

Hot Topics in MBI

MBI 2015, Hamburg

Matthias Mozer for the CMS collaboration

Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie

www.kit.edu

Run II Di-Boson Results

Current Developments

MBI 2015, Hamburg

- SM Quartic Gauge Vertex
- Not easily studied at LEP
- Central to EWK Symmetry breaking

First results in W[±]W[±] final states from the LHC => will be hot again with more Run II data

Other Quartic Vertices

Places to Look

WVγ

- Z
 Z
 Y + 2jets (a.k.a. ewk Z
 Y)
- exclusive WW (a.k.a $\gamma\gamma \rightarrow$ WW)
- W+W+ + jets (a.k.a. ewk ss WW)

=> covering the whole SM Lagrangian

EWK Z+γ

EWK Z+γ

VBS Selection

enrich ewk component with VBS cuts:

	EWK		
$\Delta\eta_{ii}$	> 1.6		
M _{ii} ″	> 400 GeV		
$\Delta \dot{\phi}_{Z\gamma,ii}$	> 2.0		
$ y_{Z\gamma} - y_{jj}^{avg} $	<1.2		

EWK+QCD > 1.6

> 800 GeV

trading purity for statistics

Define an additional phase space region which has
 => lower non Z_γ background
 => higher significance for EWK+QCD Z_γ
 => more QCD contribution + interference

Study cross section with template fits => two bins M < 800 GeV M > 800 GeV

Low cross sections => make limits as well as measurements

fid. xsec from template fit: $1.86^{+0.89}_{-0.75}(stat.)^{+0.41}_{-0.27}(sys.) \pm 0.05(lumi.)$ fb

significance: 3.0 σ (2.1 σ expected)

fid. xsec from theory (Madgraph): $1.26 \pm 0.11(scale) \pm 0.05(PDF)$

Effective Field Theory

Use Dim8 Basis of Eboli et.al.:Phys.Rev.D74:073005,2006 => 20 additional operators

$$\mathcal{L}_{S,0} = \left[(D_{\mu}\Phi)^{\dagger} D_{\nu}\Phi \right] \times \left[(D^{\mu}\Phi)^{\dagger} D^{\nu}\Phi \right] \\ \mathcal{L}_{S,1} = \left[(D_{\mu}\Phi)^{\dagger} D^{\mu}\Phi \right] \times \left[(D_{\nu}\Phi)^{\dagger} D^{\nu}\Phi \right] \\ \mathcal{L}_{M,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu}\hat{W}^{\mu\nu} \right] \times \left[(D_{\beta}\Phi)^{\dagger} D^{\beta}\Phi \right] \\ \mathcal{L}_{M,1} = \operatorname{Tr} \left[\hat{W}_{\mu\nu}\hat{W}^{\nu\beta} \right] \times \left[(D_{\beta}\Phi)^{\dagger} D^{\mu}\Phi \right] \\ \mathcal{L}_{M,2} = \left[B_{\mu\nu}B^{\mu\nu} \right] \times \left[(D_{\beta}\Phi)^{\dagger} D^{\beta}\Phi \right] \\ \mathcal{L}_{M,3} = \left[B_{\mu\nu}B^{\nu\beta} \right] \times \left[(D_{\beta}\Phi)^{\dagger} D^{\mu}\Phi \right] \\ \mathcal{L}_{M,4} = \left[(D_{\mu}\Phi)^{\dagger}\hat{W}_{\beta\nu}D^{\mu}\Phi \right] \times B^{\beta\nu} \\ \mathcal{L}_{M,5} = \left[(D_{\mu}\Phi)^{\dagger}\hat{W}_{\beta\nu}D^{\nu}\Phi \right] \times B^{\beta\mu} \\ \mathcal{L}_{M,6} = \left[(D_{\mu}\Phi)^{\dagger}\hat{W}_{\beta\nu}\hat{W}^{\beta\mu}D^{\mu}\Phi \right] \\ \mathcal{L}_{M,7} = \left[(D_{\mu}\Phi)^{\dagger}\hat{W}_{\beta\nu}\hat{W}^{\beta\mu}D^{\nu}\Phi \right]$$

$$\mathcal{L}_{T,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \operatorname{Tr} \left[\hat{W}_{\alpha\beta} \hat{W}^{\alpha\beta} \right]$$

$$\mathcal{L}_{T,1} = \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\mu\beta} \hat{W}^{\alpha\nu} \right]$$

$$\mathcal{L}_{T,2} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\beta\nu} \hat{W}^{\nu\alpha} \right]$$

$$\mathcal{L}_{T,3} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \hat{W}^{\nu\alpha} \right] \times B_{\beta\nu}$$

$$\mathcal{L}_{T,4} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\alpha\mu} \hat{W}^{\beta\nu} \right] \times B_{\beta\nu}$$

$$\mathcal{L}_{T,5} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times B_{\alpha\beta} B^{\alpha\beta}$$

$$\mathcal{L}_{T,6} = \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times B_{\mu\beta} B^{\alpha\nu}$$

$$\mathcal{L}_{T,7} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times B_{\beta\nu} B^{\nu\alpha}$$

$$\mathcal{L}_{T,8} = B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta}$$

$$\mathcal{L}_{T,9} = B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha}$$

Use Dim8 Basis of Eboli et.al.:Phys.Rev.D74:073005,2006 => 9 relevant for Zγ

 $\mathcal{L}_{S,0} = \left[(D_{\mu} \Phi)^{\dagger} D_{\nu} \Phi \right] \times \left[(D^{\mu} \Phi)^{\dagger} D^{\nu} \Phi \right]$ $\mathcal{L}_{S,1} = \left[(D_{\mu} \Phi)^{\dagger} D^{\mu} \Phi \right] \times \left[(D_{\mu} \Phi)^{\dagger} D^{\nu} \Phi \right]$ $\mathcal{L}_{M,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right]$ $\mathcal{L}_{M,1} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$ $\mathcal{L}_{M,2} = \left[B_{\mu\nu} B^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right]$ $\mathcal{L}_{M,3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$ $\mathcal{L}_{M,3} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} D^{\mu} \Phi \right] \times B^{\beta\mu}$ $\mathcal{L}_{M,5} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\nu} D^{\mu} \Phi \right]$ $\mathcal{L}_{M,6} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\mu} \Phi \right]$

$$\mathcal{L}_{T,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \operatorname{Tr} \left[\hat{W}_{\alpha\beta} \hat{W}^{\alpha\beta} \right]$$

$$\mathcal{L}_{T,1} = \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\mu\beta} \hat{W}^{\alpha\nu} \right]$$

$$\mathcal{L}_{T,2} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\beta\nu} \hat{W}^{\nu\alpha} \right]$$

$$\mathcal{L}_{T,3} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \hat{W}^{\nu\alpha} \right] \times B_{\beta\nu}$$

$$\mathcal{L}_{T,4} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\alpha\mu} \hat{W}^{\beta\nu} \right] \times B_{\beta\nu}$$

$$\mathcal{L}_{T,5} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{V}^{\alpha\nu} \right] \times B_{\alpha\beta} B^{\alpha\beta}$$

$$\mathcal{L}_{T,6} = \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times B_{\mu\beta} B^{\alpha\nu}$$

$$\mathcal{L}_{T,7} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times B_{\beta\nu} B^{\nu\alpha}$$

$$\mathcal{L}_{T,8} = B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta}$$

$$\mathcal{L}_{T,9} = B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha}$$

Zγ: Relevant operators

Use Dim8 Basis of Eboli et.al.:Phys.Rev.D74:073005,2006 => 2 previously unconstrained

 $\mathcal{L}_{S,0} = \left[(D_{\mu} \Phi)^{\dagger} D_{\nu} \Phi \right] \times \left[(D^{\mu} \Phi)^{\dagger} D^{\nu} \Phi \right]$ $\mathcal{L}_{S,1} = \left[(D_{\mu} \Phi)^{\dagger} D^{\mu} \Phi \right] \times \left[(D_{\mu} \Phi)^{\dagger} D^{\nu} \Phi \right]$ $\mathcal{L}_{M,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right]$ $\mathcal{L}_{M,1} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$ $\mathcal{L}_{M,2} = \left[B_{\mu\nu} B^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right]$ $\mathcal{L}_{M,3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$ $\mathcal{L}_{M,5} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} D^{\mu} \Phi \right] \times B^{\beta\mu}$ $\mathcal{L}_{M,6} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\nu} D^{\mu} \Phi \right]$ $\mathcal{L}_{M,7} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\nu} \Phi \right]$

$$\mathcal{L}_{T,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \operatorname{Tr} \left[\hat{W}_{\alpha\beta} \hat{W}^{\alpha\beta} \right]$$

$$\mathcal{L}_{T,1} = \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\mu\beta} \hat{W}^{\alpha\nu} \right]$$

$$\mathcal{L}_{T,2} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\beta\nu} \hat{W}^{\nu\alpha} \right]$$

$$\mathcal{L}_{T,3} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \hat{W}^{\nu\alpha} \right] \times B_{\beta\nu}$$

$$\mathcal{L}_{T,4} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\alpha\mu} \hat{W}^{\beta\nu} \right] \times B_{\beta\nu}$$

$$\mathcal{L}_{T,5} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\nu\nu} \right] \times B_{\alpha\beta} B^{\alpha\beta}$$

$$\mathcal{L}_{T,6} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times B_{\mu\nu} B^{\alpha\nu}$$

$$\mathcal{L}_{T,7} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times B_{\beta\nu} B^{\nu\alpha}$$

$$\mathcal{L}_{T,8} = B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta}$$

$$\mathcal{L}_{T,9} = B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha}$$

aQGC Limits

- Similar technique as Wγ
- Fully reconstructed final state => use M_{Zγ}
- Signal region: => no $\Delta \phi$, Zeppenfeld cuts => $\Delta \eta_{jj}$ > 2.6 => $p_{T,\gamma}$ > 60 GeV
- All aQGCs studied in isolation
- No form factors
- Limit from likelihood ratios of template fits
- Very low statistics

[SMP-14-018]

aQGC Limits

Observed Limits	Expected Limits	
-71 (TeV ⁻⁴) $< f_{M0}/\Lambda^4 < 75$ (TeV ⁻⁴)	-109 (TeV ⁻⁴) < f_{M0}/Λ^4 < 111 (TeV ⁻⁴)	Limite elightly
-190 (TeV ⁻⁴) $< f_{M1}/\Lambda^4 < 182$ (TeV ⁻⁴)	-281 (TeV ⁻⁴) $< f_{M1}/\Lambda^4 < 280 (TeV^{-4})$	
-32 (TeV ⁻⁴) $< f_{M2}/\Lambda^4 < 31$ (TeV ⁻⁴)	-47 (TeV ⁻⁴) $< f_{M2}/\Lambda^4 < 47$ (TeV ⁻⁴)	better than
-58 (TeV ⁻⁴) $< f_{M3}/\Lambda^4 < 59$ (TeV ⁻⁴)	-87 (TeV ⁻⁴) $< f_{M3}/\Lambda^4 < 87$ (TeV ⁻⁴)	expected
-3.8 (TeV ⁻⁴) $< f_{T0}/\Lambda^4 < 3.4$ (TeV ⁻⁴)	-5.1 (TeV ⁻⁴) $< f_{T0}/\Lambda^4 < 5.1$ (TeV ⁻⁴)	onpoolod
-4.4 (TeV ⁻⁴) $< f_{T1}/\Lambda^4 < 4.4$ (TeV ⁻⁴)	-6.5 (TeV ⁻⁴) $< f_{T1}/\Lambda^4 < 6.5$ (TeV ⁻⁴)	
$-9.9 (\text{TeV}^{-4}) < f_{\text{T2}} / \Lambda^4 < 9.0 (\text{TeV}^{-4})$	$-14.0 (\text{TeV}^{-4}) < f_{\text{T2}} / \Lambda^4 < 14.5 (\text{TeV}^{-4})$	
-1.8 (TeV ⁻⁴) $< f_{T8}/\Lambda^4 < 1.8$ (TeV ⁻⁴)	-2.7 (TeV ⁻⁴) $< f_{T8}/\Lambda^4 < 2.7$ (TeV ⁻⁴)	
-4.0 (TeV ⁻⁴) $< f_{T9}/\Lambda^4 < 4.0$ (TeV ⁻⁴)	-6.0 (TeV ⁻⁴) $< f_{T9}/\Lambda^4 < 6.0$ (TeV ⁻⁴)	NEW

Not reaching unitarity limits

- Low photon virtuality => protons don't dissociate
- mostly EWK processes
- Can be very pure for strict dissociation vetos

Analysis Strategy

- Select e + μ (opposite charge) => suppress DY => suppress γγ→II
- p_T(eµ) > 30 GeV
 => suppress γγ→ττ
- Veto all tracks other than e,µ tracks from PV => suppress dissociative processes
- Worry about modeling the tiny corner of phase space left

Tricks of the Trade

Excellent understanding of tracking efficiency, fakes

- PU estimates, vertexing
- Arcane hadronic physics effects:
 => Pomerons
 => rescattering / gap-survival propability
- Specialized MC generators
 => POMPYT (diffractive WW)
 => Madgraph with Effective Photon Approximation
 => LPAIR for EWK II

Many uncommon features
 => can't just trust background simulation
 => extensive studies of control regions

Track Mis-Association

- Mistaken association of PU tracks
- Check $\gamma\gamma \rightarrow II$ events
- track veto enriches ewk process
- Iook at very low acoplanarity: => enriches elastic contribution
- Data yield lower than MC => low p_T forward tracks common => high chance of mis-association
- Corrected with flat scale factor => causes significant uncertainty

Rescattering

- Rescattering probability in elastic and quasi-elastic pp collisions not well understood
- Long standing issue in comparisons of Tevatron and HERA diffraction
- Significantly different for elastic => little rescattering single diss. => ??? double diss. => high rescattering
- Use $\gamma\gamma$ →II to estimate survival eff. => constrain to $M_{\parallel} > 2M_{W}$
- Single largest systematic uncertainty (~10%)

Results

Anomalous couplings

Use Dim8 Basis of Eboli et.al.:Phys.Rev.D74:073005,2006

$$\begin{split} \mathcal{L}_{S,0} &= \left[(D_{\mu} \Phi)^{\dagger} D_{\nu} \Phi \right] \times \left[(D^{\mu} \Phi)^{\dagger} D^{\mu} \Phi \right] \\ \mathcal{L}_{S,1} &= \left[(D_{\mu} \Phi)^{\dagger} D^{\mu} \Phi \right] \times \left[(D_{\nu} \Phi)^{\dagger} D^{\nu} \Phi \right] \\ \mathcal{L}_{M,0} &= \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right] \\ \mathcal{L}_{M,1} &= \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right] \\ \mathcal{L}_{M,2} &= \left[B_{\mu\nu} B^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right] \\ \mathcal{L}_{M,3} &= \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right] \\ \mathcal{L}_{M,5} &= \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} D^{\mu} \Phi \right] \times B^{\beta\mu} \\ \mathcal{L}_{M,6} &= \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\nu} D^{\mu} \Phi \right] \\ \mathcal{L}_{M,7} &= \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\nu} D^{\mu} \Phi \right] \\ \mathcal{L}_{M,7} &= \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\mu} \Phi \right] \\ \mathcal{L}_{M,7} &= \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\mu} \Phi \right] \\ \mathcal{L}_{M,7} &= \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\mu} \Phi \right] \\ \mathcal{L}_{M,7} &= \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\mu} \Phi \right] \\ \mathcal{L}_{M,7} &= \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\mu} \Phi \right] \\ \mathcal{L}_{M,7} &= \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\mu} \Phi \right] \\ \mathcal{L}_{M,7} &= \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\mu} \Phi \right] \\ \mathcal{L}_{M,7} &= \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\mu} \Phi \right] \\ \mathcal{L}_{M,7} &= \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\mu} \Phi \right] \\ \mathcal{L}_{M,7} &= \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\mu} \Phi \right] \\ \mathcal{L}_{M,7} &= \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\mu} \Phi \right] \\ \mathcal{L}_{M,7} &= \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\mu} \Phi \right] \\ \mathcal{L}_{M,7} &= \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\mu} \Phi \right] \\ \mathcal{L}_{M,7} &= \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\mu} \Phi \right] \\ \mathcal{L}_{M,7} &= \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\mu} \Phi \right] \\ \mathcal{L}_{M,7} &= \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\mu} \Phi \right] \\ \mathcal{L}_{M,7} &= \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\mu} \Phi \right] \\ \mathcal{L}_{M,7} &= \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\mu} \Phi \right] \\ \mathcal{L}_{M,7} &= \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\mu} \Phi \right] \\ \mathcal{L}_{M,7} &= \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\mu} \Phi \right] \\ \mathcal{L}_{M,7} &= \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\mu} \Phi \right] \\ \mathcal{L}_{M,7} &= \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\mu} \Phi \right] \\ \mathcal{L}_{$$

Additionally provide limits on operators of Belanger & Boudjema Phys.Lett. B288 (1992) 201–209

Observed Limits

Use p_T(eµ) spectrum for "shape analysis" => two bins, one SM-rich, one aQGC-rich

$$\begin{split} -4.2 \times 10^{-10} &< f_{M,0} / \Lambda^4 < 3.8 \times 10^{-10} \, \mathrm{GeV}^{-4} \ (\Lambda_{\mathrm{cutoff}} = 500 \, \mathrm{GeV}), \\ -16 \times 10^{-10} &< f_{M,1} / \Lambda^4 < 13 \times 10^{-10} \, \mathrm{GeV}^{-4} \ (\Lambda_{\mathrm{cutoff}} = 500 \, \mathrm{GeV}), \\ -2.1 \times 10^{-10} &< f_{M,2} / \Lambda^4 < 1.9 \times 10^{-10} \, \mathrm{GeV}^{-4} \ (\Lambda_{\mathrm{cutoff}} = 500 \, \mathrm{GeV}), \\ -8.0 \times 10^{-10} &< f_{M,3} / \Lambda^4 < 6.4 \times 10^{-10} \, \mathrm{GeV}^{-4} \ (\Lambda_{\mathrm{cutoff}} = 500 \, \mathrm{GeV}), \\ -4.6 \times 10^{-12} &< f_{M,0} / \Lambda^4 < 4.6 \times 10^{-12} \, \mathrm{GeV}^{-4} \ (\mathrm{no \ form \ factor}), \\ -17 \times 10^{-12} &< f_{M,1} / \Lambda^4 < 17 \times 10^{-12} \, \mathrm{GeV}^{-4} \ (\mathrm{no \ form \ factor}), \\ -2.3 \times 10^{-12} &< f_{M,2} / \Lambda^4 < 2.3 \times 10^{-12} \, \mathrm{GeV}^{-4} \ (\mathrm{no \ form \ factor}), \\ -8.3 \times 10^{-12} &< f_{M,3} / \Lambda^4 < 8.3 \times 10^{-12} \, \mathrm{GeV}^{-4} \ (\mathrm{no \ form \ factor}). \end{split}$$

Ewk W+W+

- WW final state directly sensitive to W_LW_L coupling
- same charge requirement suppresses many backgrounds:
 => DY (with fake MET)
 => tt
 => QCD WW (no gluon induced diagram)
- Can reach very high purity
- Some tricky issues:
 - => needs good understanding of charge reconstruction
 - => lepton fake rate
 - => b-tags (to further reduce top-backgrounds)

Very pure, but low statistics => marginal cross section measurement $\sigma_{\text{fid}}(W^{\pm}W^{\pm}jj) = 4.0^{+2.4}_{-2.0} (\text{stat})^{+1.1}_{-1.0} (\text{syst}) \text{ fb}$

Theory: 5.8 ± 1.2 (Madgraph + VBFNLO)

significance: 2.0 σ (expected: 3.1 σ)

Ewk W+W+

- Limits extracted from M_{II} spectrum
- Profits from high purity
- Also looking for H^{±±}

Operator coefficient	Exp. lower	Exp. upper	Obs. lower	Obs. upper	Unitarity limit
$F_{S,0}/\Lambda^4$	-42	43	-38	40	0.016
$F_{S,1}/\Lambda^4$	-129	131	-118	120	0.050
$F_{M,0}/\Lambda^4$	-35	35	-33	32	80
$F_{M,1}/\Lambda^4$	-49	51	-44	47	205
$F_{M,6}/\Lambda^4$	-70	69	-65	63	160
$F_{M,7}/\Lambda^4$	-76	73	-70	66	105
$F_{T,0}/\Lambda^4$	-4.6	4.9	-4.2	4.6	0.027
$F_{T,1}/\Lambda^4$	-2.1	2.4	-1.9	2.2	0.022
$F_{T,2}/\Lambda^4$	-5.9	7.0	-5.2	6.4	0.08

WVγ

- Only triple-boson analysis in CMS so far
- Use one leptonic W decay for trigger
- Second heavy boson decays hadronically
 => gain high branching ratio
 => gain huge Wγ + jets background
 => W/Z not distinguished
- Uses only jet-pairs to reconstruct W/Z
 - => future analysis could profit from boosted V techniques

[Phys.

Rev.

90,

032008 (2014)

- W+jets background larger than SM WV γ => limits only σ < 311fb (95% CL) Theory: 92 ± 22fb
- Extract aQGC limits from photon p_T spectrum

Comparisons

Comparisons

Summary

Run II promising, but no results yet

Finishing Run I analyses: still many exciting analysis left

Mapping out the quartic vertex => more comprehensive set of studies than ever => limits on aQGCs not studied before

Sensitivity to Dim8 operators still mostly lower than unitarity bound => not straightfoward to interpret

Stay tuned for EWK Wγ

Backup

Zγ fiducial region

- $p_T^{j1,j2} > 30$ GeV, $|\eta^{j1,j2}| < 4.7$,
- $M_{jj} > 400 \text{ GeV}, \Delta \eta_{jj} > 2.5,$
- $p_T^{l1,l2} > 20 \text{ GeV}, |\eta^{l1,l2}| < 2.4,$
- 70 GeV < M_{ll} < 110 GeV,
- $p_T^{\gamma} > 20 \text{ GeV}, |\eta^{\gamma}| < 1.4442,$
- $\Delta R_{jj}, \Delta R_{j\gamma}, \Delta R_{l\gamma}, \Delta R_{jl} > 0.4,$