delta g_{\mathsf{s}} ar{\psi} \gamma^{\mu} A_{\mu}^{(D)} \psi + \delta g_{\mathsf{e}} ar{\psi} \gamma^{\mu} A_{\mu}^{(\epsilon)} \psi$$

Why are ϵ -scalar couplings independent?

because

$$A_{\mu}^{(4)} = A_{\mu}^{(D)} + A_{\mu}^{(\epsilon)}$$

- only $A_{\mu}^{(D)}$ is a D-dimensional gauge field in D_{μ}
- but $A_{\mu}^{(\epsilon)}$ transforms like a scalar field (" ϵ -scalars")
- general renormalization theory applies: all gauge invariant terms can (and will) appear as independent counterterms

$$\mathcal{L}_{\mathsf{ct}} = \delta g_{\mathsf{s}} \bar{\psi} \gamma^{\mu} A_{\mu}^{(D)} \psi + \delta g_{e} \bar{\psi} \gamma^{\mu} A_{\mu}^{(\epsilon)} \psi$$

Consequence:

treat δg_e independently, may not set $\delta g_e = \delta g_s$ or $\beta_e = \beta_s$ (otherwise loss of unitarity, finiteness — has appeared in literature)

[Jack,Jones,Roberts '93][Harlander,Kant,Mihaila,Steinhauser'07][Kilgore '11]

Outline

- More on regularizations
 - Criteria for possible regularizations
 - Regularized quantum action principle
 - QCD gauge invariance of dimensional regularization
 - More details on DREG, DRED, FDH: Consistent definitions
 - Symmetries in DREG and DRED
 - Renormalization of ϵ -scalars in FDH/DRED
 - FDH/DRED and infrared structure

Hadronic Processes and infrared properties of DREG/DRED

IR singularities should factorize

Factorization problem and its solution

$$\sigma^{ extsf{DRED}}(gg o t \overline{t} g) \stackrel{2\parallel 3}{\longrightarrow} ?$$

Apparent factorization problem

[Beenakker, Kuijf, van Neerven, Smith '88] [van Neerven, Smith '04] [Beenakker, Höpker, Spira, Zerwas '96]

$$\sim rac{1}{k_2 k_3} P_{g
ightarrow gg} \ \sigma^{ extsf{DRED}}(gg
ightarrow t ar{t}) \ + rac{1}{k_2 k_3} K_g \ \sigma^{ extsf{puzzle}}$$

 Reconcile DRED with factorization by decomposing gluon [Signer, DS '05,'08]

$$\sim P_{g
ightarrow \hat{g}g} \; \sigma_{g\hat{g}} + P_{g
ightarrow \tilde{g}g} \; \sigma_{g\tilde{g}}$$

DRED and the gluon

- Simple kinematics: e.g. $gg \rightarrow g\bar{g}$ (massless)
- in general / here: $aa \rightarrow t\bar{t}$ (massive)

$$\sigma_{gg \to q\bar{q}} \neq \sigma_{g\hat{g} \to q\bar{q}} \neq \sigma_{g\tilde{g} \to q\bar{q}}$$

 $\sigma_{gg \to q\bar{q}} = \sigma_{g\hat{g} \to q\bar{q}} = \sigma_{g\tilde{g} \to q\bar{q}}$

 \hat{q} and \tilde{q} have to be treated as seperate partons!

Definition of external/observed gluons

Beware of different versions of DRED/FDH!

3 spaces:
$$ar{g}^{\mu
u}$$
 \subset $ar{g}^{\mu
u}$ \subset $ar{g}^{\mu
u}$ \subset $ar{g}^{\mu
u}$ \subset $ar{g}^{\mu
u}$ \in $ar{g}^{\mu
u}$ \in $ar{g}^{\mu
u}$

	CDR	DRED
"unobserved" gluon	$\hat{\boldsymbol{g}}^{\mu\nu}$	${\cal g}^{\mu u}$
"observed" gluon	$\hat{\boldsymbol{\mathcal{G}}}^{\mu\nu}$	${\cal g}^{\mu\nu}$

Definition of external/observed gluons

Beware of different versions of DRED/FDH!

3 spaces:
$$ar{g}^{\mu
u}$$
 \subset $ar{g}^{\mu
u}$ \subset $ar{g}^{\mu
u}$ \subset $ar{g}^{\mu
u}$ \subset $ar{g}^{\mu
u}$ \in $ar{g}^{\mu
u}$ \in $ar{g}^{\mu
u}$

	CDR	HV	FDH	DRED
"unobserved" gluon	$\hat{\boldsymbol{g}}^{\mu\nu}$	$\hat{\boldsymbol{g}}^{\mu\nu}$	${\cal g}^{\mu u}$	${\cal g}^{\mu u}$
"observed" gluon	$\hat{\boldsymbol{g}}^{\mu\nu}$	$\bar{\boldsymbol{g}}^{\mu\nu}$	$\bar{\boldsymbol{g}}^{\mu\nu}$	$\mathcal{g}^{\mu\nu}$

Main Results

HV \rightarrow FDH: additional final state \tilde{g} : value of $\gamma(\hat{g})$ changes FDH \rightarrow DRED: additional splitting \tilde{g} : additional $\gamma(\tilde{g})$ only in DRED: split $g = \hat{g} + \tilde{g}$ required to understand factorization

Consequences

- Factorization: detailed understanding in CDR, HV, FDH, DRED
 - 1-loop differences described by different γ's
 - ▶ DRED: split $g = \hat{g} + \tilde{g}$ required to understand factorization
- IR translation rules between RSs
- i.e. compute in DRED, then switch to DREG to use e.g. $\overline{\text{MS}}$ PDFs
- no PDF for ϵ -scalars \tilde{g} required (of $\mathcal{O}(\epsilon)$ and contributes only at $\mathcal{O}(\epsilon)$)

$$f_{\hat{g}/H} \otimes d\hat{\sigma}_{FS}(\hat{g}_1 \ldots) + f_{\tilde{g}/H} \otimes d\hat{\sigma}_{FS}(\tilde{g}_1 \ldots)$$

Two further remarks

• Outlook 2-loop: Becher/Neubert formula for q/g form factor: what changes for FDH, DRED? [Gnendiger]

$$\begin{aligned} F_{q/g}^{(2)}|_{\text{pole}} &= \frac{1}{\epsilon^3} \left(-\frac{3C_{q/g}\gamma_{\text{cusp}}^{(0)}\beta_0}{8} \right) + \frac{1}{\epsilon^2} \left(-\frac{\beta_0\gamma_{\text{cusp}}^{(0)}}{2} - \frac{3C_{q/g}\gamma_{\text{cusp}}^{(1)}}{8} \right) \\ &+ \frac{1}{\epsilon} \left(\frac{\gamma_{q/g}^{(1)}}{2} \right) + \frac{1}{2} (F_{q/g}^{(1)})^2 \end{aligned}$$

- FDH as a renormalization scheme
 - often: no seperate ϵ -scalar renormalization ($\alpha_s^{\text{bare}} = \alpha_e^{\text{bare}}$)
 - ► inconsistent, leads to incorrect/non-unitary/divergent results

 [Jack, Jones, Roberts '94][Harlander, Kant, Mihaila, Steinhauser '06][Kilgore '11]
 - should renormalize like in DRED

Status DRED and its relation to DREG

- Both DREG and DRED formulated consistently, quantum action principle valid
- Renormalization in DRED understood
- SUSY of DRED established at 1-loop, in many 2-, 3-loop cases
- Factorization holds in both schemes
- UV and IR transition rules ⇒ both schemes can be mixed

Outline

- Renormalization main theorems and their logical connections
- More on regularizations
- Renormalizability of gauge theories QCD
- lacktriangledown Operator renormalization in gg o H
- 5 Additional topics

Outline

- Renormalizability of gauge theories QCD
 - Reminder and overview
 - Definition and proof of renormalizability
 - Outlook: algebraic renormalization
 - Two small but important applications

QCD — classical definition

SU(3) gauge theory, massless matter fermion ψ

$$\mathcal{L}_{ ext{QCD,g.inv.}} = ar{\psi} i \gamma^{\mu} D_{\mu} \psi - rac{1}{4} F_{a}^{\mu
u} F_{a \mu
u}$$
 $D^{\mu} = \partial^{\mu} + i g T^{a} A_{a}^{\mu}$

QCD — classical definition

SU(3) gauge theory, massless matter fermion ψ

$$\mathcal{L}_{ ext{QCD,g.inv.}} = ar{\psi} i \gamma^{\mu} D_{\mu} \psi - rac{1}{4} F_{a}^{\mu
u} F_{a \mu
u}$$
 $D^{\mu} = \partial^{\mu} + i g T^{a} A_{a}^{\mu}$

How to define the quantum theory?

QCD — classical definition

SU(3) gauge theory, massless matter fermion ψ

$$\mathcal{L}_{ ext{QCD,g.inv.}} = ar{\psi} i \gamma^{\mu} D_{\mu} \psi - rac{1}{4} F_{a}^{\mu
u} F_{a \mu
u}$$
 $D^{\mu} = \partial^{\mu} + i g T^{a} A_{a}^{\mu}$

Traditional:

 $\mathcal{L}_{QCD} \to \text{gauge fix} \to \text{Faddeev-Popov} \to \text{BRS} \to \text{Slavnov-Taylor}$

QCD — Questions

$$\mathcal{L}_{ ext{to be quantized}} = \mathcal{L}_{QCD,g.inv.} + \mathcal{L}_{fix,gh}$$

- Finiteness at all orders:
 - multiplicative renormalization of coupling and fields possible?
 - only 4 ren. constants sufficient to cancel all divergences?
- Phys. meaning of theory:
 - def. of physical states with positive norm?
 - phys. S-matrix: unitary, gauge independent?

Main tool: STI $S(\Gamma) = 0$ defining theory in regularization-independent way, describing BRS-invariance of qu. theory

DREG "is gauge invariant (in QCD)"

$$S(\Gamma^{\mathrm{DREG}}) = 0$$

2 Div.s at n-loop are "BRS-invariant"

$$s_{\Gamma_{cl}}\Gamma^{div,n}=0$$

- Solution of the second of
- counterterms also BRS-invariant

$$\Rightarrow S(\Gamma^{\text{renorm.}}) = 0$$

5 $S(\Gamma^{\text{renorm.}}) = 0 \Rightarrow \text{phys.}$ states, S-matrix can be defined and shown to be unitary, gauge-indep.

QCD — \mathcal{L}_{QCD} \rightarrow gauge fixing \rightarrow Faddeev-Popov

Need gauge fixing and ghosts (Faddeev Popov or BRST)

$$egin{aligned} \mathcal{L}_{ ext{fix,gh}} &= \mathcal{B}_{a}(\partial_{\mu}\mathcal{A}^{\mu}_{a}) + rac{\xi}{2}\mathcal{B}^{2}_{a} - ar{c}_{a}\partial_{\mu}(\mathcal{D}^{\mu}c)_{a} \ &= s[ar{c}_{a}((\partial_{\mu}\mathcal{A}^{\mu}_{a}) + rac{\xi}{2}\mathcal{B}_{a})] \end{aligned}$$

Full theory to be quantized

$$\mathcal{L}_{cl} = \mathcal{L}_{QCD,g.inv.} + \mathcal{L}_{fix,gh}$$

QCD — Faddeev-Popov — BRS — Slavnov-Taylor

■ Ghosts for all generators
→ BRS:

$$\mathbf{s}\varphi = \mathbf{c}_{\mathbf{a}}\delta_{\mathrm{gauge},\mathbf{a}}\varphi$$

• BRS transformations of ghosts $\leftrightarrow s^2 = 0$:

$$sc_a = \frac{1}{2}gf_{abc}c_bc_c$$

Slavnov–Taylor operator

$$S(\Gamma) = \int d^4x \underbrace{\langle s\varphi_i(x) \rangle}_{\neq s\varphi_i(x)} \frac{\delta\Gamma}{\delta\varphi_i(x)}$$

at the quantum level if non-linear

ullet Add sources $\mathcal{L}_{\mathrm{ext}} = Y_{\varphi_i} s \varphi_i$

$$S(\Gamma) = \int d^4x \frac{\delta \Gamma}{\delta Y_{\varphi_i}(x)} \frac{\delta \Gamma}{\delta \varphi_i(x)}$$

Outline

- Renormalizability of gauge theories QCD
 - Reminder and overview
 - Definition and proof of renormalizability
 - Outlook: algebraic renormalization
 - Two small but important applications

• field content (SU(3) indices suppressed)

Slavnov-Taylor identity

• field content (SU(3) indices suppressed)

	phy	sical	$N_{\rm gh} > 0$	aux.		$N_{ m gh} < 0$		
	A^{μ}	ψ	С	В	Ē	$Y_{A^{\mu}}$	Y_{ψ}	Y_c
$N_{ m gh}$ dimension	0	0 3/2	1 0	0 2	-1 2	-1 3	-1 5/2	-2 4

Slavnov-Taylor identity

• field content (SU(3) indices suppressed)

	phy	sical	$N_{\rm gh} > 0$	aux.		$N_{\rm gh} < 0$		
	A^{μ}	ψ	С	В	Ē	$Y_{\mathcal{A}^{\mu}}$	Y_{ψ}	Y_c
$N_{ m gh}$ dimension	0	0 3/2	1 0	0 2	-1 2	-1 3	-1 5/2	-2 4

Slavnov-Taylor identity

$$S(\Gamma) \equiv \int d^4x \frac{\delta\Gamma}{\delta Y_{\varphi_i}(x)} \frac{\delta\Gamma}{\delta \varphi_i(x)} + B \frac{\delta\Gamma}{\delta \bar{c}(x)} = 0$$

• field content (SU(3) indices suppressed)

	phy	sical	$N_{\mathrm{gh}} > 0$	aux.		$N_{\rm gh} < 0$		
	${m A}^{\mu}$	ψ	С	В	Ē	$Y_{A^{\mu}}$	Y_{ψ}	Y_c
$N_{ m gh}$ dimension	0	0 3/2	1 0	0 2	-1 2	-1 3	-1 5/2	-2 4

Slavnov-Taylor identity

$$S(\Gamma) \equiv \int d^4x \frac{\delta\Gamma}{\delta Y_{\varphi_i}(x)} \frac{\delta\Gamma}{\delta \varphi_i(x)} + B \frac{\delta\Gamma}{\delta \bar{c}(x)} = 0$$

can require further constraints

most general classical solution

- (only dim≤ 4-terms)
- 2 steps: Y-terms, rest

General classical solution — step 1a: Y_c -part

	phy	sical	$N_{\mathrm{gh}}>0$	aux.		$N_{\rm gh} < 0$		
	A^{μ}	ψ	С	В	ċ	$Y_{A^{\mu}}$	Y_{ψ}	Yc
N_{gh} dimension	0	0 3/2	1 0	0	-1 2	-1 3	-1 5/2	-2 4

Only possible ansatz:

$$\Gamma_{\rm cl} = \int d^4x Y_{ca} \frac{1}{2} g_0 z F_{abc} c_b c_c + \dots$$

STI requires

$$0 = S(\Gamma_{\rm cl})|_{Y_{\rm c}\text{-terms}} = \int d^4x \frac{\delta\Gamma}{\delta Y_{c_a}} \frac{\delta\Gamma}{\delta c_a} + \ldots \propto F_{abc} F_{dae} c_b c_c c_e$$

• Jacobi id. \Rightarrow F_{abc} must be structure constants of some Lie algebra!

General classical solution — step 1b: $Y_{A\mu,\psi}$ -part

	phy	sical	$N_{\rm gh} > 0$	aux.	$N_{\rm gh} < 0$			
	A^{μ}	ψ	С	В	ċ	$Y_{A^{\mu}}$	Y_{ψ}	Y_c
N_{gh}	0	0	1	0	-1	-1	-1	-2
dimension	1	3/2	0	2	2	3	5/2	4

Only possible ansatz:

$$\Gamma_{\rm cl} = \int d^4x Y_{A_a^{\mu}} \underbrace{z(\partial^{\mu} c_a + g_1 F_{abc}' c_b A_c^{\mu})}_{\tilde{s}A_a^{\mu}} + Y_{\psi_i} \underbrace{\left(-ig_2 T_{ij}^a c_a \psi_j\right)}_{\tilde{s}\psi_i} + \dots$$

STI requires

$$0 = \tilde{s}\tilde{s}A_a^\mu = \tilde{s}\tilde{s}\psi_i \Rightarrow [T^a, T^b] = iF_{abc}T^c$$

- T^a is representation of Lie algebra, $F'_{abc} = F_{abc}$
- universality $g_0 = g_1 = g_2$
- \tilde{s} is normal BRS transformation; it contains the ordinary gauge transformation

General classical solution — step 2a: no-Y-part

	physical		$N_{\mathrm{gh}} > 0$	aux.	$\textit{N}_{gh}<0$		< 0		
	A^{μ}	ψ	С	В	Ĉ	$Y_{A^{\mu}}$	Y_{ψ}	Y_c	
N_{gh} dimension	0	0 3/2	1 0		-1 2	-1 3	-1 5/2	-2 4	

We already have

$$\Gamma_{\rm cl} = \int d^4x Y_{arphi_i} \tilde{\mathbf{s}} arphi_i + \Gamma_{
m rest}$$
 $\tilde{\mathbf{s}} = {
m ordinary\ BRS\ transformation\ (up\ to\ z)}$ $\tilde{\mathbf{s}}^2 = 0$

STI requires

$$0 = S(\Gamma_{\rm cl})|_{Y=0} = \int d^4x \frac{\delta \Gamma_{\rm cl}}{Y_{\varphi_i}} \frac{\delta \Gamma_{\rm rest}}{\varphi_i} + B \frac{\delta \Gamma_{\rm rest}}{\bar{c}}|_{Y=0} = \tilde{s} \Gamma_{\rm rest}$$

BRS invariance of rest

General classical solution — step 2b Γ_{rest}

	phy	sical	$N_{\mathrm{gh}} > 0$	aux.		$N_{\mathrm{gh}} < 0$ \bar{c} $Y_{A^{\mu}}$ Y_{ψ}		
	A^{μ}	ψ	С	В	Ĉ	$Y_{A^{\mu}}$	Y_{ψ}	Y_c
N_{gh} dimension	0 1	0 3/2	1 0	0 2	-1 2	-1 3	-1 5/2	-2 4

• Theorem: due to $\tilde{s}^2 = 0$, the most general solution of

$$ilde{\mathsf{s}}\mathsf{\Gamma}_{\mathsf{rest}}(\psi, \mathsf{A}^\mu, \mathsf{c}, \mathsf{B}, ar{\mathsf{c}}) = \mathsf{0}$$

is

$$\Gamma_{\mathsf{rest}}(\psi, \mathsf{A}^\mu, c, B, \bar{c}) = \Gamma_{\mathsf{g.inv.}}(\psi, \mathsf{A}^\mu) + \int \mathsf{d}^4 x \tilde{\mathsf{s}} X(\psi, \mathsf{A}^\mu, c, B, \bar{c})$$

	phy	sical	$N_{\mathrm{gh}} > 0$	aux.		N_{gh}	< 0	
	A^{μ}	ψ	С	В	ċ	$Y_{A^{\mu}}$	Y_{ψ}	Y_c
N _{gh} dimension	0	0 3/2	1 0	0 2	-1 2	-1 3	-1 5/2	-2 4

• Theorem: due to $\tilde{s}^2 = 0$, the most general solution of

$$ilde{\mathsf{s}}\mathsf{\Gamma}_{\mathsf{rest}}(\psi, \mathsf{A}^\mu, \mathsf{c}, \mathsf{B}, ar{\mathsf{c}}) = \mathsf{0}$$

is

$$\Gamma_{\mathsf{rest}}(\psi, \mathsf{A}^\mu, c, \mathsf{B}, \bar{c}) = \Gamma_{\mathsf{g.inv.}}(\psi, \mathsf{A}^\mu) + \int \mathsf{d}^4 x \tilde{\mathsf{s}} X(\psi, \mathsf{A}^\mu, c, \mathsf{B}, \bar{c})$$

gauge invariant part and gauge fixing+Faddeev-Popov

	phy	sical	$N_{\mathrm{gh}} > 0$	aux.	$N_{\rm gh} < 0$			
	A^{μ}	ψ	С	В	Ĉ	$Y_{A^{\mu}}$	Y_{ψ}	Y_c
N_{gh} dimension	0	0 3/2	1 0	0 2	-1 2	-1 3	-1 5/2	-2 4

• Theorem: due to $\tilde{s}^2 = 0$, the most general solution of

$$ilde{\mathsf{s}}\mathsf{\Gamma}_{\mathsf{rest}}(\psi, \mathsf{A}^\mu, \mathsf{c}, \mathsf{B}, ar{\mathsf{c}}) = \mathsf{0}$$

is

$$\Gamma_{\mathsf{rest}}(\psi, \mathsf{A}^\mu, c, \mathsf{B}, \bar{c}) = \Gamma_{\mathsf{g.inv.}}(\psi, \mathsf{A}^\mu) + \int \mathsf{d}^4 x \tilde{\mathsf{s}} X(\psi, \mathsf{A}^\mu, c, \mathsf{B}, \bar{c})$$

gauge invariant part and gauge fixing+Faddeev-Popov

4 consequences

	phy	sical	$N_{\mathrm{gh}} > 0$	aux.	$N_{\rm gh} < 0$			
	A^{μ}	ψ	С	В	Ĉ	$Y_{A^{\mu}}$	Y_{ψ}	Y_c
N_{gh} dimension	0	0 3/2	1 0	0 2	-1 2	-1 3	-1 5/2	-2 4

• Theorem: due to $\tilde{s}^2 = 0$, the most general solution of

$$ilde{ ilde{s}} \Gamma_{ ext{rest}}(\psi, extstyle{ extstyle A}^{\mu}, extstyle{ extstyle c}, extstyle{ ilde{b}}, ar{ extstyle c}) = 0$$

is

$$\Gamma_{\mathsf{rest}}(\psi, \mathsf{A}^\mu, c, \mathsf{B}, ar{c}) = \Gamma_{\mathsf{g.inv.}}(\psi, \mathsf{A}^\mu) + \int \mathsf{d}^4 x \tilde{\mathsf{s}} X(\psi, \mathsf{A}^\mu, c, \mathsf{B}, ar{c})$$

gauge invariant part and gauge fixing+Faddeev-Popov

STI is beautiful starting point

	phy	sical	$\textit{N}_{gh}>0$	aux.	$N_{\mathrm{gh}} < 0$			
	A^{μ}	ψ	С	В	ċ	$Y_{A^{\mu}}$	Y_{ψ}	Y_c
N_{gh} dimension	0	0 3/2	1 0	0 2	-1 2	-1 3	-1 5/2	-2 4

• Theorem: due to $\tilde{s}^2 = 0$, the most general solution of

$$ilde{\mathbf{s}}\Gamma_{\mathsf{rest}}(\psi, \mathbf{A}^\mu, \mathbf{c}, \mathbf{B}, ar{\mathbf{c}}) = \mathbf{0}$$

is

$$\Gamma_{\mathsf{rest}}(\psi, \mathsf{A}^\mu, c, \mathsf{B}, ar{c}) = \Gamma_{\mathsf{g.inv.}}(\psi, \mathsf{A}^\mu) + \int \mathsf{d}^4 x \tilde{\mathsf{s}} X(\psi, \mathsf{A}^\mu, c, \mathsf{B}, ar{c})$$

gauge invariant part and gauge fixing+Faddeev-Popov

multiplicative renormalization

	phy	sical	$N_{\mathrm{gh}} > 0$	aux.	$N_{\mathrm{gh}} < 0$			
	A^{μ}	ψ	С	В	Ĉ	$Y_{A^{\mu}}$	Y_{ψ}	Y_c
N_{gh} dimension	0 1	0 3/2	1 0	0 2	-1 2	-1 3	-1 5/2	-2 4

• Theorem: due to $\tilde{s}^2 = 0$, the most general solution of

$$ilde{\mathbf{s}}\Gamma_{\mathsf{rest}}(\psi, \mathbf{A}^\mu, \mathbf{c}, \mathbf{B}, ar{\mathbf{c}}) = \mathbf{0}$$

is

$$\Gamma_{\mathsf{rest}}(\psi, \mathsf{A}^\mu, c, \mathsf{B}, ar{c}) = \Gamma_{\mathsf{g.inv.}}(\psi, \mathsf{A}^\mu) + \int \mathsf{d}^4 x \tilde{\mathsf{s}} \mathsf{X}(\psi, \mathsf{A}^\mu, c, \mathsf{B}, ar{c})$$

gauge invariant part and gauge fixing+Faddeev-Popov

origin of renormalizability

	phy	sical	$N_{\mathrm{gh}} > 0$	aux.	$N_{\rm gh} < 0$			
	A^{μ}	ψ	С	В	Ĉ	$Y_{A^{\mu}}$	Y_{ψ}	Y_c
N_{gh} dimension	0	0 3/2	1 0	0 2	-1 2	-1 3	-1 5/2	-2 4

• Theorem: due to $\tilde{s}^2 = 0$, the most general solution of

$$ilde{\mathbf{s}}\Gamma_{\mathsf{rest}}(\psi, \mathbf{A}^\mu, \mathbf{c}, \mathbf{B}, ar{\mathbf{c}}) = \mathbf{0}$$

is

$$\Gamma_{\mathsf{rest}}(\psi, \mathsf{A}^\mu, c, \mathsf{B}, ar{c}) = \Gamma_{\mathsf{g.inv.}}(\psi, \mathsf{A}^\mu) + \int \mathsf{d}^4 x \tilde{\mathsf{s}} X(\psi, \mathsf{A}^\mu, c, \mathsf{B}, ar{c})$$

gauge invariant part and gauge fixing+Faddeev-Popov

but first, gauge fixing

One possibility: linear gauge fixing

$$\tilde{s}X = \tilde{s}[\bar{c}_a((\partial_\mu A_a^\mu) + rac{\xi}{2}B_a)]$$

One possibility: linear gauge fixing

$$ilde{s}X = ilde{s}[ar{c}_a((\partial_\mu A_a^\mu) + rac{\xi}{2}B_a)] \ = B_a\partial_\mu A_a^\mu + rac{\xi}{2}B_a^2 - ar{c}_a\partial_\mu ilde{s}A_a^\mu$$

One possibility: linear gauge fixing

$$\tilde{s}X = \tilde{s}[\bar{c}_a((\partial_\mu A_a^\mu) + \frac{\xi}{2}B_a)]$$

= $B_a\partial_\mu A_a^\mu + \frac{\xi}{2}B_a^2 - \bar{c}_a\partial_\mu \tilde{s}A_a^\mu$

 B_a appears nowhere else — appears only quadratically, no vertices

One possibility: linear gauge fixing

$$\tilde{s}X = \tilde{s}[\bar{c}_a((\partial_\mu A_a^\mu) + \frac{\xi}{2}B_a)]$$

$$= B_a\partial_\mu A_a^\mu + \frac{\xi}{2}B_a^2 - \bar{c}_a\partial_\mu \tilde{s}A_a^\mu$$

 B_a appears nowhere else — appears only quadratically, no vertices

$$\frac{\delta\Gamma}{\delta B_a} = \xi B_a + \partial_\mu A_a^\mu$$

One possibility: linear gauge fixing

$$\begin{split} \tilde{\mathbf{s}}X &= \tilde{\mathbf{s}}[\bar{c}_a((\partial_\mu A_a^\mu) + \frac{\xi}{2}B_a)] \\ &= B_a\partial_\mu A_a^\mu + \frac{\xi}{2}B_a^2 - \bar{c}_a\partial_\mu \tilde{\mathbf{s}}A_a^\mu \end{split}$$

 B_a appears nowhere else — appears only quadratically, no vertices

$$\frac{\delta\Gamma}{\delta B_a} = \xi B_a + \partial_\mu A_a^\mu$$

holds at lowest order and exactly, gauge fixing does not renormalize

QCD — Renormalization

Multiplicative renormalization transformation of parameters and fields generates most general classical solution (with this gauge fixing $\frac{\delta\Gamma}{\delta B_a}$)

$$egin{array}{lcl} g &
ightarrow & g^{ ext{bare}} = g + \delta g = Z_g g \ \psi &
ightarrow & \sqrt{Z_\psi} \psi \ \{ \mathcal{A}^\mu, \mathcal{B}, ar{c}, \xi \} &
ightarrow & \left\{ \sqrt{Z_A} \mathcal{A}^\mu, \sqrt{Z_A}^{-1} \mathcal{B}, \sqrt{Z_A}^{-1} ar{c}, Z_A \xi
ight\} \ c &
ightarrow & \sqrt{Z_c} c \end{array}$$

Bare Lagrangian

$$\mathcal{L}_{\mathrm{cl}}(g;\psi,\mathcal{A}_{a}^{\mu},\ldots) \rightarrow \mathcal{L}_{\mathrm{bare}}(g^{\mathrm{bare}};\psi^{\mathrm{bare}},\mathcal{A}_{a}^{\mu\mathrm{bare}},\ldots)$$

Proof of renormalizability

by induction

Assumption:

- $\Gamma^{(n-1)}$ finite up to (n-1)-loop level
- all defining equations valid at (n-1)-loop level
- and on the regularized level at *n*-loop level (e.g. dim. reg.)

Claim:

- all n-loop divergences can be absorbed by multiplicative renormalization
- (only free physical parameter: g)

$$\begin{split} \Gamma_{\text{reg}}^{(\leq n)} &= \Gamma_{\text{fin}}^{(\leq n)} + \Gamma_{\text{div}}^{(n)} \\ \Gamma_{\text{div}}^{(n)} &= \text{local, equivalent to Lagrangian terms} \end{split}$$

$$\Gamma_{\text{reg}}^{(\leq n)} = \Gamma_{\text{fin}}^{(\leq n)} + \Gamma_{\text{div}}^{(n)}$$

$$\Gamma_{\text{div}}^{(n)} = \text{local, equivalent to Lagrangian terms}$$

$$0 = \int \frac{\delta(\Gamma_{\text{fin}}^{(\leq n)} + \Gamma_{\text{div}}^{(n)})}{\delta Y_{\varphi_i}} \frac{\delta(\Gamma_{\text{fin}}^{(\leq n)} + \Gamma_{\text{div}}^{(n)})}{\delta \varphi_i}$$

$$\begin{split} &\Gamma_{\text{reg}}^{(\leq n)} = \Gamma_{\text{fin}}^{(\leq n)} + \Gamma_{\text{div}}^{(n)} \\ &\Gamma_{\text{div}}^{(n)} = \text{local, equivalent to Lagrangian terms} \end{split}$$

$$\begin{split} 0 &= \int \frac{\delta(\Gamma_{\text{fin}}^{(\leq n)} + \Gamma_{\text{div}}^{(n)})}{\delta Y_{\varphi_i}} \frac{\delta(\Gamma_{\text{fin}}^{(\leq n)} + \Gamma_{\text{div}}^{(n)})}{\delta \varphi_i} \\ &= \int \frac{\delta(\Gamma_{\text{fin}}^{(\leq n)})}{\delta Y_{\varphi_i}} \frac{\delta(\Gamma_{\text{div}}^{(n)})}{\delta \varphi_i} + (\text{fin} \leftrightarrow \text{div}) + \text{fin.} + \mathcal{O}(2n\text{-loop}) \end{split}$$

$$\begin{split} &\Gamma_{\text{reg}}^{(\leq n)} = \Gamma_{\text{fin}}^{(\leq n)} + \Gamma_{\text{div}}^{(n)} \\ &\Gamma_{\text{div}}^{(n)} = \text{local, equivalent to Lagrangian terms} \end{split}$$

$$0 = \int \frac{\delta(\Gamma_{\text{fin}}^{(\leq n)} + \Gamma_{\text{div}}^{(n)})}{\delta Y_{\varphi_i}} \frac{\delta(\Gamma_{\text{fin}}^{(\leq n)} + \Gamma_{\text{div}}^{(n)})}{\delta \varphi_i}$$

$$=\int \frac{\delta(\Gamma_{\mathsf{cl}})}{\delta Y_{\varphi_i}} \frac{\delta(\Gamma_{\mathsf{div}}^{(n)})}{\delta \varphi_i} + (\mathsf{cl} \leftrightarrow \mathsf{div}) + \mathsf{fin.} + \mathcal{O}((n+1)\text{-loop})$$

$$\Gamma_{\text{reg}}^{(\leq n)} = \Gamma_{\text{fin}}^{(\leq n)} + \Gamma_{\text{div}}^{(n)}$$

$$\Gamma_{\text{div}}^{(n)} = \text{local, equivalent to Lagrangian terms}$$

$$0 = \int \frac{\delta(\Gamma_{\text{fin}}^{(\leq n)} + \Gamma_{\text{div}}^{(n)})}{\delta Y_{\varphi_i}} \frac{\delta(\Gamma_{\text{fin}}^{(\leq n)} + \Gamma_{\text{div}}^{(n)})}{\delta \varphi_i}$$

$$= S(\Gamma_{cl} + \Gamma_{div}^{(n)}) + \text{fin.} + \mathcal{O}((n+1)\text{-loop})$$

Hence, the divergences are constrained by the STI,

$$S(\Gamma_{\sf cl} + \Gamma_{\sf div}^{(n)}) = 0$$

- Can be absorbed by counterterms generated by the most general classical solution
- thus by multiplicative renormalization (⇒ claim)
- the bare action is thus changed as

$$\Gamma_{\text{bare}}^{(n)} = \Gamma_{\text{bare}}^{(n-1)} + \Gamma_{\text{ct}}^{(n)}$$

 this change does not invalidate the defining equations (STI) (⇒ assumption at order n)

proof complete

QCD — Renormalization

Multiplicative renormalization transformation of parameters and fields generates most general classical solution (with this gauge fixing $\frac{\delta\Gamma}{\delta B_2}$)

$$egin{array}{lcl} g &
ightarrow & g^{
m bare} = g + \delta g \ \psi &
ightarrow & \sqrt{Z_\psi} \psi \ & \{ {\it A}^\mu, {\it B}, ar{c}, \xi \} &
ightarrow & \left\{ \sqrt{Z_A} {\it A}^\mu, \sqrt{Z_A}^{-1} {\it B}, \sqrt{Z_A}^{-1} ar{c}, Z_A \xi
ight\} \ & c &
ightarrow & \sqrt{Z_c} c \end{array}$$

Bare Lagrangian generates counterterms

 $Y_{\varphi_i} \rightarrow \sqrt{Z_{\omega_i}}^{-1} Y_{\omega_i}$

$$\mathcal{L}_{\mathrm{cl}}(\boldsymbol{g}; \psi, \boldsymbol{A}_{\boldsymbol{a}}^{\mu}, \ldots) \rightarrow \mathcal{L}_{\mathrm{bare}}(\boldsymbol{g}^{\mathrm{bare}}; \psi^{\mathrm{bare}}, \boldsymbol{A}_{\boldsymbol{a}}^{\mu \mathrm{bare}}, \ldots)$$

$$= \mathcal{L}_{\mathrm{cl}}(\boldsymbol{g}; \psi, \boldsymbol{A}_{\boldsymbol{a}}^{\mu}, \ldots) + \mathcal{L}_{\mathrm{ct}}(\boldsymbol{g}; \psi, \boldsymbol{A}_{\boldsymbol{a}}^{\mu}; \delta \boldsymbol{g}, \delta \boldsymbol{Z}_{\psi, \boldsymbol{A}, \boldsymbol{c}}, \ldots)$$

Outline

- Renormalizability of gauge theories QCD
 - Reminder and overview
 - Definition and proof of renormalizability
 - Outlook: algebraic renormalization
 - Two small but important applications

Systematic analysis: algebraic renormalization [Piguet et al]

QFT at higher orders: Loops + counterterms

$$\Gamma^{\text{ren}} = \Gamma^{\text{reg}} + \Gamma^{\text{ct}}$$

Γ^{ren}: physical content

 $\Gamma^{reg}, \Gamma^{ct} \quad : \quad unphysical$

Precise, regularization-independent definition of theory by symmetries, e.g. Slavnov-Taylor identities:

$$S(\Gamma^{ren})=0$$

Theory defined by symmetries: $S(\Gamma^{\text{reg}} + \Gamma^{\text{ct}}) = 0$

Case 1: $S(\Gamma^{reg}) = 0$

Case 2a: $S(\Gamma^{reg}) = \Delta,$ $S(\Gamma^{reg} + \Gamma^{ct}) = 0$

Case 2b: $S(\Gamma^{reg}) = \Delta,$ $S(\Gamma^{reg} + \Gamma^{ct}) \neq 0$

Case 1: $S(\Gamma^{\text{reg}}) = 0$

Case 2a: $S(\Gamma^{\text{reg}}) = \Delta,$ $S(\Gamma^{\text{reg}} + \Gamma^{\text{ct}}) = 0$ Case 2b: $S(\Gamma^{\text{reg}}) = \Delta,$ $S(\Gamma^{\text{reg}} + \Gamma^{\text{ct}}) \neq 0$

"Textbook case": regularization preserves symmetries

multiplicative renormalization (cts symmetric)

$$g \rightarrow g + \delta g$$
, $m \rightarrow m + \delta m$

most common situation, often assumed without proof

Case 1: $S(\Gamma^{\text{reg}}) = 0$

Case 2a: $S(\Gamma^{reg}) = \Delta$, $S(\Gamma^{reg} + \Gamma^{ct}) = 0$

Case 2b: $S(\Gamma^{reg}) = \Delta$, $S(\Gamma^{reg} + \Gamma^{ct}) \neq 0$

Nice but not necessary!

Case 1: $S(\Gamma^{reg}) = 0$

Case 2a: $S(\Gamma^{reg}) = \Delta$, $S(\Gamma^{reg} + \Gamma^{ct}) = 0$

Case 2b: $S(\Gamma^{reg}) = \Delta$, $S(\Gamma^{reg} + \Gamma^{ct}) \neq 0$

Nice but not necessary!

- Case 1 ⇔ Case 2a ⇔ theory renormalizable
- Renormalizability proof has two steps:
 - **1** Find Slavnov-Taylor id. $S(\Gamma^{\text{ren}}) = 0$
 - Prove that STI can be satisfied

For SUSY:

[Piguet, Sibold '84], [White '92]

[Piguet et al '96], [Hollik, Kraus, DS '99]...

[Hollik,Kraus,Roth,Rupp,Sibold, DS '02]

Case 1: $S(\Gamma^{reg}) = 0$

Case 2a: $S(\Gamma^{reg}) = \Delta$, $S(\Gamma^{reg} + \Gamma^{ct}) = 0$

Case 2b: $S(\Gamma^{reg}) = \Delta,$ $S(\Gamma^{reg} + \Gamma^{ct}) \neq 0$

In principle, we don't have to bother whether a regularization preserves symmetries

Case 1: $S(\Gamma^{reg}) = 0$

Case 2a: $S(\Gamma^{reg}) = \Delta$, $S(\Gamma^{reg} + \Gamma^{ct}) = 0$

Case 2b: $S(\Gamma^{reg}) = \Delta,$ $S(\Gamma^{reg} + \Gamma^{ct}) \neq 0$

In practice, life is easier with a symmetry-preserving regularization!

Outline

- Renormalizability of gauge theories QCD
 - Reminder and overview
 - Definition and proof of renormalizability
 - Outlook: algebraic renormalization
 - Two small but important applications

Useful side result: application to QCD β function

 $\beta(g)$ from Z_g

Possibility 1: from

Quark-Quark-Gluon
$$\delta Z_g + \frac{1}{2}\delta Z_A + \delta Z_\psi,$$
 Quark s.e. δZ_ψ Gluon s.e. δZ_A

Possibility 2: from

$$Y_ccc$$
-interaction $\delta Z_g + rac{1}{2}\delta Z_c,$ c -s.e. $rac{1}{2}\delta Z_c - rac{1}{2}\delta Z_A$ Gluon s.e. δZ_A

Second possibility much simpler!

How to obtain Ward/Slavnov-Taylor identities for amplitudes?

Amplitudes

- on-shell, physical polarization vectors
- obtained from full Green functions by LSZ reduction (→pole part!)

$$iT_{ABC...} = \left. \frac{\langle 0 | T \Phi_A \Phi_B \Phi_C \dots | 0 \rangle}{\langle 0 | T \Phi_A \Phi_A^\dagger | 0 \rangle \ \langle 0 | T \Phi_B \Phi_B^\dagger | 0 \rangle \dots} \right|_{\text{on-shell}} \times \text{norm. wave fct.}$$

norm. wave fct. =
$$\langle 0|\Phi_A|A\rangle,\ldots$$

Hence, first consider identities for full Green functions, then LSZ reduction

For 1PI:

$$S(\Gamma) = \int d^4x \frac{\delta\Gamma}{\delta Y_{\varphi_i}(x)} \frac{\delta\Gamma}{\delta \varphi_i(x)}$$

 Y_{φ_i} is source of loop-corrected BRS transformation:

$$S(\Gamma) = \int d^4x \langle \mathbf{s}\varphi_i(\mathbf{x}) \rangle \frac{\delta\Gamma}{\delta\varphi_i(\mathbf{x})}$$

Legendre transformation to full Green functions:

$$S(Z) = \int d^4x \ J_i(x) \ \frac{\delta Z}{\delta Y_{\varphi_i(x)}}$$

Legendre transformation to full Green functions:

$$S(Z) = \int d^4x \ J_i(x) \ \frac{\delta Z}{\delta Y_{\varphi_i(x)}}$$

Taking derivatives of 0 = S(Z) leads to identities like

$$0 = \langle (s\Phi_A)\Phi_B \ldots \rangle \pm \langle \Phi_A(s\Phi_B) \ldots \rangle \pm \ldots$$

where $(s\Phi)$ is a renormalized composite operator

On-shell vs. off-shell

$$\langle (s\Phi_A)\Phi_B \ldots \rangle |_{pole-part}$$

Distinguish two cases

- $(s\Phi_A)$ linear in fields
 - above is just linear combination of ordinary Green functions which have poles for on-shell external momenta
- $(s\Phi_A) \propto c\Phi_A$ or similar \rightarrow non-linear
 - cannot produce a pole in external momentum (in finite order)

Linear BRS transformations in QCD or in QED:

$$sA^{\mu} = \partial^{\mu}c + \dots$$
 $sar{c} = B$ $sc_a = rac{1}{2}gf_{abc}c_bc_c (= 0 (QED))$ $s\psi \propto c\psi$

$$\epsilon^{\mu_1}\epsilon^{\mu_2}\dots\mathcal{M}_{\mu_1\mu_2\dots}(k_1,k_2,\dots)\leftrightarrow \langle A_{\mu_1}A_{\mu_2}\dots
angle|_{ ext{on-shell,pole-part}}$$

$$\epsilon^{\mu_1}\epsilon^{\mu_2}\dots\mathcal{M}_{\mu_1\mu_2\dots}(k_1,k_2,\dots)\leftrightarrow \langle A_{\mu_1}A_{\mu_2}\dots
angle|_{\text{on-shell,pole-part}}$$

Obtain STI:

$$0 = \langle (oldsymbol{s}ar{c})oldsymbol{A}_{\mu_2}\ldots
angle + \langle ar{c}(oldsymbol{s}oldsymbol{A}_{\mu_2})\ldots
angle + \ldots$$

other terms in sA_{μ} or $s\psi$ do not contribute

$$\begin{split} \epsilon^{\mu_1}\epsilon^{\mu_2}\dots\mathcal{M}_{\mu_1\mu_2\dots}(\textit{k}_1,\textit{k}_2,\dots) &\leftrightarrow \langle\textit{A}_{\mu_1}\textit{A}_{\mu_2}\dots\rangle|_{\text{on-shell,pole-part}} \\ \text{Obtain STI: note: } s\bar{c} = \textit{B} = -\frac{1}{\xi}\partial^{\mu}\textit{A}_{\mu}; \text{ take on-shell,pole-part} \\ 0 &= \langle(s\bar{c})\textit{A}_{\mu_2}\dots\rangle + \langle\bar{c}(s\textit{A}_{\mu_2})\dots\rangle + \dots \end{split}$$

other terms in sA_{μ} or $s\psi$ do not contribute

$$\epsilon^{\mu_1}\epsilon^{\mu_2}\dots\mathcal{M}_{\mu_1\mu_2\dots}(\emph{k}_1,\emph{k}_2,\dots)\leftrightarrow \langle\emph{A}_{\mu_1}\emph{A}_{\mu_2}\dots
angle|_{ ext{on-shell,pole-part}}$$

Obtain STI:

$$\begin{split} 0 &= \langle (\boldsymbol{s}\bar{\boldsymbol{c}})\boldsymbol{A}_{\mu_2}\ldots\rangle + \langle \bar{\boldsymbol{c}}(\boldsymbol{s}\boldsymbol{A}_{\mu_2})\ldots\rangle + \ldots \\ 0 &= -\frac{1}{\xi}\langle \partial^{\mu_1}\boldsymbol{A}_{\mu_1}\boldsymbol{A}_{\mu_2}\ldots\rangle + \langle \bar{\boldsymbol{c}}(\partial_{\mu_2}\boldsymbol{c})\ldots\rangle + \ldots \end{split}$$

other terms in sA_{μ} or $s\psi$ do not contribute

$$\epsilon^{\mu_1}\epsilon^{\mu_2}\dots\mathcal{M}_{\mu_1\mu_2\dots}(k_1,k_2,\dots)\leftrightarrow \langle A_{\mu_1}A_{\mu_2}\dots
angle|_{ ext{on-shell,pole-part}}$$

Hence, in obvious notation

$$\frac{1}{\xi} k_1^{\mu_1} \mathcal{M}_{\mu_1 \mu_2 \dots}(k_1, k_2, \dots) = k_{2\mu_2} \mathcal{M}_{\bar{c}c \dots}(k_1, k_2, \dots) + \dots$$

$$\epsilon^{\mu_1}\epsilon^{\mu_2}\dots\mathcal{M}_{\mu_1\mu_2\dots}(k_1,k_2,\dots)\leftrightarrow \langle A_{\mu_1}A_{\mu_2}\dots
angle|_{ ext{on-shell,pole-part}}$$

Hence, in obvious notation

$$\frac{1}{\xi} k_1^{\mu_1} \mathcal{M}_{\mu_1 \mu_2 \dots}(k_1, k_2, \dots) = k_{2\mu_2} \mathcal{M}_{\bar{c}c \dots}(k_1, k_2, \dots) + \dots$$

$$\epsilon^{\mu_1}\epsilon^{\mu_2}\dots\mathcal{M}_{\mu_1\mu_2\dots}(k_1,k_2,\dots)\leftrightarrow \langle A_{\mu_1}A_{\mu_2}\dots
angle|_{ ext{on-shell,pole-part}}$$

Hence, in obvious notation

$$\frac{1}{\xi} k_1^{\mu_1} \mathcal{M}_{\mu_1 \mu_2 \dots}(k_1, k_2, \dots) = k_{2\mu_2} \mathcal{M}_{\bar{c}c \dots}(k_1, k_2, \dots) + \dots$$

In QED, ghosts are free, r.h.s. cannot contribute if $k_1 + k_2 \neq 0$:

QED:
$$k_1^{\mu_1} \mathcal{M}_{\mu_1 \mu_2 ...}(k_1, k_2, ...) = 0$$

$$\epsilon^{\mu_1}\epsilon^{\mu_2}\dots\mathcal{M}_{\mu_1\mu_2\dots}(\emph{k}_1,\emph{k}_2,\dots)\leftrightarrow \langle\emph{A}_{\mu_1}\emph{A}_{\mu_2}\dots
angle|_{ ext{on-shell,pole-part}}$$

Hence, in obvious notation

$$\frac{1}{\xi} k_1^{\mu_1} \mathcal{M}_{\mu_1 \mu_2 \dots}(k_1, k_2, \dots) = k_{2\mu_2} \mathcal{M}_{\bar{c}c \dots}(k_1, k_2, \dots) + \dots$$

In QCD, the r.h.s. vanishes after contraction with physical ϵ s:

QCD:
$$k_1^{\mu_1} \epsilon^{\mu_2} \dots \mathcal{M}_{\mu_1 \mu_2 \dots} (k_1, k_2, \dots) = 0$$

[discussion and more general QCD result: Leader/Predazzi 2011]

Outline

- Renormalization main theorems and their logical connections
- More on regularizations
- Renormalizability of gauge theories QCD
- lacktriangledown Operator renormalization in gg o H
- 5 Additional topics

- gg → H is very important process
- operator renormalization necessary
- nice application of BRS/ST identities and quantum action principle
 [Joglekar, Lee; Kluberg-Stern, Zuber; Spiridonov]
- changes in FDH/DRED

Integrate out top-loop → effective operator

$$\mathcal{L}_{\mathsf{eff}} = -rac{1}{4}\lambda \; H \; F_a^{\mu
u} F_{a,\mu
u}$$

gauge invariant dimension-5 operator, λ =effective coupling

Integrate out top-loop → effective operator

$$\mathcal{L}_{\mathsf{eff}} = -rac{1}{4}\lambda \; H \; F_{a}^{\mu
u} F_{a,\mu
u}$$

gauge invariant dimension-5 operator, λ =effective coupling

- Interested only in QCD corrections
- Higgs appears only as external field, no propagator

Integrate out top-loop → effective operator

$$\mathcal{L}_{\mathsf{eff}} = -rac{1}{4}\lambda \; H \; F_a^{\mu
u} F_{a,\mu
u}$$

gauge invariant dimension-5 operator, λ =effective coupling

⇒ Treat

$$\lambda H(x) \equiv Y_1(x)$$

as external field (source in generating functional)

Starting point

$$\mathcal{L}_{ ext{eff}} = Y_1(x) \ O_1(x)$$
 $O_1 = -rac{1}{4} F_a^{\mu
u} F_{a,\mu
u}$

Task:

compute renormalized Green functions with one external Y₁
 ⇔ with one insertion of operator O₁

Starting point

$$\mathcal{L}_{\text{eff}} = Y_1(x) \ O_1(x)$$

$$O_1 = -\frac{1}{4} F_a^{\mu\nu} F_{a,\mu\nu}$$

Task:

compute renormalized Green functions with one external Y₁
 ⇒ with one insertion of operator O₁

Difficulty:

- $\mathcal{L}_{QCD} + \mathcal{L}_{eff}$ not multiplicatively renormalizable!
- need many more terms in L_{eff}!

(e.g. $H
ightarrow qar{q},\, H
ightarrow car{c}$ etc)

- repeat proof of renormalizability of QCD, but one change:
- additional external field $Y_1(x)$, bosonic, dim=0, $N_{gh} = 0$

- write down Slavnov-Taylor identity literally unchanged
- most general classical solution changed, can depend on $Y_1(x)$!
- most general structure of divergences same change
- theory QCD $\oplus Y_1(x)$ is multiplicatively renormalizable if we start with most general classical solution of STI

- repeat proof of renormalizability of QCD, but one change:
- additional external field $Y_1(x)$, bosonic, dim=0, $N_{gh} = 0$

- write down Slavnov-Taylor identity literally unchanged
- most general classical solution changed, can depend on $Y_1(x)$!
- most general structure of divergences same change
- theory QCD $\oplus Y_1(x)$ is multiplicatively renormalizable if we start with most general classical solution of STI

- repeat proof of renormalizability of QCD, but one change:
- additional external field $Y_1(x)$, bosonic, dim=0, $N_{gh} = 0$

- write down Slavnov-Taylor identity literally unchanged
- most general classical solution changed, can depend on $Y_1(x)$!
- most general structure of divergences same change
- theory QCD $\oplus Y_1(x)$ is multiplicatively renormalizable if we start with most general classical solution of STI

- repeat proof of renormalizability of QCD, but one change:
- additional external field $Y_1(x)$, bosonic, dim=0, $N_{gh} = 0$

- write down Slavnov-Taylor identity literally unchanged
- most general classical solution changed, can depend on $Y_1(x)$!
- most general structure of divergences same change
- theory QCD $\oplus Y_1(x)$ is multiplicatively renormalizable if we start with most general classical solution of STI

- repeat proof of renormalizability of QCD, but one change:
- additional external field $Y_1(x)$, bosonic, dim=0, $N_{gh} = 0$

- write down Slavnov-Taylor identity literally unchanged
- most general classical solution changed, can depend on $Y_1(x)$!
- most general structure of divergences same change
- theory QCD⊕ Y₁(x) is multiplicatively renormalizable if we start with most general classical solution of STI

Find this most general classical solution of QCD $\oplus Y_1(x)$!

Find this most general classical solution of QCD $\oplus Y_1(x)$!

• Step 1: Dependence on sources Y_{φ_i} of BRS transformations \Leftrightarrow general BRS transformations $\tilde{s}\varphi_i$

Find this most general classical solution of QCD $\oplus Y_1(x)$!

• Step 1: Dependence on sources Y_{φ_i} of BRS transformations \Leftrightarrow general BRS transformations $\tilde{s}\varphi_i$ as before, arise from standard form by multiplicative renormalization **but**

$$Z_{A,\psi,c,g}=Z_{A,\psi,c,g}(Y_1(x))$$

(power series not only in coupling but also in external field $Y_1(x)$)

Find this most general classical solution of QCD $\oplus Y_1(x)$!

• Step 2: Lagrangian without BRS sources, $Y_{\varphi_i} = 0$: as before,

$$\Gamma_{\mathsf{rest}}(\psi, \mathsf{A}^\mu, c, \mathsf{B}, ar{c}) = \Gamma_{\mathsf{g.inv.}}(\psi, \mathsf{A}^\mu) + \int \mathsf{d}^4 x \tilde{\mathsf{s}} \mathsf{X}(\psi, \mathsf{A}^\mu, c, \mathsf{B}, ar{c})$$

Find this most general classical solution of QCD $\oplus Y_1(x)$!

• Step 2: Lagrangian without BRS sources, $Y_{\varphi_i} = 0$: as before,

$$egin{aligned} \Gamma_{\mathsf{rest}}(\psi, \mathsf{A}^\mu, c, \mathsf{B}, ar{c}) &= \Gamma_{\mathsf{g.inv.}}(\psi, \mathsf{A}^\mu) + \int \mathsf{d}^4 x ilde{s} X(\psi, \mathsf{A}^\mu, c, \mathsf{B}, ar{c}) \ & ilde{s} X = ilde{s} [ar{c}_a((\partial_\mu \mathsf{A}^\mu_a) + rac{\xi}{2} B_a)] \end{aligned}$$

Find this most general classical solution of QCD $\oplus Y_1(x)$!

• Step 2: Lagrangian without BRS sources, $Y_{\varphi_i} = 0$: as before,

$$\Gamma_{\mathsf{rest}}(\psi, \mathsf{A}^\mu, c, B, ar{c}) = \Gamma_{\mathsf{g.inv.}}(\psi, \mathsf{A}^\mu) + \int d^4x \tilde{s} X(\psi, \mathsf{A}^\mu, c, B, ar{c})$$
 $\tilde{s} X = \tilde{s} [ar{c}_a((\partial_\mu \mathsf{A}^\mu_a) + rac{\xi}{2} B_a)]$

but: BRS and gauge transformations as usual, but for

$$g_{\mathsf{bare}}(x) A^{\mu}_{\mathsf{bare}}(x) = \sqrt{Z_{\mathsf{A}}(Y_{\mathsf{1}}(x))} Z_{g}(Y_{\mathsf{1}}(x)) g A^{\mu}(x), \quad \mathsf{etc}$$

Find this most general classical solution of QCD $\oplus Y_1(x)$!

• Step 2: Lagrangian without BRS sources, $Y_{\varphi_i} = 0$: as before,

$$egin{aligned} \Gamma_{\mathsf{rest}}(\psi, \mathsf{A}^\mu, c, \mathsf{B}, ar{c}) &= \Gamma_{\mathsf{g.inv.}}(\psi, \mathsf{A}^\mu) + \int \mathsf{d}^4 x ilde{s} X(\psi, \mathsf{A}^\mu, c, \mathsf{B}, ar{c}) \ & ilde{s} X = ilde{s} [ar{c}_a((\partial_\mu \mathsf{A}^\mu_a) + rac{\xi}{2} B_a)] \end{aligned}$$

but: BRS and gauge transformations as usual, but for

$$g_{\mathsf{bare}}(x) A^{\mu}_{\mathsf{bare}}(x) = \sqrt{\mathcal{Z}_{\mathsf{A}}(Y_1(x))} \mathcal{Z}_{\mathsf{g}}(Y_1(x)) g A^{\mu}(x), \quad \mathsf{etc}$$

• here: x-dependent prefactors don't change the possible terms! different for scalars: $Z_{\phi}(\partial^{\mu}\phi)(\partial_{\mu}\phi) \longrightarrow Z_{\phi}(Y_1)(\partial^{\mu}\phi)(\partial_{\mu}\phi) + (\Box_{Z_{\text{new}}}(Y_1))\phi\phi$ [Gnendiger,Signer,DS]

Find this most general classical solution of QCD $\oplus Y_1(x)$!

• Step 2: Lagrangian without BRS sources, $Y_{\varphi_i} = 0$: as before,

$$egin{aligned} \Gamma_{\mathsf{rest}}(\psi, \mathsf{A}^\mu, c, \mathsf{B}, ar{c}) &= \Gamma_{\mathsf{g.inv.}}(\psi, \mathsf{A}^\mu) + \int \mathsf{d}^4 x ilde{s} X(\psi, \mathsf{A}^\mu, c, \mathsf{B}, ar{c}) \ & ilde{s} X = ilde{s} [ar{c}_a((\partial_\mu \mathsf{A}^\mu_a) + rac{\xi}{2} B_a)] \end{aligned}$$

but: BRS and gauge transformations as usual, but for

$$g_{\mathsf{bare}}(x) A^{\mu}_{\mathsf{bare}}(x) = \sqrt{\mathcal{Z}_{\mathsf{A}}(Y_1(x))} \mathcal{Z}_{\mathsf{g}}(Y_1(x)) g A^{\mu}(x), \quad \mathsf{etc}$$

• here: x-dependent prefactors don't change the possible terms! different for scalars: $Z_{\phi}(\partial^{\mu}\phi)(\partial_{\mu}\phi) \longrightarrow Z_{\phi}(Y_1)(\partial^{\mu}\phi)(\partial_{\mu}\phi) + (\Box_{Z_{\text{new}}}(Y_1))\phi\phi$ [Gnendiger,Signer,DS]

Result:

- Most general classical solution as for QCD alone, but Y₁-dependent renormalization constants:
- Obtained from \mathcal{L}_{QCD} (without Y_1 and O_1 !) by applying

$$egin{array}{lcl} g &
ightarrow & g^{
m bare} = g + \delta g = Z_g g \ \psi &
ightarrow & \sqrt{Z_\psi} \psi \ & \{ A^\mu, B, ar c, \xi \} &
ightarrow & \left\{ \sqrt{Z_A} A^\mu, \ldots ext{(related)}
ight\} \ & c &
ightarrow & \sqrt{Z_c} c \ & Y_{arphi_i} &
ightarrow & \sqrt{Z_{arphi_i}}^{-1} Y_{arphi_i} \ & Z_{A,\psi,c,g} & = & Z_{A,\psi,c,g} (Y_1(x)) \end{array}$$

ullet the arising $\mathcal{L}_{\text{bare}}$ is sufficient to cancel all divergences

Application to operators and $gg \rightarrow H$

only one external Higgs/one external $Y_1(x)$ /one insertion of $O_1(x)$

- Such Green functions will be finite (since everything is finite)
- but they require only

$$\mathcal{L}_{\text{bare}}|_{\text{up to one power of }Y_1} =: \mathcal{L}_{\text{bare,QCD}} + Y_1 \sum_j z_j O_j^{\text{bare}}$$

Application to operators and $gg \rightarrow H$

only one external Higgs/one external $Y_1(x)$ /one insertion of $O_1(x)$

- Such Green functions will be finite (since everything is finite)
- but they require only

$$\mathcal{L}_{\text{bare}}|_{\text{up to one power of }Y_1} =: \mathcal{L}_{\text{bare,QCD}} + Y_1 \sum_j z_j O_j^{\text{bare}}$$

- Now compute the most general structure of the Y_1 -terms
- have to apply the renormalization transformation to \(\mathcal{L}_{QCD} \) and only take \(Y_1 \)-terms!

Application to operators and $gg \rightarrow H$

only one external Higgs/one external $Y_1(x)$ /one insertion of $O_1(x)$

- Such Green functions will be finite (since everything is finite)
- but they require only

$$\mathcal{L}_{\text{bare}}|_{\text{up to one power of }Y_1} =: \mathcal{L}_{\text{bare,QCD}} + Y_1 \sum_j z_j O_j^{\text{bare}}$$

- Now compute the most general structure of the Y_1 -terms
- have to apply the renormalization transformation to \mathcal{L}_{QCD} and only take Y_1 -terms!
- i.e. expand the four ren. constants only as

$$Z_i(Y_1) = 1 + z_i Y_1$$

• then the desired result is a linear combination of the z_i -terms

Now compute the most general structure of the Y_1 -terms

$$\mathcal{L}_{\mathsf{QCD}} = ar{\psi} i \gamma^{\mu} D_{\mu} \psi - rac{1}{4} F_{a}^{\mu
u} F_{a \mu
u} + s [ar{c}_{a} ((\partial_{\mu} A_{a}^{\mu}) + rac{\xi}{2} B_{a})]$$

- four ren. constants expand each as $Z_i(Y_1) = 1 + z_i Y_1$
- then the desired result is a linear combination of the z_i-terms

Now compute the most general structure of the Y_1 -terms

$$\mathcal{L}_{\mathsf{QCD}} = ar{\psi} i \gamma^{\mu} D_{\mu} \psi - rac{1}{4} F_{a}^{\mu
u} F_{a \mu
u} + s [ar{c}_{a} ((\partial_{\mu} A_{a}^{\mu}) + rac{\xi}{2} B_{a})]$$

Start with
$$\sqrt{Z_{\psi}}$$
, $\psi \rightarrow (1 + \frac{1}{2}Z_{\psi}Y_1 + \ldots)\psi$:

Now compute the most general structure of the Y_1 -terms

$$\mathcal{L}_{\mathsf{QCD}} = ar{\psi} i \gamma^\mu D_\mu \psi - rac{1}{4} F_a^{\mu
u} F_{a\mu
u} + s [ar{c}_a ((\partial_\mu A_a^\mu) + rac{\xi}{2} B_a)]$$

Start with
$$\sqrt{Z_{\psi}}$$
, $\psi \rightarrow (1 + \frac{1}{2}z_{\psi}Y_1 + \ldots)\psi$:

$$\mathcal{L}_{\text{QCD}} \longrightarrow \ldots + z_{\psi} \frac{1}{2} \left((Y_1 \bar{\psi}) i \gamma^{\mu} D_{\mu} \psi + \bar{\psi} i \gamma^{\mu} D_{\mu} (Y_1 \psi) \right)$$

$$\mathcal{L}_{\text{QCD}} = \bar{\psi} i \gamma^{\mu} D_{\mu} \psi - \frac{1}{4} F_{a}^{\mu\nu} F_{a\mu\nu} + s [\bar{c}_{a} ((\partial_{\mu} A_{a}^{\mu}) + \frac{\xi}{2} B_{a})]$$
Start with $\sqrt{Z_{\psi}}$, $\psi \rightarrow (1 + \frac{1}{2} z_{\psi} Y_{1} + \ldots) \psi$:
$$\mathcal{L}_{\text{QCD}} \longrightarrow \ldots + z_{\psi} \frac{1}{2} \left((Y_{1} \bar{\psi}) i \gamma^{\mu} D_{\mu} \psi + \bar{\psi} i \gamma^{\mu} D_{\mu} (Y_{1} \psi) \right)$$

$$\stackrel{\text{part.int.}}{=} \ldots + z_{\psi} Y_{1} \frac{1}{2} \left(\bar{\psi} i \gamma^{\mu} (D_{\mu} - \overleftarrow{D}_{\mu}) \psi \right)$$

$$\mathcal{L}_{QCD} = \bar{\psi}i\gamma^{\mu}D_{\mu}\psi - \frac{1}{4}F_{a}^{\mu\nu}F_{a\mu\nu} + s[\bar{c}_{a}((\partial_{\mu}A_{a}^{\mu}) + \frac{\xi}{2}B_{a})]$$
Start with $\sqrt{Z_{\psi}}$, $\psi \to (1 + \frac{1}{2}z_{\psi}Y_{1} + \ldots)\psi$:
$$\mathcal{L}_{QCD} \longrightarrow \ldots + z_{\psi}\frac{1}{2}\left((Y_{1}\bar{\psi})i\gamma^{\mu}D_{\mu}\psi + \bar{\psi}i\gamma^{\mu}D_{\mu}(Y_{1}\psi)\right)$$

$$\stackrel{\text{part.int.}}{=} \ldots + z_{\psi}Y_{1}\underbrace{\frac{1}{2}\left(\bar{\psi}i\gamma^{\mu}(D_{\mu} - \overleftarrow{D}_{\mu})\psi\right)}_{2}$$

$$\mathcal{L}_{ ext{QCD}} = ar{\psi} i \gamma^{\mu} D_{\mu} \psi - rac{1}{4} F_{a}^{\mu
u} F_{a \mu
u} + s [ar{c}_{a} ((\partial_{\mu} A_{a}^{\mu}) + rac{\xi}{2} B_{a})]$$

Next: $\sqrt{Z_A}=Z_g^{-1}$ — everything invariant, except $F_a^{\mu\nu}$ (but $gF_a^{\mu\nu}$ is)

$$\mathcal{L}_{ ext{QCD}} = ar{\psi} i \gamma^{\mu} D_{\mu} \psi - rac{1}{4} F_{a}^{\mu
u} F_{a \mu
u} + s [ar{c}_{a} ((\partial_{\mu} A_{a}^{\mu}) + rac{\xi}{2} B_{a})]$$

Next: $\sqrt{Z_A}=Z_g^{-1}$ — everything invariant, except $F_a^{\mu\nu}$ (but $gF_a^{\mu\nu}$ is)

$$\mathcal{L}_{QCD} \longrightarrow \dots + z_A Y_1 \underbrace{\left(-\frac{1}{4} F_a^{\mu\nu} F_{a\mu\nu}\right)}_{=O_1}$$

$$\mathcal{L}_{ ext{QCD}} = ar{\psi} i \gamma^{\mu} D_{\mu} \psi - rac{1}{4} F_{a}^{\mu
u} F_{a \mu
u} + s [ar{c}_{a} ((\partial_{\mu} A_{a}^{\mu}) + rac{\xi}{2} B_{a})]$$

Next, Z_A alone:

 $(\bar{c}(\partial^{\mu} A_{\mu})$ does not renormalize!)

$$\mathcal{L}_{\mathsf{QCD}} = ar{\psi} i \gamma^\mu D_\mu \psi - rac{1}{4} F_a^{\mu
u} F_{a\mu
u} + s [ar{c}_a ((\partial_\mu A_a^\mu) + rac{\xi}{2} B_a)]$$

Next, Z_A alone:

$$(\bar{c}(\partial^{\mu} A_{\mu})$$
 does not renormalize!)

$$\Gamma_{\text{QCD}}\left(A^{\mu}\right) \longrightarrow \Gamma_{\text{QCD}}\left(A^{\mu} + \frac{1}{2}z_{A}Y_{1}A^{\mu}\right)$$

$$\mathcal{L}_{ ext{QCD}} = ar{\psi} i \gamma^{\mu} D_{\mu} \psi - rac{1}{4} \emph{F}_{a}^{\mu
u} \emph{F}_{a \mu
u} + \emph{s} [ar{\emph{c}}_{a} ((\partial_{\mu} \emph{A}_{a}^{\mu}) + rac{\xi}{2} \emph{B}_{a})]$$

Next, Z_A alone:

 $(\bar{c}(\partial^{\mu} A_{\mu})$ does not renormalize!)

$$\Gamma_{\rm QCD}\left(A^{\mu}\right) \longrightarrow \Gamma_{\rm QCD}\left(A^{\mu} + \frac{1}{2}Z_{A}Y_{1}A^{\mu}\right)$$

$$= \int z_{A}Y_{1}(x)\frac{1}{2}\underbrace{A^{\mu}\frac{\delta\Gamma_{\rm QCD}(A^{\mu})}{\delta A^{\mu}(x)} - \text{terms from } \xi, \bar{c}}_{}$$

$$\mathcal{L}_{ ext{QCD}} = ar{\psi} i \gamma^{\mu} D_{\mu} \psi - rac{1}{4} \emph{F}_{a}^{\mu
u} \emph{F}_{a \mu
u} + \emph{s} [ar{\emph{c}}_{a} ((\partial_{\mu} \emph{A}_{a}^{\mu}) + rac{\xi}{2} \emph{B}_{a})]$$

Next, Z_A alone:

 $(\bar{c}(\partial^{\mu} A_{\mu})$ does not renormalize!)

$$\Gamma_{\rm QCD}\left(A^{\mu}\right) \longrightarrow \Gamma_{\rm QCD}\left(A^{\mu} + \frac{1}{2}z_{A}Y_{1}A^{\mu}\right)$$

$$= \int z_{A}Y_{1}(x)\frac{1}{2}\underbrace{A^{\mu}\frac{\delta\Gamma_{\rm QCD}(A^{\mu})}{\delta A^{\mu}(x)} - \text{terms from } \xi, \bar{c}}_{=:\mathcal{O}_{A}(x)}$$

$$\mathcal{L}_{ ext{QCD}} = ar{\psi} i \gamma^{\mu} D_{\mu} \psi - rac{1}{4} \emph{F}_{a}^{\mu
u} \emph{F}_{a \mu
u} + \emph{s} [ar{\emph{c}}_{a} ((\partial_{\mu} \emph{A}_{a}^{\mu}) + rac{\xi}{2} \emph{B}_{a})]$$

Next, Z_A alone:

 $(\bar{c}(\partial^{\mu}A_{\mu})$ does not renormalize!)

$$\begin{split} \Gamma_{\rm QCD}\!\left(A^{\mu}\right) &\longrightarrow \Gamma_{\rm QCD}\!\left(A^{\mu} + \tfrac{1}{2}z_{A}Y_{1}A^{\mu}\right) \\ &= \int z_{A}Y_{1}(x)\tfrac{1}{2}\underbrace{A^{\mu}\frac{\delta\Gamma_{\rm QCD}(A^{\mu})}{\delta A^{\mu}(x)} - \text{terms from } \xi, \bar{c}}_{=:O_{4}(x)} \\ O_{4} &= A^{\nu}_{a}(D^{\mu}F_{\mu\nu})_{a} - g\bar{\psi}\gamma^{\mu}A_{\mu}\psi - (\partial^{\mu}\bar{c}_{a})(\partial_{\mu}c_{a}) \end{split}$$

$$\mathcal{L}_{ ext{QCD}} = ar{\psi} i \gamma^{\mu} D_{\mu} \psi - rac{1}{4} F_{a}^{\mu
u} F_{a \mu
u} + s [ar{c}_{a} ((\partial_{\mu} A_{a}^{\mu}) + rac{\xi}{2} B_{a})]$$

Finally,
$$c \rightarrow (1 + \frac{1}{2}z_c Y_1)c$$

on top of all of this, we can apply ordinary renormalization transformation!! $(O_i \rightarrow O_i^{\text{bare}})$

$$\mathcal{L}_{ ext{QCD}} = ar{\psi} i \gamma^{\mu} D_{\mu} \psi - rac{1}{4} \emph{F}_{a}^{\mu
u} \emph{F}_{a \mu
u} + \emph{s} [ar{\emph{c}}_{a} ((\partial_{\mu} \emph{A}_{a}^{\mu}) + rac{\xi}{2} \emph{B}_{a})]$$

Finally, $c \rightarrow (1 + \frac{1}{2}z_c Y_1)c$

$$\mathcal{L}_{\mathrm{QCD}} \longrightarrow \ldots + z_c \frac{1}{2} Y_1 \left(-O_5 \right)$$
 $O_5 = (D^{\mu} \partial_{\mu} \bar{c})_a c_a.$

Result: most general terms linear in $Y_1(x)$

[Kluberg-Stern, Zuber '74; Joglekar, Lee '75]

$$egin{align} \mathcal{L}_{ ext{bare}} &= \mathcal{L}_{ ext{QCD,bare}} + Y_1(x) \sum_{j=1}^5 z_j O_j^{ ext{bare}}(x) + \mathcal{O}(Y_1^2) \ O_1 &= -rac{1}{4} F_a^{\mu
u} F_{\mu
u, a}, \ O_2 &= 0, \ O_3 &= rac{i}{2} \, \overline{\psi} \, \gamma^\mu \overleftrightarrow{D}_\mu \, \psi \ O_4 &= A_a^
u (D^\mu F_{\mu
u})_a - g \overline{\psi} \gamma^\mu A_\mu \psi - (\partial^\mu \overline{c_a})(\partial_\mu c_a), \ O_5 &= (D^\mu \partial_\mu \overline{c})_a c_a. \ \end{pmatrix}$$

Result: most general terms linear in $Y_1(x)$

[Kluberg-Stern, Zuber '74; Joglekar, Lee '75]

$$egin{align} \mathcal{L}_{ ext{bare}} &= \mathcal{L}_{ ext{QCD,bare}} + Y_1(x) \sum_{j=1}^5 z_j O_j^{ ext{bare}}(x) + \mathcal{O}(Y_1^2) \ O_1 &= -rac{1}{4} F_a^{\mu
u} F_{\mu
u, a}, \ O_2 &= 0, \ O_3 &= rac{i}{2} \, \overline{\psi} \, \gamma^\mu \overleftrightarrow{D}_\mu \, \psi \ O_4 &= A_a^
u (D^\mu F_{\mu
u})_a - g \overline{\psi} \gamma^\mu A_\mu \psi - (\partial^\mu \overline{c_a})(\partial_\mu c_a), \ O_5 &= (D^\mu \partial_\mu \overline{c})_a c_a. \ \end{pmatrix}$$

basis of operators required to cancel divergences $O_{4,5}$ not gauge invariant, O_3 vanishes by eq. of motion

$$\sum_{j} Y_1 z_j O_j^{\text{bare}}$$

- z_j = bare quantities, contain $\frac{1}{\epsilon}$, depend on couplings
- New parameters: z_j^{tree}

$$\sum_{j} Y_1 z_j O_j^{\text{bare}}$$

- z_j = bare quantities, contain $\frac{1}{\epsilon}$, depend on couplings
- New parameters: z_i^{tree}
- these enter precisely in products with Y_1 . Here: linearly!

$$\sum_{j} Y_1 z_j O_j^{\text{bare}}$$

- z_j = bare quantities, contain $\frac{1}{\epsilon}$, depend on couplings
- New parameters: z_i^{tree}
- these enter precisely in products with Y_1 . Here: linearly!
- Can write

$$z_j = z_j^{\text{tree}} + \delta z_j = z_i^{\text{tree}} (\delta_{ij} + \delta Z_{ij})$$

$$\sum_{j} Y_1 z_j O_j^{\text{bare}}$$

- z_j = bare quantities, contain $\frac{1}{\epsilon}$, depend on couplings
- New parameters: z_i^{tree}
- these enter precisely in products with Y_1 . Here: linearly!
- Can write

$$z_j = z_j^{\text{tree}} + \delta z_j = z_i^{\text{tree}} (\delta_{ij} + \delta Z_{ij})$$

Notation: operator renormalization

$$\sum_{i} z_{j} O_{j}^{ ext{bare}} = \sum_{ij} z_{i}^{ ext{tree}} (\delta_{ij} + \delta Z_{ij}) O_{j}^{ ext{bare}} \equiv \sum_{i} z_{i}^{ ext{tree}} O_{i, ext{ren}}$$

Next question: what is the result of this operator renormalization? Answered in DREG by trick

[Kluberg-Stern, Zuber '74][Spiridonov '84]

Desired:

• result of $O_{i,\text{ren}} = (\delta_{ij} + \delta Z_{ij})O_i^{\text{bare}}$???

Idea: could be possible to obtain from QCD, since all operators already exist in \mathcal{L}_{QCD}

Next question: what is the result of this operator renormalization? Answered in DREG by trick

[Kluberg-Stern, Zuber '74][Spiridonov '84]

Desired:

• result of $O_{i,\text{ren}} = (\delta_{ij} + \delta Z_{ij})O_j^{\text{bare}}$???

Idea: could be possible to obtain from QCD, since all operators already exist in \mathcal{L}_{QCD}

Observation (valid here, not in general):

- If we know $\int Y_1 \sum z_j O_j^{\text{bare}}$ for $Y_1 = \text{const}$, we know it in general! (no total derivative appears)
- All operators can be expressed by differential operators

Example: $O_1 = -\frac{1}{4}F_a^{\mu\nu}F_{a\mu\nu}$

$$\int O_1 = \left(rac{1}{2}\int Arac{\delta}{\delta A} + D_1
ight)\int \mathcal{L}_{QCD}$$
 $D_1 = -rac{1}{2}g\partial_g + \xi\partial_\xi$

Example:
$$O_1 = -\frac{1}{4}F_a^{\mu\nu}F_{a\mu\nu}$$

$$\int O_1 = \left(\frac{1}{2} \int A \frac{\delta}{\delta A} + D_1\right) \int \mathcal{L}_{QCD}$$

$$D_1 = -\frac{1}{2} g \partial_g + \xi \partial_{\xi}$$

Spiridonov: Now use regularized quantum action principle in DREG

finite =
$$D_1 Z(J) = \int \mathcal{D}\phi \ D_1 \ e^{i \int \mathcal{L}_{bare} + J\phi}$$

= $\int \mathcal{D}\phi \ i \ (D_1 \int \mathcal{L}_{bare}) \ e^{i \int \mathcal{L}_{bare} + J\phi}$

Example:
$$O_1 = -\frac{1}{4}F_a^{\mu\nu}F_{a\mu\nu}$$

$$\int O_1 = \left(\frac{1}{2} \int A \frac{\delta}{\delta A} + D_1\right) \int \mathcal{L}_{QCD}$$

$$D_1 = -\frac{1}{2} g \partial_g + \xi \partial_{\xi}$$

Spiridonov: Now use regularized quantum action principle in DREG

finite =
$$D_1 Z(J) = \int \mathcal{D}\phi \ D_1 \ e^{i\int \mathcal{L}_{\text{bare}} + J\phi}$$

= $\int \mathcal{D}\phi \ i \ \underbrace{(D_1 \int \mathcal{L}_{\text{bare}})}_{\text{finite operator!} \to O_{1,\text{ren}}} e^{i\int \mathcal{L}_{\text{bare}} + J\phi}$

Can represent

$$\int O_{1,\text{ren}} = D_1 \int \mathcal{L}_{\text{bare}} = (D_1 g^{-2} Z_g^{-2}) \int g^2 Z_g^2 O_1^{\text{bare}} + \text{rest}$$

Can represent

$$\int O_{1,\text{ren}} = D_1 \int \mathcal{L}_{\text{bare}} = (D_1 g^{-2} Z_g^{-2}) \int g^2 Z_g^2 O_1^{\text{bare}} + \text{rest}$$

$$\int O_{1, ext{ren}} = D_1 \int \mathcal{L}_{ ext{bare}} = \sum_j (D_1 \log \mathbf{Z}_j) \int O_j^{ ext{bare}}$$
 $\mathbf{Z}_1 = g^{-2} Z_g^{-2}$ $\mathbf{Z}_3 = Z_\psi$ $\mathbf{Z}_4 = Z_g \sqrt{Z_A}$ $\mathbf{Z}_5 = Z_g^{-1} Z_c^{-1/2}$

Can represent

$$\int O_{1,\text{ren}} = D_1 \int \mathcal{L}_{\text{bare}} = (D_1 g^{-2} Z_g^{-2}) \int g^2 Z_g^2 O_1^{\text{bare}} + \text{rest}$$

$$\int O_{1,\mathrm{ren}} = D_1 \int \mathcal{L}_{\mathrm{bare}} = \sum_j (D_1 \log \mathbf{Z}_j) \int O_j^{\mathrm{bare}} = \int \sum_j \mathbf{Z}_{1j} O_j^{\mathrm{bare}}$$

$$\mathbf{Z}_1 = g^{-2} Z_g^{-2}$$

$$\mathbf{Z}_3 = Z_{\psi}$$

$$\mathbf{Z}_4 = Z_g \sqrt{Z_A}$$

$$\mathbf{Z}_5 = Z_g^{-1} Z_c^{-1/2}$$

Can represent

$$\int O_{1,\text{ren}} = D_1 \int \mathcal{L}_{\text{bare}} = (D_1 g^{-2} Z_g^{-2}) \int g^2 Z_g^2 O_1^{\text{bare}} + \text{rest}$$

$$\int O_{1, ext{ren}} = D_1 \int \mathcal{L}_{ ext{bare}} = \sum_j (D_1 \log \mathbf{Z}_j) \int O_j^{ ext{bare}}$$
 $\mathbf{Z}_1 = g^{-2} Z_g^{-2}$ $\mathbf{Z}_3 = Z_\psi$ $\mathbf{Z}_4 = Z_g \sqrt{Z_A}$ $\mathbf{Z}_5 = Z_g^{-1} Z_c^{-1/2}$

In particular, often used result:

$$Z_{11} = 1 + D_1 \log Z_g^{-2} = 1 + \alpha_s \partial_{\alpha_s} \log Z_{\alpha_s}$$

Outline

- Renormalization main theorems and their logical connections
- More on regularizations
- Renormalizability of gauge theories QCD
- lacktriangledown Operator renormalization in gg o H
- 6 Additional topics

Outline

- 5 Additional topics
 - Algebraic renormalization of SUSY
 - More information on operator renormalization
 - Custodial symmetry
 - renormalization of vevs

on non invariant regularizations

• QFT at higher orders: Loops + counterterms $\Gamma^{ren} = \Gamma^{reg} + \Gamma^{ct}$

• Theory defined by symmetries: $S(\Gamma^{reg} + \Gamma^{ct}) = 0$

Case 1: $S(\Gamma^{\text{reg}}) = 0$ Case 2a: $S(\Gamma^{\text{reg}}) = \Delta$, $S(\Gamma^{\text{reg}} + \Gamma^{\text{ct}}) = 0$ Case 2b: $S(\Gamma^{\text{reg}}) = \Delta$, $S(\Gamma^{\text{reg}} + \Gamma^{\text{ct}}) \neq 0$

- Case 1: "Textbook case", case 2a: equally good.
 Decide algebraically whether possible
 ("Algebraic renormalization" [BRS, Piguet, ...])
 symmetry-restoring c.t.s uniquely fixed; rest: multiplicative renorm.
- Case 2b: anomaly theory inconsistent

Questions/Tasks

- as for QCD: finiteness, physical meaning (gauge invariance, SUSY)?
- minimal or full field renormalization?

Tasks:

- Find suitable STI for gauge invariance + SUSY
- Prove that STI can be satisfied (even if regularization breaks it)
- Use STI to obtain answers
- Can draw further interesting conclusions

Difficult to find STI

Gauge fixing required

- ullet SUSY gauge in superfield formalism o solved [Piguet, Sibold '84]
- Wess-Zumino gauge: fewer unphysical d.o.f.
 Breaks SUSY Renorm., sym. identities difficult

[Breitenlohner, Maison '85][White '92, Maggiore, Piguet, Wolf '96]

Peculiarities of the WZ gauge

Algebra modified

$$\{Q_{\alpha}, \bar{Q}_{\dot{\alpha}}\} = 2\sigma^{\mu}_{\alpha\dot{\alpha}}P_{\mu} + \sim \delta_{\text{gauge}}$$

 $[Q_{\alpha}, \delta_{\text{gauge}}] = 0, [P_{\mu}, \delta_{\text{gauge}}] \neq 0$

• Gauge fixing $-\frac{1}{2\xi}(\partial^{\mu}A_{\mu})^2$ breaks SUSY

Must treat gauge invariance, SUSY together

Construction of STI

Generalize BRST, Batalin/Vilkovisky formalism to gauge invariance+SUSY, then STI follows as usual [White '92, Maggiore, Piguet, Wolf '96]

ullet Ghosts for all generators in symmetry algebra \longrightarrow BRS:

$$oldsymbol{s} arphi = (oldsymbol{c}_a \delta_{\mathrm{gauge},a} + \epsilon^{lpha} oldsymbol{Q}_{lpha} + ar{ar{Q}}_{\dot{lpha}} ar{\epsilon}^{\dot{lpha}} - \omega^{\mu} oldsymbol{P}_{\mu}) arphi$$

• BRS transformations of ghosts $\leftrightarrow s^2 = 0$:

$$egin{array}{lcl} sc_a &=& rac{1}{2} g f_{abc} c_b c_c + 2 i \epsilon \sigma^\mu \overline{\epsilon} \mathcal{A}_{a\mu} - i \omega^\mu \partial_\mu c_a \ &s \omega^\mu &=& 2 \epsilon \sigma^\mu \overline{\epsilon} \ \Leftrightarrow \{ \mathcal{Q}_lpha, ar{\mathcal{Q}}_{\dot{lpha}} \} &=& 2 \sigma^\mu_{lpha \dot{lpha}} (P_\mu - i \mathcal{A}_{a\mu} \delta_{\mathrm{gauge},a}) \end{array}$$

MSSM specifics

- abelian subgroup (simpler but less constraining) [Hollik, Kraus, DS '99]
- soft SUSY breaking, e.g.

$$H_1QD + H_2QU \rightarrow \text{allowed}$$

 $H_2^{\dagger}QD + H_1^{\dagger}QU \rightarrow \text{forbidden}$

use coupling to spurions [Maggiore, Piguet, Wolf '96][Hollik, Kraus, DS '01][Golterman, Shamir '10]

ullet Gauge fixing vs mixing $A^0/G^0/Z_{
m long}^\mu$

Resulting STI describes softly broken SUSY, and gauge invariance, WZ gauge fixing [Hollik, Kraus, Roth, Rupp, Sibold, DS '02]

Results very satisfactory

Renormalizability/answers to questions: [Hollik, Kraus, Roth, Rupp, Sibold, DS '02]

- STI can be satisfied: no SUSY or gauge anomalies
- If regularization symmetric: mult., minimal renormalization sufficient
- If not: symmetry-restoring counterterms uniquely determined
- Full field renormalization possible

- complete on-shell unmixing possible (also for unphysical d.o.f.)
- no infrared off-shell div.s

MSSM renormalizable, all above renormalization tranformations ok

Results very satisfactory

Renormalizability/answers to questions: [Hollik, Kraus, Roth, Rupp, Sibold, DS '02]

- STI can be satisfied: no SUSY or gauge anomalies
- If regularization symmetric: mult., minimal renormalization sufficient
- If not: symmetry-restoring counterterms uniquely determined
- Full field renormalization possible

$$\Leftrightarrow \text{after renormalization: } \left(\begin{array}{c} \tilde{\mathit{f}}_{\mathit{L}} \\ \tilde{\mathit{f}}_{\mathit{R}} \end{array} \right) \rightarrow \mathcal{R} \left(\begin{array}{c} \tilde{\mathit{f}}_{1} \\ \tilde{\mathit{f}}_{2} \end{array} \right) \text{ also in STI}$$

- complete on-shell unmixing possible (also for unphysical d.o.f.)
- no infrared off-shell div.s

MSSM renormalizable, all above renormalization tranformations ok

Results very satisfactory

Physical meaning:

- Gauge invariant, SUSY, finite theory, renormalized gauge/SUSY transformations defined
- can define S-matrix, phys. Hilbert space, SUSY operator Q_{α}^{in} :

$$[Q_{\alpha}^{\mathrm{in}}, S] = [Q^{\mathrm{BRS}}, \ldots]$$

 \Rightarrow $Q_{lpha}^{
m in}$ conserved on phys. Hilbert space [Rupp, Scharf, Sibold '01]

Further results possible on:

- gauge dependence
- non-renormalization theorems

Outline

- 5 Additional topics
 - Algebraic renormalization of SUSY
 - More information on operator renormalization
 - Custodial symmetry
 - renormalization of vevs

Various statements on operator renormalization

 use equations of motion of lower orders to modify higher-dimension terms

$$S_{ ext{eff}} o S_{ ext{eff}} + \Delta \phi rac{\delta S_{ ext{eff}}}{\delta \phi} + \mathcal{O}((\Delta \phi)^2)$$

this is a field redefinition and thus does not change physical quantities but only Green functions

 non-gauge invariant operators (which have to be total BRS-variations) do not contribute to observables (but to Green functions)

Outline

- 5 Additional topics
 - Algebraic renormalization of SUSY
 - More information on operator renormalization
 - Custodial symmetry
 - renormalization of vevs

Properties of general, non-SM electroweak theory

$$SU(2)_L \times U(1)_Y \rightarrow U(1)_{Q=T^3+Y}$$

• gauge invariance has four generators, four gauge bosons:

$$T^{A} = (T^{a}, Y),$$
 $A = 1, 2, 3, 4;$ $a = 1, 2, 3.$
 $V^{\mu}_{A} = (W^{\mu}_{a}, B^{\mu})$
 $D^{\mu} = \partial^{\mu} + ig^{A}T^{A}V^{\mu}_{A},$ $g^{A} = (g, g, g, g')$

- commutators are defined by $SU(2)_L \times U(1)_Y$
- vacuum invariant under $Q = T^3 + Y$

Option 1: elementary scalar fields ϕ exist and break symmetry at tree-level

Option 2: different

Properties of general, non-SM electroweak theory

$$SU(2)_L \times U(1)_Y \rightarrow U(1)_{Q=T^3+Y}$$

• gauge invariance has four generators, four gauge bosons:

$$T^A = (T^a, Y),$$
 $A = 1, 2, 3, 4;$ $a = 1, 2, 3.$ $V^\mu_A = (W^\mu_a, B^\mu)$ $D^\mu = \partial^\mu + i g^A T^A V^\mu_A,$ $g^A = (g, g, g, g')$

- commutators are defined by SU(2)_L × U(1)_Y
- vacuum invariant under $Q = T^3 + Y$

Option 1: elementary scalar fields ϕ exist and break symmetry at tree-level

Option 2: different

Properties of general, non-SM electroweak theory

$$SU(2)_L \times U(1)_Y \rightarrow U(1)_{Q=T^3+Y}$$

gauge invariance has four generators, four gauge bosons:

$$T^{A} = (T^{a}, Y),$$
 $A = 1, 2, 3, 4;$ $a = 1, 2, 3.$
 $V^{\mu}_{A} = (W^{\mu}_{a}, B^{\mu})$
 $D^{\mu} = \partial^{\mu} + ig^{A}T^{A}V^{\mu}_{A},$ $g^{A} = (g, g, g, g')$

- commutators are defined by SU(2)_L × U(1)_Y
- vacuum invariant under $Q = T^3 + Y$

Option 1: elementary scalar fields ϕ exist and break symmetry at tree-level

Option 2: different

$$\mathcal{M}_{AB}^2 = \langle \phi
angle^\dagger \{ g^A T^A, g^B T^B \} \langle \phi
angle = \left(egin{array}{ccc} g^2 v^2 & & & & & \ & g^2 v^2 & & & \ & & g^2 u^2 & -g' g u^2 \ & & -g' g u^2 & g'^2 u^2 \end{array}
ight)$$

$$\mathcal{M}_{AB}^2 = \langle \phi
angle^\dagger \{ g^A T^A, g^B T^B \} \langle \phi
angle = \left(egin{array}{ccc} g^2 v^2 & & & & & \ & g^2 v^2 & & & \ & & g^2 u^2 & -g' g u^2 \ & & -g' g u^2 & g'^2 u^2 \end{array}
ight)$$

- v and u are two unknowns: $\rho = \frac{M_W^2}{M_S^2 \cos^2 \theta_W} = \frac{v^2}{u^2}$
 - mass matrix has $U(1)_Q$ invariance \leftrightarrow O(2) invariance:
 - $\rho = 1$ would mean u = v an additional O(3) or SU(2) custodial symmetry!

Restriction: elementary scalar fields ϕ , work at tree-level

- v and u are two unknowns: $\rho = \frac{M_W^2}{M_P^2 \cos^2 \theta_W} = \frac{v^2}{u^2}$
 - mass matrix has $U(1)_Q$ invariance \leftrightarrow O(2) invariance:
 - $\rho = 1$ would mean u = v an additional O(3) or SU(2) custodial symmetry!

Restriction: elementary scalar fields ϕ , work at tree-level Only have to compute $|D^{\mu}\phi|^2$, set $\phi \to \langle \phi \rangle$

$$\mathcal{M}_{AB}^2 = \langle \phi
angle^\dagger \{ g^A T^A, g^B T^B \} \langle \phi
angle = \left(egin{array}{ccc} g^2 v^2 & & & & & \ & g^2 v^2 & & & \ & & g^2 u^2 & -g' g u^2 \ & & -g' g u^2 & g'^2 u^2 \end{array}
ight)$$

- v and u are two unknowns: $\rho = \frac{M_W^2}{M_F^2 \cos^2 \theta_W} = \frac{v^2}{u^2}$
 - mass matrix has $U(1)_Q$ invariance \leftrightarrow O(2) invariance:
 - $\rho = 1$ would mean u = v an additional O(3) or SU(2) custodial symmetry!

Restriction: elementary scalar fields ϕ , work at tree-level Only have to compute $|D^{\mu}\phi|^2$, set $\phi \to \langle \phi \rangle$

Result: always has the form $\frac{1}{2}V_A^\mu \mathcal{M}_{AB}^2 V_{B\mu}$ with

$$v$$
 and u are two unknowns: $\rho = \frac{M_W^2}{M_Z^2 \cos^2 \theta_W} = \frac{v^2}{u^2}$

- mass matrix has $U(1)_Q$ invariance \leftrightarrow O(2) invariance:
- $\rho = 1$ would mean u = v an additional O(3) or SU(2) custodial symmetry!

Proof of this general form of the mass matrix

Use U(1) $_{Q=T^3+Y}$ invariance of vacuum: $(T^3+Y)\langle\phi\rangle=0$

- $\mathcal{M}^2_{A3} = -rac{g}{g'}\mathcal{M}^2_{A4}$ etc \Rightarrow lower right block
- $0 = \langle \phi \rangle^{\dagger} [T^3 + Y, g^A T^A g^B T^B] \langle \phi \rangle$ leads to $(A = 1, B = 2) : \mathcal{M}_{11}^2 = \mathcal{M}_{22}^2$ $(A = B = 1, 2) : \mathcal{M}_{12}^2 = \mathcal{M}_{21}^2 = 0$ $(A = 1, B = 3) : \mathcal{M}_{13}^2 = \mathcal{M}_{14}^2 = 0$ etc.
- this proves the block structure

Proof of this general form of the mass matrix

Use U(1)_{$Q=T^3+Y$} invariance of vacuum: $(T^3+Y)\langle\phi\rangle=0$

- $\mathcal{M}_{A3}^2 = -\frac{g}{g'}\mathcal{M}_{A4}^2$ etc \Rightarrow lower right block
- $0 = \langle \phi \rangle^{\dagger} [T^3 + Y, g^A T^A g^B T^B] \langle \phi \rangle$ leads to $(A = 1, B = 2) : \mathcal{M}_{11}^2 = \mathcal{M}_{22}^2$ $(A = B = 1, 2) : \mathcal{M}_{12}^2 = \mathcal{M}_{21}^2 = 0$ $(A = 1, B = 3) : \mathcal{M}_{13}^2 = \mathcal{M}_{14}^2 = 0$ etc
- this proves the block structure

Theorem 2: Goldstone boson kinetic terms in the corresponding non-gauge theory

Answer: the 3 \times 3-submatrix \mathcal{M}^2_{ab} !

$$\mathcal{L}_{\mathsf{kin},G} = rac{1}{2} \langle \phi
angle^\dagger \{ \mathcal{T}^{\pmb{a}}, \mathcal{T}^{\pmb{b}} \} \langle \phi
angle (\partial^\mu G^{\pmb{a}}) (\partial_\mu G^{\pmb{b}}) = rac{\mathcal{M}_{\pmb{a}\pmb{b}}^2}{2 \pmb{\sigma}^2} (\partial^\mu G^{\pmb{a}}) (\partial_\mu G^{\pmb{b}})$$

Theorem 2: Goldstone boson kinetic terms in the corresponding non-gauge theory

- still work at tree level, with elementary scalar fields
- consider the corresponding non-gauge theory with g=g'=0 $SU(2)_{L}\times U(1)_{Y}\rightarrow U(1)_{Q-T^{3}+Y}$
- three physical, massless Goldstone bosons G^a , a = 1, 2, 3:

Answer: the 3 \times 3-submatrix \mathcal{M}_{ab}^2 !

$$\mathcal{L}_{\mathsf{kin},G} = rac{1}{2} \langle \phi
angle^\dagger \{ \mathcal{T}^{m{a}}, \mathcal{T}^{m{b}} \} \langle \phi
angle (\partial^\mu G^{m{a}}) (\partial_\mu G^{m{b}}) = rac{\mathcal{M}_{ab}^2}{2g^2} (\partial^\mu G^{m{a}}) (\partial_\mu G^{m{b}})$$

Theorem 2: Goldstone boson kinetic terms in the corresponding non-gauge theory

- still work at tree level, with elementary scalar fields
- consider the corresponding non-gauge theory with $g=g^\prime=0$

$$SU(2)_L \times U(1)_Y \rightarrow U(1)_{Q=T^3+Y}$$

• three physical, massless Goldstone bosons G^a , a = 1, 2, 3: What are their kinetic terms?

Answer: the 3 \times 3-submatrix \mathcal{M}_{ab}^2 !

$$\mathcal{L}_{\mathsf{kin},G} = rac{1}{2} \langle \phi
angle^\dagger \{ \mathit{T}^a, \mathit{T}^b \} \langle \phi
angle (\partial^\mu \mathit{G}^a) (\partial_\mu \mathit{G}^b) = rac{\mathcal{M}_{ab}^2}{2 \mathit{g}^2} (\partial^\mu \mathit{G}^a) (\partial_\mu \mathit{G}^b)$$

Define Goldstone boson fields in nonlinear form by splitting off factor from ϕ :

$$\phi(\mathbf{x}) = \mathbf{e}^{iT^aG^a(\mathbf{x})}\tilde{\phi}(\mathbf{x}) \equiv U(\mathbf{x})\tilde{\phi}(\mathbf{x})$$

ullet such that $ilde{\phi}$ only transforms under ${\it Q}={\it T}^3+{\it Y}$

Define Goldstone boson fields in nonlinear form by splitting off factor from ϕ :

$$\phi(\mathbf{x}) = \mathbf{e}^{iT^aG^a(\mathbf{x})}\tilde{\phi}(\mathbf{x}) \equiv U(\mathbf{x})\tilde{\phi}(\mathbf{x})$$

- ullet such that $ilde{\phi}$ only transforms under ${\it Q}={\it T}^3+{\it Y}$
- fixes gauge transformations of matrix field $U = e^{iT^aG^a}$ completely

Define Goldstone boson fields in nonlinear form by splitting off factor from ϕ :

$$\phi(x) = e^{iT^aG^a(x)}\tilde{\phi}(x) \equiv U(x)\tilde{\phi}(x)$$

- ullet such that $ilde{\phi}$ only transforms under ${\it Q}={\it T}^3+{\it Y}$
- ullet fixes gauge transformations of matrix field $U=e^{iT^aG^a}$ completely
- for constant G^a : U corresponds to global gauge transformation and drops out of \mathcal{L} , hence G^a only appear with derivatives and are really the massless Goldstone modes.

Define Goldstone boson fields in nonlinear form by splitting off factor from ϕ :

$$\phi(x) = e^{iT^aG^a(x)}\tilde{\phi}(x) \equiv U(x)\tilde{\phi}(x)$$

- ullet such that $ilde{\phi}$ only transforms under ${\it Q}={\it T}^3+{\it Y}$
- fixes gauge transformations of matrix field $U = e^{iT^aG^a}$ completely
- for constant G^a : U corresponds to global gauge transformation and drops out of \mathcal{L} , hence G^a only appear with derivatives and are really the massless Goldstone modes.

Kinetic terms:

$$\mathcal{L}_{\mathsf{Higgs}} = |\partial^{\mu}\phi|^2 = \langle \tilde{\phi} \rangle^{\dagger} \partial^{\mu} U^{\dagger} \partial_{\mu} U \langle \tilde{\phi} \rangle + \dots$$

lead to the above statement!

Consequence: relation to custodial symmetry

What is custodial symmetry?

A symmetry of the non-gauge theory for g = g' = 0, under which the Goldstone bosons transform as an SU(2) (or SO(3)) triplet:

$$G^a \rightarrow R_{ab}G^b, R \in SO(3)$$

Consequence: relation to custodial symmetry

What is custodial symmetry?

A symmetry of the non-gauge theory for g = g' = 0, under which the Goldstone bosons transform as an SU(2) (or SO(3)) triplet:

$$G^a o R_{ab}G^b, R \in SO(3)$$

If custodial symmetry holds, then the Goldstone kinetic terms are

$$\propto \mathcal{M}_{ab}^2 \propto \delta_{ab}$$

and thus u = v in the vector boson mass matrix:

Custodial Symmetry in SM

rewrite SM Higgs doublet and Higgs potential using

$$\phi = \left(\begin{array}{c} \phi^+ \\ \phi^0 \end{array} \right) \longrightarrow \Phi = \left(\begin{array}{cc} \phi^{0*} & \phi^+ \\ -\phi^- & \phi^0 \end{array} \right)$$

Custodial Symmetry in SM

rewrite SM Higgs doublet and Higgs potential using

$$\phi = \left(\begin{array}{c} \phi^+ \\ \phi^0 \end{array} \right) \longrightarrow \Phi = \left(\begin{array}{cc} \phi^{0*} & \phi^+ \\ -\phi^- & \phi^0 \end{array} \right)$$

$$V(\Phi) = \mu^2 \text{Tr}(\Phi^{\dagger}\Phi) + \lambda \text{Tr}(\Phi^{\dagger}\Phi)^2$$

Custodial Symmetry in SM

rewrite SM Higgs doublet and Higgs potential using

$$\phi = \left(\begin{array}{c} \phi^+ \\ \phi^0 \end{array}\right) \longrightarrow \Phi = \left(\begin{array}{cc} \phi^{0*} & \phi^+ \\ -\phi^- & \phi^0 \end{array}\right)$$

$$V(\Phi) = \mu^2 \text{Tr}(\Phi^{\dagger}\Phi) + \lambda \text{Tr}(\Phi^{\dagger}\Phi)^2$$

- symmetric under $SU(2)_L \times SU(2)_R$, $\Phi \to L\Phi R^{\dagger}$
- vacuum $\langle \Phi \rangle_{\text{vac}} = \begin{pmatrix} v & 0 \\ 0 & v \end{pmatrix}$ invariant under SU(2)_{L=R}
- $(U(1)_Y$ and $U(1)_Q$ are subgroups)

Violation of Custodial Symmetry by Higgs Triplet

- Triplet Φ, Y=0, SU(2)⇔O(3)-rotations
- but in vacuum: $\langle \Phi \rangle = \begin{pmatrix} 0 \\ 0 \\ \nu \end{pmatrix}$, no remnant SU(2) or O(3)
- mass term

$$\mathcal{M}^2_{ab} = \langle \phi
angle^\dagger \{ \mathcal{T}^a, \mathcal{T}^b \} \langle \phi
angle = \left(egin{array}{ccc} g_2^2 v^2 & & & & \ & g_2^2 v^2 & & & \ & & 0 & 0 \ & & 0 & 0 \end{array}
ight)$$

- $M_W^2 = g_2^2 v^2$, $M_Z^2 = 0$
- ... but it can be well motivated to consider such models

Outline

- 5 Additional topics
 - Algebraic renormalization of SUSY
 - More information on operator renormalization
 - Custodial symmetry
 - renormalization of vevs

Renormalization of VEVs

Higgs/spontaneously broken gauge invariance:

$$\phi \rightarrow \phi + V$$

such that $\langle \phi \rangle = 0$, i.e. tadpoles vanish Need to renormalize:

$$\phi \to \sqrt{Z}\phi$$
, $\mathbf{v} \to \mathbf{v} + \delta \mathbf{v}$

Details and questions

Most generic renormalization transformation:

$$(\phi + v)
ightarrow \sqrt{Z}\phi + v + \delta v$$
 or $(\phi + v)
ightarrow \sqrt{Z}(\phi + v + \delta ar{v})$

Ultimately δv is important for $\delta \tan \beta$, β functions, etc.

 $\delta \bar{v}$ characterizes to what extent v renormalizes differently from ϕ .

Details and questions

Most generic renormalization transformation:

$$(\phi + v) o \sqrt{Z}\phi + v + \delta v$$
 or $(\phi + v) o \sqrt{Z}(\phi + v + \delta \bar{v})$

Ultimately δv is important for $\delta \tan \beta$, β functions, etc.

 $\delta \bar{\mathbf{v}}$ characterizes to what extent \mathbf{v} renormalizes differently from ϕ .

Questions:

- When/why $\delta \bar{v} \neq 0$?
- 2 Properties of $\delta \bar{v}$?

Details and questions

Most generic renormalization transformation:

$$(\phi + v) o \sqrt{Z}\phi + v + \delta v$$
 or $(\phi + v) o \sqrt{Z}(\phi + v + \delta ar{v})$

Ultimately δv is important for $\delta \tan \beta$, β functions, etc.

 $\delta \bar{\mathbf{v}}$ characterizes to what extent \mathbf{v} renormalizes differently from ϕ .

Questions:

- When/why $\delta \bar{v} \neq 0$?
- 2 Properties of $\delta \bar{\mathbf{v}}$?

Idea:

- $\bullet \ \delta \bar{\mathbf{v}} = \mathbf{v} \delta \hat{\mathbf{Z}}$
- compute $\delta \hat{Z}$ (using STI)

Current status for RGE coefficients

needed by SUSY spectrum generators (Spheno, Softsusy, SuseFlav, FlexibleSUSY, Sarah)

Model β (phys. parameter) γ (fields)

∀ gauge theory Machacek, Vaughn '83, Luo et al '03

∀ SUSY model Martin, Vaughn; Jack, Jones; Yamada '93 partially

Note in SUSY: $\gamma(\text{scalar in WZ gauge+Landau or } R_{\xi} \text{ gauge}) \neq \gamma(\text{ superfield}) \stackrel{?}{=} \gamma(\text{ light cone gauge})$

Model $\beta_{\nu}^{(1)}$ $\beta_{\nu}^{(2)}$

MSSM Chankowski Nucl.Phys. B423 Yamada 94 $O(g^2Y^2)$

Athron, DS, Voigt '12

∀ gauge theory ?

∀ SUSY model ?

Here: fill the gaps

Meaning of running v, alternative treatment

Fix renormalization scale μ , renormalize all divergences in \overline{MS} or \overline{DR}

• adjust v such that tadpoles $\langle \phi \rangle = 0$

functions

- v= minimum of renormalized effective scalar potential at scale μ Change μ , change all parameters, including v, according to β
- all Green functions unchanged, including $\langle \phi \rangle = 0$ Minimum of renormalized effective scalar potential is μ -dependent and gauge dependent \Rightarrow not an observable

Meaning of running v, alternative treatment

Fix renormalization scale μ , renormalize all divergences in \overline{MS} or \overline{DR}

- adjust v such that tadpoles $\langle \phi \rangle = 0$
- ullet v= minimum of renormalized effective scalar potential at scale μ

Change μ , change all parameters, including \emph{v} , according to β functions

• all Green functions unchanged, including $\langle \phi \rangle = 0$

Minimum of renormalized effective scalar potential is $\mu\text{-dependent}$ and gauge dependent \Rightarrow not an observable

Very different treatment of v possible,

e.g. [Jegerlehner, Kalmykov, Kniehl '13][Bednyakov, Pikelner, Velizhanin '13]

- always define $v_{\text{bare}} = \text{Minimum of bare eff. scalar potential}$
- then v_{bare} =abbreviation of combination of bare parameters
- In this scheme, δv , δM_W , δ tan β =gauge independent, but tadpoles are divergent (physical quantities unchanged)

Influence of global gauge invariance in a nutshell

When does $\delta \bar{v}$ appear?

global gauge invariance
$$\Rightarrow \delta \bar{v} = 0$$
 no global gauge invariance $\Rightarrow \delta \bar{v} \neq 0$

 R_{ξ} gauge fixing:

$$F = \partial^{\mu} A_{\mu} - \xi ev(2 \operatorname{Im} \phi)$$

 R_{ξ} breaks global gauge invariance for $\xi \neq 0 \Rightarrow \delta \bar{\nu} \neq 0$.

Sketch of the usual counterterm procedure

Compute loops in one of the possible regularizations.

- all divergences correspond to local terms in the Lagrangian
- can be absorbed by adding counterterms

$$egin{aligned} \mathcal{L}_{\mathsf{cl}} + \mathcal{L}_{\mathsf{ct}} &= \ldots - oldsymbol{e} \ ar{\psi} \gamma^{\mu} \psi oldsymbol{A}_{\mu} \ &+ \ldots - \delta oldsymbol{e} (\epsilon) ar{\psi} \gamma^{\mu} \psi oldsymbol{A}_{\mu} \end{aligned}$$

- ullet by choosing ϵ -dependence appropriately, all divergences cancel
- arbitrary finite parts ↔ local terms allowed by unitarity/causality

results take a form like

$$e^2 + \delta e^2(\epsilon) - e^2 \Pi(q; \epsilon)$$

• concrete $(|q^2| \gg m_e^2)$:

$$\begin{split} &\Pi(\boldsymbol{q};\epsilon) = \frac{\alpha}{3\pi} \left(-\frac{1}{\epsilon} - \log\left(\frac{-\boldsymbol{q}^2}{\bar{\mu}^2}\right) + \frac{5}{3} + \mathcal{O}(\epsilon) \right) \\ &\frac{\delta \boldsymbol{e}^2(\epsilon)}{\boldsymbol{e}^2} = \frac{\alpha}{3\pi} \left(-\frac{1}{\epsilon} + \text{fin.const.} \right) \end{split}$$

- Now two directions:
 - renormalization schemes
 - first, play around a little; bare quantities

$$e^2 + \delta e^2(\epsilon) - e^2 \Pi(q; \epsilon)$$

$$e^{2}$$
 $+\delta e^{2}(\epsilon) - e^{2}\Pi(q;\epsilon)$
= e^{2} $-e^{2}\Pi_{ren}(q)$

manifestly finite

$$e^{2} + \delta e^{2}(\epsilon) - e^{2}\Pi(q; \epsilon)$$

$$= e^{2}_{\text{bare}}(\epsilon) - e^{2}(\epsilon)\Pi(q; \epsilon)$$

$$= e^{2}_{\text{bare}}(\epsilon) - e^{2}_{\text{bare}}(\epsilon)\Pi(q; \epsilon) + \dots$$

manifestly finite

$$e^2$$
 $+\delta e^2(\epsilon) - e^2\Pi(q;\epsilon)$ $=e^2_{\mathsf{bare}}(\epsilon)$ $-e^2(\epsilon)\Pi(q;\epsilon)$ $=e^2_{\mathsf{pare}}(\epsilon)$ $-e^2_{\mathsf{pare}}(\epsilon)\Pi(q;\epsilon) + \dots$

- manifestly finite
- only e_{bare} matters

$$e_{\mathsf{bare}}(\epsilon) = e + \delta e(\epsilon)$$

$$e^2$$
 $+\delta e^2(\epsilon) - e^2\Pi(q;\epsilon)$ $=e^2_{\mathsf{bare}}(\epsilon)$ $-e^2(\epsilon)\Pi(q;\epsilon)$ $-e^2_{\mathsf{bare}}(\epsilon)\Pi(q;\epsilon)+\dots$

- manifestly finite
- only e_{bare} matters

$$e_{\mathsf{bare}}^2(\epsilon) = e^2 + \delta e^2(\epsilon)$$

$$e^2$$
 $+\delta e^2(\epsilon) - e^2\Pi(q;\epsilon)$ $=e^2_{\mathsf{bare}}(\epsilon)$ $-e^2(\epsilon)\Pi(q;\epsilon)$ $=e^2_{\mathsf{pare}}(\epsilon)$ $-e^2_{\mathsf{pare}}(\epsilon)\Pi(q;\epsilon) + \dots$

- manifestly finite
- only e_{bare} matters

$$egin{aligned} \mathcal{L}_{ extsf{cl}} + \mathcal{L}_{ extsf{ct}} &= \ldots - oldsymbol{e} \, ar{\psi} \gamma^{\mu} \psi oldsymbol{A}_{\mu} \ &+ \ldots - \delta oldsymbol{e} (\epsilon) ar{\psi} \gamma^{\mu} \psi oldsymbol{A}_{\mu} \ &= \mathcal{L}_{ extsf{bare}} = \ldots - oldsymbol{e}_{ extsf{bare}} (\epsilon) ar{\psi} \gamma^{\mu} \psi oldsymbol{A}_{\mu} \end{aligned}$$

Outline

- Renormalization schemes, scheme independence
- DRED, quantum action principle, and Higgs mass

$$\begin{split} &\Pi(\boldsymbol{q};\epsilon) = \frac{\alpha}{3\pi} \left(-\frac{1}{\epsilon} - \log\left(\frac{-q^2}{\bar{\mu}^2}\right) + \frac{5}{3} + \mathcal{O}(\epsilon) \right) \\ &\frac{\delta \boldsymbol{e}(\epsilon)}{\boldsymbol{e}} = \frac{\alpha}{6\pi} \left(-\frac{1}{\epsilon} + \text{fin.const.} \right) \\ &\Pi_{\text{ren}}(\boldsymbol{q}) = \Pi(\boldsymbol{q}) - 2\frac{\delta \boldsymbol{e}}{\boldsymbol{e}} \end{split}$$

Renormalization scheme = choice of fin.const.

on-shell
$$\Pi_{\text{ren}}(0)=0$$
 \overline{MS} fin.const. $=0$
 $\Delta \alpha (M_Z)$ " $2\frac{\delta e}{\Omega}=\Pi^{\text{fermion}}(M_Z)+\Pi^{\text{rest}}(0)$

for Π_{ren} , a QED Ward identity was used to eliminate field renormalization

$$\begin{split} &\Pi(q;\epsilon) = \frac{\alpha}{3\pi} \left(-\frac{1}{\epsilon} - \log\left(\frac{-q^2}{\bar{\mu}^2}\right) + \frac{5}{3} + \mathcal{O}(\epsilon) \right) \\ &\frac{\delta e(\epsilon)}{e} = \frac{\alpha}{6\pi} \left(-\frac{1}{\epsilon} + \text{fin.const.} \right) \\ &\Pi_{\text{ren}}(q) = \Pi(q) - 2\frac{\delta e}{2} \end{split}$$

Renormalization scheme = choice of fin.const. Possibilities (all equivalent):

on-shell
$$\Pi_{\text{ren}}(0)=0$$
 \overline{MS} fin.const. $=0$ $\Delta \alpha(M_Z)$ " $2\frac{\delta e}{\Omega}=\Pi^{\text{fermion}}(M_Z)+\Pi^{\text{rest}}(0)$

for Π_{ren} , a QED Ward identity was used to eliminate field renormalization

• Lagrangian contains ϵ -dependent, "bare" quantities:

$$\mathcal{L}_{\mathsf{bare}} = \ldots - extit{e}_{\mathsf{bare}}(\epsilon) ar{\psi} \gamma^{\mu} \psi extit{A}_{\mu}$$

which can be split into renormalized and counterterm quantities

$$e_{\text{bare}}(\epsilon) = e_{\text{ren}} + \delta e^{1L} + \delta e^{2L} + \dots$$

= $e_{\text{ren}} + a_1(\epsilon)e_{\text{ren}}^3 + \dots$

- Renormalization group
- power counting/multiplicative renormalization

Outline

- Renormalization schemes, scheme independence
- DRED, quantum action principle, and Higgs mass

Another possibility: Quantum Action Principle

Task: consider e.g. SUSY of Green's functions

SUSY Ward/ST identities: $i \delta_{SUSY} \langle T\phi_1 \dots \phi_n \rangle \stackrel{?}{=} 0$

Quantum action principle: $i \delta_{SUSY} \langle T \phi_1 \dots \phi_n \rangle = \langle T \phi_1 \dots \phi_n \Delta \rangle$

- ullet $\Delta \equiv \int \delta_{SUSY} {\cal L}$ in ${\it D}$ dimensions
- if $\Delta=0$ were true, all SUSY Ward and Slavnov-Taylor identities would be satisfied on the regularized level

Very useful theorem, valid at all orders

Proof of Quantum Action Principle

Depends on regularization:

$$i \, \delta_{\text{sym}} \langle T \phi_1 \dots \phi_n \rangle = \langle T \phi_1 \dots \phi_n \Delta \rangle, \quad \Delta = \int \delta_{\text{sym}} \mathcal{L}$$

Proofs:

BPHZ DREG DRED

[Lowenstein et al '71]

[Breitenlohner, Maison '77]

[DS '05]

Application of Quantum action principle

Example 1: QCD and gauge invariance!

$$\Delta \equiv \delta_{BRS} \mathcal{L}_{QCD}^{DREG} = 0$$
 vanishes!!

Quantum action principle:
$$i \delta_{SUSY} \langle T\phi_1 \dots \phi_n \rangle = \langle T\phi_1 \dots \phi_n \Delta \rangle$$

= 0

 \Rightarrow We know for decades that DREG preserves QCD gauge invariance at all orders! [Breitenlohner, Maison '77]

Application of Quantum Action Principle

Example 2: SUSY of DRED:

$$\Delta \equiv \delta_{SUSY} \mathcal{L}^{DRED} \neq 0$$

gives rise to Feynman rules [DS '05]

- \bullet DRED might break some SUSY-identities \to study each case seperately
- quantum action principle still useful to check which identities are valid

Higgs boson mass and quartic coupling

Higgs mass

- M_h governed by quartic Higgs self coupling λ
- $\lambda \propto g^2$ in SUSY

Quartic coupling and SUSY

Slavnov-Taylor identity

- expresses $\lambda \propto g^2$
- Needs to be verified

$$0 \stackrel{?}{=} \delta_{SUSY} \langle hhh\tilde{H} \rangle$$

Quartic coupling and SUSY

Explicit computation \Rightarrow STI valid in DRED at two-loop level [Hollik, DS '05]

Quartic coupling and SUSY

Results:

- Two-loop STI valid in DRED (in Yukawa-approximation, $\mathcal{O}(\alpha_{t,b}^2, \alpha_{t,b}\alpha_s)$)
- for M_h-calculation at this order, multiplicative renormalization correct
- Previous calculations sufficient

Explicit computation \Rightarrow STI valid in DRED at two-loop level [Hollik, DS '05]

Practical consequences

- DREG preserves QCD gauge invariance but breaks SUSY
- DRED preserves SUSY in many but not all cases
- The Quantum Action Principle holds and is useful

Current status ok but should be improved in view of future more precise SUSY computations