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1 Useful relations in D = 2(λ + 1) dimensions

The loop integrals are computed by using dimensional regularization, i.e. we set the spacetime
dimension to

D = 2(λ+ 1) , λ = 1− ε . (1.1)

Also, the Wick rotation to Euclidean space is always understood. Here, we discuss the
Euclidean versions of the integrals. The transformation of a propagator with weight α

between x- and p-space reads

1

k2α
=

Γ(λ+ 1− α)

Γ(α)πλ+1

∫

dDx e2ik·x

x2(λ+1−α)
,

kµ

k2α
= −i

Γ(λ + 2− α)

Γ(α)πλ+1

∫

dDx e2ik·x xµ

x2(λ+2−α)
.

(1.2)

We normalize a propagator-type L-loop integral in momentum space as

IL(p) =

∫

dDk1

(2π)D
. . .

dDkL

(2π)D
1

Π1 . . .ΠP
, (1.3)

where the number of propagators is P , and the denominator Π of each propagator is a
quadratic polynomial of a subset of the loop momenta k and possibly also the external
momentum p.

This integral is transformed to an integral over points in x-space by inserting (1.2), and
then integrating over the L loop momenta k, which gives L δ-functions, each with a prefactor
πD. We then obtain inD = 2(λ+1) dimensions for propagators which all carry weight factors
α = 1 and which do not have non-trivial numerators

IL =
Γ(λ)P

(22LπP )λ+1

∫

dDx1 . . .d
DxP−L e

2ip·(xout−xin)

X1 . . .XP

, (1.4)

where the denominator X of each propagator in x-space only depends on the distance of two
points, i.e. it is a function of only two coordinates.
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2 G-functions

The G-functions are e.g. used in [1, 2].

2.1 Integrals without numerators

The relations (1.2) can be used to directly obtain the expressions for certain integrals. For ex-
ample, a general one-loop integral with weights α and β for the two propagators is expressed
as

α

β

=
1

(2π)D

∫

dDk

k2α(k − p)2β
=

Γ(λ+ 1− α)Γ(λ+ 1− β)

(4π2)λ+1Γ(α)Γ(β)

∫

dDx e2ip·x

x2λ+2−α−β

=
Γ(λ+ 1− α)Γ(λ+ 1− β)Γ(α+ β − λ− 1)

(4π)λ+1Γ(α)Γ(β)Γ(2λ+ 2− α− β)

1

p2(α+β−λ−1)
.

(2.1)

This relation is represented by

α

β

= G(α, β)
α+β−λ−1

, (2.2)

where the G-function is given by

G(α, β) =
Γ(λ+ 1− α)Γ(λ+ 1− β)Γ(α+ β − λ− 1)

(4π)λ+1Γ(α)Γ(β)Γ(2λ+ 2− α− β)
. (2.3)

The G-function can now be used to compute the simplest scalar one-loop integral as

= G(1, 1)
1−λ

. (2.4)

This integral is logarithmically UV divergent in four dimensions. The divergence is regular-
ized by reducing the dimension as in (1.1), introducing the parameter ε. With the properties

Γ(1 + x) = xΓ(x) , Γ(n) = (n− 1)! , (2.5)

and the series expansion for the Γ-functions

ln Γ(1− x) = γx+
∞
∑

n=2

1

n
ζ(n)xn , ζ(n) =

∞
∑

k=1

1

kn
, (2.6)

we can then obtain the pole part of the above expression as

=
1

(4π)2ε
, (2.7)

where the box drawn around the integral denotes the overall UV divergence of that integral
given by the simple 1

ε
pole in this case.
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We can use the G-functions to obtain integrals at higher order. For example, we find

= G(1, 1) 1−λ = G(1, 1)
2−λ

= G(1, 1)G(2− λ, 1)
2−2λ

,

= G(1, 1)
2−λ

= G(1, 1)G(2− λ, 1)
3−2λ

= G(1, 1)G(2− λ, 1)G(3− 2λ, 1)
3−3λ

.

(2.8)

The above integrals are also logarithmically UV divergent. The expansion of the first integral
in terms of ε yields

=
1

(4π)4

[ 1

2ε2
+

1

ε

(5

2
− γ + ln

4πµ2

p2

)

+O(ε)0
]

. (2.9)

We see that the simple 1
ε
pole of the UV divergence depends on the logarithm of the external

momentum p.1 The cancellation of this divergence hence seem to require a counterterm which
is non-local. However, this is not the case. The presence of higher order poles in ε indicates
the presence of subdivergences. The above integral contains a one-loop subdivergence which
is removed by a corresponding one-loop counterterm. The counterterm at two loops should
thus be read-off from the overall UV divergence of the integral, i.e. from the UV divergence
which remains after the one-loop subdivergence has been subtracted. We hence have to
compute

− =
1

(4π)4

[

−
1

2ε2
+

1

2ε
+O(ε0)

]

. (2.10)

From now on we will understand that a box drawn around a loop integral denotes the
overall UV divergence of this integral, given by the pole part after all subdivergences have
been subtracted. We hence write

=
1

(4π)4

[

−
1

2ε2
+

1

2ε

]

. (2.11)

The overall UV divergence of the three-loop integral in (2.8) is found by extracting the pole
part of the expression

− − (2.12)

The result then reads

=
1

(4π)6

[ 1

6ε3
−

1

2ε2
+

2

3ε

]

(2.13)

1The mass µ comes from a factor µ4ε in front of the dimensionally regularized integral which has to be
added to preserve the total mass dimension.
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2.2 Integrals with numerators

Very often one is confronted with scalar products of momenta in the numerators of loop
integrals. If two contracted momenta are attached to different lines of a cubic vertex, the
integral can be simplified by completing the square. I.e. one rewrites the scalar product as
linear combination of the squares of those momentum combinations, which appear in the
denominator. E.g. the scalar product of momenta p and q can be rewritten as

p · q =
1

2
(±(p± q)2 ∓ p2 ∓ q2) . (2.14)

We can then reexamine the simple scalar integral (2.2), adding a momentum vector in the
numerator with Lorentz index µ. Since the final result can only depend on the external
momentum, it must be proportional to pµ. We indicate the momentum in the numerator
by an arrow at that line which carries the momentum. We do not write Lorentz indices
explicitly. This yields

α

β

= G1(α, β)
α+β−λ−1

, (2.15)

where the functionG1 can be obtained by completing the square with the external momentum
as follows

α

β

=

∫

dDk

(2π)D
k · p

k2α(k − p)2β
=

1

2

∫

dDk

(2π)D
−(k − p)2 + k2 + p2

k2α(k − p)2β

=
1

2

(

−
α

β−1

+
α−1

β

+
α

β

)

.

(2.16)

On the l.h.s. it is thereby understood that the momenta indicated by arrows of the same
type are contracted. Comparing with (2.15), and using (2.2), we read off

G1(α, β) =
1

2
(−G(α, β − 1) +G(α− 1, β) +G(α, β)) . (2.17)

If the numerator contains the scalar product of the momenta of the two propagators in the
loop, we can use momentum conservation to obtain

α

β

=
α

β

−

α−1

β

. (2.18)

We hence immediately obtain

α

β

= G2(α, β)
α+β−λ−2

, (2.19)

where

G2(α, β) =
1

2
(−G(α, β − 1)−G(α− 1, β) +G(α, β)) . (2.20)

4



, ,

Figure 1: Loop integrals which cannot be solved by contracting bubbles

As an example we use the above given G-functions to immediately write down the result
for certain class of integrals. We find

1

L

3

2 = G1(2, 1)G1(3− λ, 1) . . .G1(L− (L− 2)λ, 1)G2(L+ 1− (L− 1)λ, 1)

=
1

(4π)2L

(

−
1

Lε
+O(ε0)

)

.

(2.21)
The types of integrals which can be directly solved in terms of G-functions are only a

very small subclass of integrals. For example, integrals of the form given in Fig. 1 cannot
be directly transformed into G-functions, they are not solvable by ‘contracting bubbles’. In
the first and third graph, external momentum has to flow through the attached external
lines. This is necessary to regulate the appearing IR divergences, which in four dimensions
appear when two propagators without any numerators are attached to each other in a loop,
and momentum is running only through these two legs of the vertex, where they meet.
The second graph has no IR divergence, the external momenta can be rearranged in any
convenient form or be put to zero when one is only interested in its UV divergence. It can,
however not be solved in terms of G-functions for any configuration of its external momenta.

To solve the above types of integrals, the so-called Gegenbauer polynomial x-space tech-
nique proves to be very useful. It is described in the following section.

3 Gegenbauer polynomial x-space technique

The Gegenbauer polynomial x-space was introduced in [3]. Integrals with scalar products of
momenta in the numerator are discussed in [4]. The treatment for the multiple appearance
of a certain combination of the momenta in the numerator is described in [5].

G-functions are used to compute integrals which contain massless propagators. See [1]
for some more details.

3.1 Introduction to the technique

The Gegenbauer polynomial x-space technique (GPXT) is based on an expansion of the prop-
agators in the Wick-rotated loop integral in terms of Gegenbauer polynomials. Gegenbauer
polynomials C

(λ)
n are one set of orthogonal polynomials, which appear as generalizations
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of the Legendre polynomials of ordinary 2-dimensional spherical harmonics to dimension
D = 2λ+ 1. Their definition in terms of a generating function as

1

(1− 2xt+ t2)λ
=

∞
∑

n=0

C(λ)
n (x)tn (3.1)

allows us immediately to reexpress the x-space propagators in terms of Gegenbauer polyno-
mials. This yields

1

(x1 − x2)2λ
=

1

maxλ12

∞
∑

n=0

Cλ
n(x̂1 · x̂2)

(min12

max12

)
n
2

. (3.2)

where we denote ri = x2
i in Euclidean space and x̂i is the corresponding unit vector in the

direction of xi. We have also abbreviated

minij = min(ri, rj) , maxij = max(ri, rj) . (3.3)

In the coordinates r, x̂ the x-space integration measure reads

dDx =
1

2
ΩD−1r

λ dr dx̂ , (3.4)

where the volume of the (D − 1)-dimensional unit sphere is given by

ΩD−1 =
2π

D
2

Γ(D
2
)
. (3.5)

The transformation of the integral measure in the L-loop integral (1.4) then leads to the
normalization factor

Nλ(L, P ) =
Γ(λ)P

(22LπP )λ+1

1

2P−L
ΩP−L

D−1 (3.6)

in front of that integral. In the physical D = 4 dimensions where λ = 1 the factor simplifies
to

N1(L, P ) =
1

(4π)2L
. (3.7)

In (1.4) there remains the exponential function. It can also be expanded in terms of
series involving Bessel functions. Here, however we will not do so. For the renormalization
problem we are only interested in the pole part of a given logarithmically UV divergent
loop integral. In the x-space integral the UV divergence is located when all coordinates are
small, i.e. the exponential factor from the Fourier transformation of the momentum integral
is constant and can be removed. This corresponds to setting to zero all external momenta.
In general this will spoil the final result by mixing it up with IR divergences which come from
the integration region where certain coordinates are very large. To avoid this, we introduce
a simple cutoff R as upper bound for the radial integrations.

From now on by the integral or by its graphical representation we always mean an ex-
pression which has the same UV divergence as the original momentum integral, but might
differ from it by finite parts due to rearrangements of external momenta or due to applying
the above described cutoff-procedure.
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Inserting the expansion (3.2) of the propagators, the loop integral then also contains sev-
eral infinite sums, running over the degrees in the product of Gegenbauer polynomials. The
number of these sums depends on the number of propagators Xi, which contain coordinate
differences. Since the value of the integral (1.4) does not change by shifting all coordinates
by the same vector, we can transform a convenient point of the integral to the origin in the
D-dimensional space. This point is called the root vertex. All propagators which are directly
connected to it only depend on the respective radial coordinate ri of the second vertex at
xi they are attached to. They do not yield a series expansion in terms of Gegenbauer poly-
nomials. The most convenient choice of the root vertex in most cases is hence that vertex
to which the maximum number of propagators is directly attached. For integrals that come
from the renormalization of a composite operator with many of its elementary fields involved
in interactions, the root vertex will very often be the composite operator itself.

As an example, we discuss the first and the second integral at four loops in Fig. 1.
For the first integral we choose the downer central vertex as the root vertex, while for the
second integral we choose the central vertex as the root vertex. The expansions in terms of
Gegenbauer polynomials then read

x1 x3

x2

= Nλ(3, 6)
∞
∑

n1,n2=0

Aλ(n1, n2)Rλ(n1, n2) ,

Aλ(n1, n2) =

∫

dx̂1 dx̂2 dx̂3 C
(λ)
n1

(x̂1 · x̂2)C
(λ)
n2

(x̂2 · x̂3) ,

Rλ(n1, n2) =

∫ R

0

dr1 dr2 dr3 r
−λ
2

(max12max23)λ

(min12

max12

)

n1
2
(min23

max23

)

n2
2

,

x1 x3

x4

x2

= Nλ(4, 8)
∞
∑

n1,...,n4=0

Aλ(n1, n2, n3, n4)Rλ(n1, n2, n3, n4) ,

Aλ(n1, n2, n3, n4) =

∫

dx̂1 . . . dx̂4C
(λ)
n1

(x̂1 · x̂2)C
(λ)
n2

(x̂2 · x̂3)C
(λ)
n3

(x̂3 · x̂4)C
(λ)
n4

(x̂4 · x̂1) ,

Rλ(n1, n2, n3, n4) =

∫ R

0

dr1 . . .dr4
(max12max23max34max41)λ
(min12

max12

)

n1
2
(min23

max23

)

n2
2
(min34

max34

)

n3
2
(min41

max41

)

n4
2

.

(3.8)

Having chosen the root vertex, we can now draw independent graphs for the radial and for
the angular integrations. The angular graph is obtained by erasing from the original x-space
representation of the loop integral the root vertex and all the propagators which are directly
attached to it. To the remaining lines one then attaches its degree, i.e. the summation index
of the expansion (3.2) of the respective propagator. This means, in the angular graph the
Gegenbauer polynomials are represented by

C(λ)
n (x̂ · ŷ) = n

x y (3.9)
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For the above examples, the angular graphs respectively become

Aλ(n1, n2) =
n1 n2

x̂1 x̂3

x̂2

, Aλ(n1, n2, n3, n4) =

n1

n3n4

n2

x̂1 x̂3

x̂4

x̂2

. (3.10)

The angular integrations can now be performed easily. For this, we exploit the orthogonality
property of the Gegenbauer polynomials, which in terms of the x̂i becomes

∫

dx̂ Cλ
m(x̂1 · x̂)C

λ
n(x̂ · x̂2) =

λ

n+ λ
δmnC

λ
n(x̂1 · x̂2) , (3.11)

when a product of Gegenbauer polynomials is integrated over a common angular vector x̂.
It has the graphical representation

m n
x̂1 x̂2

x̂ =
λ

n+ λ
δmn

n
x̂1 x̂2 , nx̂ = C(λ)

n (1) =
Γ(n+ 2λ)

n!Γ(2λ)
. (3.12)

With the above rules, we immediately find for the angular graphs

Aλ(n1, n2) = δ0n1
δn1n2

, Aλ(n1, n2, n3, n4) =
( λ

n1 + λ

)3

C(λ)
n1

(1)δn1n2
δn2n3

δn3n4
. (3.13)

The graph of radial integrations is basically the graphical presentation of the loop integral
itself, with the degrees n and the x-space weights of the propagators attached to the lines.
For the first integral the angular integration cancels all summations, and for the second
integral the four summations associated to the four propagators are reduced to a single one.
We can hence write

Rλ ≡ Rλ(0, 0) =
0

0

0

0

−λr1 r3

r2

, Rλ(n1) ≡ Rλ(n1, n1, n1, n1) =

n1

n1

0

0

0

0n1

n1

r1 r3

r4

r2

,

(3.14)
where the x-space weights of the propagators directly attached to the root vertex are the
original weights, but shifted by −λ due to the factors rλi in the numerator, stemming from
the transformation of the integral measures (3.4). The weights other propagators which are
present also in the angular graphs are the powers of the function min. The powers of the
corresponding function max is obtained by shifting them by −λ.

The first 3-dimensional radial integral can be solved by splitting the volume, i.e. the cube
with edge length R into 3! = 6 integration domains, defined by the orderings 0 ≤ r1 ≤ r2 ≤

r3 ≤ R and permutations thereof. Due to the symmetry of the integrand under reflections
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which exchange r1 and r3, we have only three independent domains 0 ≤ r1 ≤ r2 ≤ r3 ≤ R,
0 ≤ r2 ≤ r1 ≤ r3 ≤ R and 0 ≤ r1 ≤ r3 ≤ r1 ≤ R. We hence find for the radial integral

Rλ =

∫ R

0

dr1 dr2 dr3 r
−λ
2

(max12 max23)λ

= 2
(

∫ R

0

dr3

∫ r3

0

dr2

∫ r2

0

dr1 r
−2λ
2 r−λ

3 +

∫ R

0

dr3

∫ r3

0

dr1

∫ r1

0

dr2 r
−λ
1 r−λ

2 r−λ
3

+

∫ R

0

dr2

∫ r2

0

dr3

∫ r3

0

dr1 r
−3λ
2

)

=
2

3− 3λ

( 1

(2− 2λ)
+

1

(2− 2λ)(1− λ)
+

1

2

)

R3−3λ
)

.

(3.15)

Setting λ = 1− ε, we obtain the expansion

Rλ =
1

ε3
+

1

ε2

(1

3
+ lnR

)

+
1

ε

(1

3
+ lnR +

3

2
ln2R

)

. (3.16)

As expected, the presence of all higher order poles indicates the presence of one- and two-
loop subdivergences, and the dependence on lnR reminds us that we have to subtract these
subdivergences to obtain the final result. We therefore have to compute

= − − 2 ,

(3.17)
where as before a box drawn around an integral denotes the overall UV divergence of that
integral. For the integrals which multiply these pole parts, we have to use the same scheme
that we used for the integral itself, i.e. we have to compute them with GPXT, dropping the
exponential and introducing the IR regulator R. The one-loop integral is found as

=
Γ(λ)2

(22π2)1+λ

∫

dDx1

x4λ
1

= Nλ(1, 2)

∫ R

0

dr1r
−λ
1 = Nλ(1, 2)

1

1− λ
R1−λ . (3.18)

Its pole part coincides with the result we obtain by using G-functions. The two-loop integral
reads

I2 = = Nλ(2, 4)

∫ R

0

dr1 dr2 r
−λ
2

maxλ12
= Nλ(2, 4)

2− λ

2(1− λ)2
R2−2λ . (3.19)

It is easy to check that the overall UV divergence again coincides with the result found
via G-functions. With the above results, we then find for the overall UV divergence of the
three-loop integral

=
1

(4π)6

( 1

3ε3
−

2

3ε2
+

1

3ε

)

. (3.20)

The second 4-dimensional radial integral requires a splitting into into 4! = 24 integration
domains, defined by the orderings 0 ≤ r1 ≤ r2 ≤ r3 ≤ r4 ≤ R and permutations thereof. Due
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to the symmetry of the integrand under cyclic permutations of the ri, and under reflections
(forming the 8-dimensional dihedral group D4), we can divide out these symmetries and thus
only have to consider 3 e.g. the three independent domains 0 ≤ r1 ≤ r2 ≤ r3 ≤ r4 ≤ R,
0 ≤ r2 ≤ r1 ≤ r3 ≤ r4 ≤ R and 0 ≤ r1 ≤ r3 ≤ r2 ≤ r4 ≤ R. We hence find

Rλ(n) =

∫ R

0

dr1 . . .dr4
(max12max23max34 max41)λ

(min12

max12

min23

max23

min34

max34

min41

max41

)
n
2

= 8
(

∫ R

0

dr4

∫ r4

0

dr3

∫ r3

0

dr2

∫ r2

0

dr1 r
n
1 r

−λ
2 r−λ

3 r−n−2λ
4

+

∫ R

0

dr4

∫ r4

0

dr3

∫ r3

0

dr1

∫ r1

0

dr2 r
−λ
1 rn2 r

−λ
3 r−n−2λ

4

+

∫ R

0

dr4

∫ r4

0

dr2

∫ r2

0

dr3

∫ r3

0

dr1 r
n
1 r

−n−2λ
2 rn3 r

−n−2λ
4

)

=
8

(4− 4λ)(n+ 3− 2λ)(n+ 1)

( 2

(n + 2− λ)
+

1

(2n+ 2)

)

R4−4λ .

(3.21)

It is immediately visible that the above expression contains a simple pole for λ = 1 − ε.
Which is given by Rλ(n) =

5
(n+1)3ε

. Inserting also the result from the angular integrations,
we find

= Nλ(4, 8)
∞
∑

n=0

5

(n + 1)5ε
=

1

(4π)8
5

ε
ζ(5) . (3.22)

Recall that the above equality has to be understood only for the pole parts. The terms in a
further expansion in ε differ, because we have explicitly simplified the computational effort
by dropping the exponential factor and introducing the IR regulator scale R.

We have seen an example, in which the angular graph consists of a simple loop. This is
equivalent to the statement that each integral over an angular coordinate contains maximally
two Gegenbauer polynomials, which depend on the respective angular direction. The method
can be generalized to cases in which the angular graph contains vertices which can be resolved
by contraction of bubbles. This statement appears to be similar to the statement made in the
context of G-functions. However, it is fulfilled by a larger class of integrals. The condition for
an integral to be solvable in terms of G-functions, which is that its graphical representation
only contains ‘contractible bubbles’, has to be fulfilled for the complete graph. For GPXT
the statement only has to be fulfilled for the angular graph, and it is sufficient to find one
choice for the root vertex for which the angular graph fulfills this condition.

The contraction of bubbles in the angular graph involves a reexpression of two Gegen-
bauer polynomials with the same weight and the same argument as a Clebsch-Gordan de-
composition in terms of a sum over single Gegenbauer polynomials. The relevant expression
reads

C(λ)
m (x)C(λ)

n (x) =
m+n
∑

i=|m−n|
i+m+n

2
∈N

Dλ(m,n, i)C
(λ)
i (x)

,

(3.23)
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where the coefficients are given by

Dλ(m,n, i) =
i!(i+ λ)Γ(m+n+i

2
+ 2λ)

Γ(λ)2Γ(m+n+i
2

+ λ+ 1)Γ(i+ 2λ)

Γ(−m+n+i
2

+ λ)Γ(m−n+i
2

+ λ)Γ(m+n−i
2

+ λ)

Γ(−m+n+i
2

+ 1)Γ(m−n+i
2

+ 1)Γ(m+n−i
2

+ 1)
.

(3.24)
Its graphical representation is

m

n

x̂1 x̂2 = Dλ(m,n, i) i
x̂1 x̂2 . (3.25)

Such bubbles in angular graphs appear not only due to the presence of bubbles in the integral.
They also appear, if scalar products of the momenta are present in the numerator. According
to (1.2), in x-space these products translate to scalar products of the coordinates. They can
be reexpressed in terms of Gegenbauer polynomials as

x1 · x2 =
1

2λ
(r1r2)

1

2C
(λ)
1 (x̂1 · x̂2) . (3.26)

The above expression can be used for a single scalar products and also if all momentum
factors within multiple scalar products correspond to distinct propagators, i.e. that not
more than a single arrow is associated to each line2.

In principle one could try to directly compute any integral with non-trivial numerators
via GPXT. In many cases, however this might not be the most efficient way. As can be
seen from (1.2), the presence of scalar products in the numerator changes the weight of the
corresponding propagator in x-space. Its expansion (3.2) in terms of Gegenbauer polynomials
then yields a Gegenbauer polynomial with a weight that differs from the one of the other
Gegenbauer polynomials, and hence the orthogonality relation (3.11) does not hold. To
proceed one must expand the Gegenbauer polynomial of different weight in terms Gegenbauer
polynomials with the required weight.

This difficulty can be avoided, if momentum conservation at the vertices is used to first
shift the numerator momenta to those propagators, which are directly connected to the root
vertex and are hence not expanded in terms of Gegenbauer polynomials. The integral of
interest is then expressed as a linear combination of integrals. As an example, we consider
an integral without subdivergences and decompose it as

= +
1

2

(

− + − +

)

,

(3.27)
such that the central vertex becomes the root vertex. Apart from the third integral, all
integrals on the r.h.s. have one-, two- and three-loop subdivergences, but it is not necessary
to subtract these to find the result for the combination. They must cancel among each
other. This means, however, that one has to compute all the integrals in the same scheme,
e.g. using the IR cutoff-regularization when applying GPXT.

2Tensor products of equal momenta are mapped to traceless products in x-space. Their presence requires
more care [5].
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The angular and radial graphs for the first integral read

Aλ(n,m) =

m

1

n

n

n

n

=
( λ

n+ λ

)4

Dλ(m, 1, n)C(λ)
n (1) ,

Rλ(n,m) =

m

n

n

n

−

1
2

0

−

1
2

0

λn

r2 r5

r4r3

r1

=

∫ R

0

dr1 . . .dr5 r
λ
1r

− 1

2

2 r
− 1

2

3

(max12max23max34max45max51)λ
(min23

max23

)
m
2
(min12

max12

min34

max34

min45

max45

min51

max51

)
n
2

,

(3.28)

where the integral is then given by

= −
λ

2
Nλ(4, 9)

∞
∑

n=0

n+1
∑

m=|n−1|
m6=n

Aλ(n,m)Rλ(n,m)

= −
λ

2
Nλ(4, 9)

[

Rλ(0, 1) +
∞
∑

n=1

∑

δ=±1

Aλ(n, n+ δ)Rλ(n, n + δ)
]

,

(3.29)

and we have used that Aλ(0, 1) = 1. All higher order poles are contained in the first term
Rλ(0, 1), while the infinite sum only leads to simple 1

ε
poles.

Computing also the other integrals, and combining them as in (3.27) we then find

=
1

(4π)8
ζ(3) . (3.30)

3.2 Implementation in Mathematica

First of all, we have to define the normalization of an x-space integral as NLP[λ_,L_,P_], the
Gegenbauer polynomial evaluated at unit argument as Cs[λ_,j_], and the Clebsch-Gordan
coefficients Ds[λ_,l_,m_,n_] for the contraction of bubbles in the angular graphs.

The main task is to implement the radial integrations of GPXT. This is discussed in the
following.

3.2.1 Radial integrations over domains

For GPXT we have to solve integrals of piecewise defined monomials over a cube with edge
length R. The corresponding expressions are of the form

I =

∫ R

0

dr1 . . . drn I(r1, . . . , rn) , (3.31)
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where I(r1, . . . , rn) is a monomial of the ri, i = 1, . . . , n, and the exponents of the ri depend
on the ordering of the real numbers ri on the positive real axis. The above expression can
be explicitly evaluated by first splitting the integration into n! domains, given by r1 ≤ r2 ≤

· · · ≤ rn and permutations thereof. We therefore first define a list of the n radial variables
r1,. . . ,rn. We fuse a variable a with a variable i by defining

vfuse[a_, i_] := ToExpression[ToString[a] <> ToString[i]]

and then set up a list {r1,r2,...,rn} as

rl[n_] := Table[vfuse[r, i], {i, 1, n}]

A list of lists of the n! permutations of the original list rl is then generated as

pl[n_] := Permutations[rl[n]]

For the integration itself, we define a function

RIv1[rl_, integr_] := Block[{order, al, it},

order = rl /. {List -> Less};

al = Join[rl, {R}];

it = Sequence @@ Reverse[

Table[{al[[i]], 0, al[[i+1]]}, {i, 1, Length[rl]}]];

Integrate[FullSimplify[integr, order], it]]

Its first argument rl should be one of the lists with entries r1,. . . ,rn. Its second argument
is the integrand. First, we assign to order the ordering of the entries in the list, the first
entry is associated to the smallest integration variable in the ordering relation. The list al
is the original rl with element R appended to the end. This list is used to define the second
argument of the integration routine Integrate, which requires for each integration a list of
the form {integr_var,lower_bdy,upper_bdy}. The first argument of Integrate contains
the integrand which with FullSimplify is simplified due to the ordering order.

It is then applied as

RIv1[#, Integrand[Sequence @@ rl[n]]] & /@ pl[n]

to the list of permutations pl. It takes the list and transforms it into an ordering relation,
with which the integrand is then evaluated and the integrations are carried out.

3.2.2 Evaluation of radial integrals by list manipulations

The above procedure is a possible solution, but too slow to compute integrals at high loop
order. We should refrain from using the integration procedure of Mathematica and exploit
the fact that the integrands are monomials in the arguments. This allows us to simulate the
integrations by the much faster list manipulations. In the integration domain r1 ≤ r2 ≤ · · · ≤

rn, where the integrand in (3.31) is evaluated to I(r1, . . . , rn) = re11 . . . renn , the integration
yields
∫ R

0

drn

∫ rn

0

drn−1 . . .

∫ r2

0

dr1 r
e1
1 . . . renn

=
1

(e1 + 1)(e1 + e2 + 2) . . . (e1 + · · ·+ en + n)
Re1+···+en+n .

(3.32)
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We see, that for a realization of the integration in mathematica we should first obtain the
list of exponentials ei in a given integration domain from a given integrand. We therefore
define the following function

Exordlist[rl_, integr_] := Block[{ordint, order},

order = rl /. {List -> Less};

ordint = FullSimplify[integr, order];

Thread[Exponent[PowerExpand[ordint], rl]]]

The integrand integr, evaluated with the ordering order is assigned to the variable ordint.
It is then power expanded to ensure that all factors are separate. The function Exponent

extracts the power with which its second argument appears in its first argument. In our
case the second argument is the list of radial variables, since Thread evaluates this function
with each entry of that list as argument and places the result in that list at the position of
that entry. Hence the individual exponents appear in the output list at the same positions
as their individual bases appear in rl.

The list of the exponents ei, i = 1, . . . , n called exlist is now transformed by the
following function to simulate the integrations

Intop[exlist_] := Block[{intex},

intex = Simplify[Drop[FoldList[#1 + #2 + 1 &, 0, exlist], 1]];

(intex /. List -> Times)-1 Rintex[[-1]]]]

The command FoldList applies the function in its first argument to the list exlist in the
following way: FoldList takes its second argument and writes it into an output list. The
first argument of FoldList is then evaluated with its first argument taken from the output
list and its second argument taken from the list which is the third argument of FoldList.
The positions in both lists are thereby the same, and the result is written into the output list
at the subsequent position. In our particular case, the output list of FoldList starts with 0
and then contains the n factors in the denominator of (3.32). We drop the unwanted first
entry from the output list. In a second step, the remaining entries are then multiplied, the
result is inverted, and the appropriate factor from the upper boundary of the last integration
is added. The integration routine is then defined as

RIv2[rl_, integr_] := Intop[Exordlist[rl, integr]]

It is applied to the list of permutations pl as

RIv2[#, Integrand[Sequence @@ rl[n]]] & /@ pl[n]

3.2.3 Evaluation of the integrand by list manipulations

It also turns out that the evaluation FullSimplify[integr, order] used in Exordlist is
very time-consuming. To improve the performance, we transform the integrand before its
evaluation, using self defined functions based on lists. The integrand that appears in (3.31)
is of the form

I(r1, . . . , rn) =
n
∏

i=1

raii

n
∏

j 6=i

maxbijri,rj
mincij

ri,rj
(3.33)

The extraction of the list of exponents ei, i = 1, . . . , n for a given ordering of the ri is made
more efficient by defining the following functions as substitutes
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ExFac[rl_, r_, ex_] :=

ReplacePart[Table[0, {i, 1, Length[rl]}], Position[rl, r][[1]] -> ex]

ExMax[rl_, r1_, r2_, ex_] := Block[{mp},

mp = Max[Position[rl, r1], Position[rl, r2]];

ReplacePart[Table[0, {i, 1, Length[rl]}], mp -> ex]]

and a corresponding function ExMin. The function ExfFac returns a list of the same length
as its first entry rl which contains the value of ex at the same position at which r appears
in rl. This simulates the extraction of the exponentials ai from the factors raii in (3.33).
The function ExMax compares the positions of its second and its third argument in the list
rl and returns a list with the same length as rl which at the larger of the two positions
contains the entry ex and zeroes in all other entries. This simulates the extraction of the
exponentials bij from the factors max

bij
rirj in (3.33). The list of exponentials cij which appear

as min
cij
ij is obtained by the corresponding function ExMin.

Since we want to give the integrand as an input in terms of standard functions of
Mathematica, we define the transformation from this input form to our preferred form as

trafo[rl_, integr_] :=

Plus @@ (List @@ PowerExpand[integr]

//. {Max[a_, b_]ex_:1 :> ExMax[rl, a, b, ex],

Min[a_, b_]ex_:1 :> ExMin[rl, a, b, ex]}

//. (r_?(MemberQ[rl, #]&))ex_:1 :> ExFac[rl, r, ex]))

The transformation trafo first transforms the products of individual factors raii , max
bij
rirj ,

min
cij
ij into a list of these factors. It then replaces each of these factors by the respective

functions ExfFac, ExMax and ExMin. Factors which are not powers of the functions Max or
Min are tested whether their bases are given by the variables ri that occur in the list rl. If
so, they are replaced by ExfFac. As a result, we obtain a list of lists, each of length of rl,
which contain the exponentials ei at the position at which ri occurs in rl. As a last step,
we have to add-up all these list to consider the multiplication of the factors in (3.33). This
is achived by applying Plus to the obtained list. It is important to stress that the argument
integr must only contain factors which match one of the replacement rules. A factor that
does not match one of the replacement rules is not transformed via ExfFac, ExMax or ExMin
into a list of length Length[rl]. Hence, when the list elements are summed, it is mistakenly
added to each of the entries of the resulting list.

The integration over all domains is given by applying the combination

RIv3[rl_, integr_] := Intop[trafo[rl, integr]]

to the list of permutations pl as

RIv3[#, Integrand[Sequence @@ rl[n]]] & /@ pl[n]
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3.2.4 Simplifying the output from the radial integration routines

As a result of the integration procedures RIv2 and RIv3 applied to an n-dimensional radial
integral, we obtain a list of length n! which contains the result of the integration for each
ordering of the radial variables. An effective procedure to sum up all contributions, thereby
also simplifying the result, is to look for entries which have the same denominator and sum
them up first. This procedure is carried out by the following function

cdensort[expr_, binop_:Plus] :=

Block[{ilist, denlist, numlist, reddenlist},

ilist = Factor[List @@ expr];

denlist = Denominator[ilist];

numlist = Numerator[ilist];

reddenlist = Union[denlist];

Head[expr] @@

Map[Factor[Tr[Extract[numlist, Position[denlist, #]], binop, 1]] /# &,

reddenlist]]

The first argument is the expression expr to be simplified, the second argument is the bi-
nary operator binop, which should be used to combine similar objects. If the function is
called with one argument, the default Plus is substituted as its second argument. First,
expr is transformed into a List called ilist, with elements which are factorized by Factor.
Then separate lists denlist and numlist of respectively the denominators and the nu-
merators of the elements in ilist are generated. The list reddenlist of different nu-
merators is obtained by applying Union to the list of denominators. Then, the function
Position[denlist, #] applied to reddenlist extracts the list of positions, at which each
denominator in reddenlist appears in denlist. The resulting list is then used by Extract

to obtain the list of numerators at the very same positions, i.e. the numerators of fractions
with the same denominators. The trace operation applied to the result with binary operation
binop then combines the numerators. The result is divided by the respective denominator
taken from reddenlist. Finally, the original Head of expr is restored.

We use the above function to sum up expressions with the same denominator. The
complete expression for the integration of an integrand Integrand[r1,...,rn] over the n

radial coordinates is then defined as

RInt[n_] :=

Tr[cdensort[RIv3[#, Integrand[Sequence @@ rl[n]]] & /@ pl[n]]]

3.2.5 Harmonic series by list manipulations

Summing up the expressions of the form (3.32), the final result will be a rational function
of two polynomials of order n = P − L in α different summation indices i1, . . . , iα, where
α corresponds to the number of loops in the angular graph. Combining the expression for
the radial integrations with the one for the angular integrations and expanding in powers of
λ, the order of the polynomials might increase, but the form of the expressions remains the
same.

The examples discussed here will be a special case, in which the number of sums with
infinity as upper boundary is restricted to one. There might be additional sums over finite
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intervals which originate from scalar products of loop momenta in the numerator. The
problem of summing up the result then reduces to summing the series of a finite number of
rational functions of polynomials which depend on a single summation index. Furthermore,
the denominator polynomial is a product of factors (a + i)e, where a and e are integers.

Mathematica evaluates these summations automatically when the routine Sum is used.
For rational functions of polynomials of high order which appear at high loop order the
built-in routine becomes too slow. We hence use a self-written routine for these kind of
summations. It reads

hsum[f_, i_] :=

Block[{g, arg, arg2, j, den, denl, ex, exp, denpl, fl, cl, c, numpoly,

numansatz, num0, num1, sol, arglist, hsl, dl, res, Sdiv},

g = f;

arg = Together[g];

arg2 = Together[g] /. i -> j;

den = Factor[Numerator[Denominator[arg] / Denominator[arg2]]];

If[den === 1,

If[g === 0, 0, Print["Warning: sum does not converge"];
1

Denominator[g]
S0[Numerator[g]]],

denl = List @@ (ex[1, 1] den /. (a_ + i)e_:1 :> ex[a + i, e])

/. ex -> List;

denpl[l_] := Table[(l[[1]])-k, {k, 1, l[[2]]}];

fl = Flatten[Map[denpl, denl]];

cl = Table[vfuse[c, k], {k, 1, Length[fl]}];

numpoly = CoefficientList[Together[den g], i];

numansatz = CoefficientList[Numerator[Together[Tr[fl cl]]], i];

num0 = Drop[numansatz, Length[numpoly]];

num1 = Take[numansatz, Length[numpoly]];

sol = Solve[{num0 == 0, num1 == numpoly}, cl];

arglist = Select[fl cl /. sol[[1]], # =!= 0 &];

hsl = arglist //. (a__:0 + i)e /;e≤−1 :> (S−e[∞] - Sum[je, j, 1, a]);

dl = (arglist //. (a__:0 + i)e /;e≤−1 :> 0) S0[∞];

res = Simplify[Tr[hsl + dl] /. Se /;e≥2[∞] :> Zeta[e]];

If[Coefficient[res //. Se [∞] -> Sdiv, Sdiv] =!= 0,

Print["Warning: Sum does not converge"]];

res]]

The function depends on two arguments, the first is the rational function f of two polynomials
in the second variable i, which selects the summation index. The variable den contains the
denominator with all factors which do not depend on the summation index i canceled.
Hence, den===1 is True if the denominator is independent of i. This is tested first. Since
den===1 is True also for den=Denominator[0], another test as to distinguish whether the
numerator (or the rational function g=f) is zero or non-zero. It returns 0 in the former case
or prints a warning message and returns the result in terms of the divergent sum S0(∞)
in the latter case. If the denominator den depends on the summation index, first a list of
denominators is generated by replacing factors of the form (a+ i)e by an auxiliary function
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ex[a + i, e]. A factor ex[1, 1] is added as a representation for the constant monomial
(i0)1. The expression is then transformed into a list of lists which contain as the first entry
the base and as a second entry the exponent (the power) with which the base occurs as a
factor in the denominator of the original expression. Partial fraction decomposition requires
that in an ansatz the fractions with all powers of a factor in the denominator a present, up
to the power with which it appears in the denominator. The function denpl generates a
list of all the fractions associated with a base and its power occurring in the denominator.
The function denpl is then applied to each individual element of the list denl by using Map.
This generates a list containing all elements of a basis for the partial fraction decomposition
called fl. A coefficient list cl for this basis is then generated. The coefficients are then
determined by comparing the polynomial in the numerator of the original expression with
the polynomial in the numerator which is found when the linear combination of individual
fractions of the ansatz is expressed as a single fraction with a common numerator. The lists
which contain the coefficients of the polynomials in i occurring in the original expression and
in the ansatz are called numpoly and numansatz, respectively. In general, the list numansatz
will be longer than the coefficient list numpoly, since the numerator polynomial of the original
expression might have lower degree. The list numansatz is hence split into two lists num0

and num1. The first contains the coefficients of the subpolynomial of the ansatz that matches
the degree of the polynomial of the original expression. The second contains the remaining
coefficients multiplying powers of i that exceed the degree of the polynomial of the original
expression. The coefficients of the coefficient list cl are now found by solving the system
of equations, given by the vanishing of all coefficients in num0 and by identification of the
coefficients in num1 with the ones in numpoly. The solution is then used to set up the list
arglist which contains all basis fractions multiplied by their respective coefficient. Zeros
are dropped from this list. Each element in arglist contains a factor of the form (a+ i)−e.
The final summation can be cast into the form

∞
∑

i=1

1

(a + i)e
= Se(∞)− Se(a) , Se(n) =

n
∑

i=1

1

ie
. (3.34)

Summation is thus simulated by replacing the corresponding structures in arglist by the
r.h.s. of the first of the above equations. The result is the list hsl. In a second list dsl

the same structures are set to zero to test for any constant parts in the result. They are
multiplied by S0(∞). The harmonic sums Se(n) converge in the limit n → ∞ for e ≥ 2,
and in this case are replaced by their limits, i.e. by the functions ζ(e). Hence Res gives the
final result, and it is convergent if no further Se(∞) are present, which then necessarily have
e ≤ 1. This is tested in the last step, which prints a warning message if the sum is divergent.
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