Anatomy of the ATLAS diboson anomaly

Ben Gripaios

Cambridge

September 2015

Outline

- The anomaly in a nutshell
- Likelihood analysis
- New physics desiderata
- Models

ATLAS

- seeks 2, 2-prong fat jets with $m_{j} \in[69.4,95.4]$ (a ' W') or $\in[79.8,105.8]$ (a ' Z')
- finds bumps at 2 TeV in 'WW', 'WZ', \& 'ZZ' of 2.6, 3.4, \& 2.9σ bzw.

(a)

(b)

More questions than answers ...

- $m_{j} \in[69.4,95.4]$ (a^{\prime} W') or $\in[79.8,105.8](\mathrm{a}$ ' Z ') \Longrightarrow signals overlap
- How many events are common?
- What is the true global significance?
- Are these (likely) Ws or Zs?

Start by trying to answer some of these qq ．．．

... by a poor man's (i.e. theorist's) likelihood analysis.
cf. Brehmer \& al., 1507.00013
Fichet \& von Gersdorff, 1508.04814

1. In an ancillary file far, far away, we are told the numbers in the ' $W W+Z Z$ ' and ' $W W+W Z+Z Z$ ' regions

$$
m_{j} / \mathrm{GeV}, \text { jet } 2
$$

$$
\begin{array}{r}
W W=A+B+C, \\
Z Z=C+E+F, \\
W Z=B+C+D+E, \\
W W+Z Z=A+B+C+E+F, \\
W W+W Z+Z Z=A+B+C+D+E+F .
\end{array}
$$

Even a theorist can't solve 5 eqns in 6 unknowns!
For the 3 bins around 2 TeV :

	A	B	C	D	E	F
$n_{i}^{\text {obs }, 1}$	2	6	5	0	4	0
$n_{i}^{\text {obs }, 2}$	1	7	5	0	3	1
$n_{i}^{\text {obs }, 3}$	0	8	5	0	2	2
$\mu_{i}^{\text {SM }}$	2.09	2.72	1.00	2.43	0.46	0.34

2. Read off probabilities (from ATLAS model simulation) for bosons from a 2 TeV resonance to fall in the signal regions:

	W jet tag only W and Z jet tag Z jet tag only		
true W	0.25	0.36	0.04
true Z	0.11	0.39	0.21

$M_{j i}$	A	B	C	D	E	F
true $W W$	0.063	0.182	0.132	0.018	0.025	0.001
true $W Z$	0.028	0.139	0.143	0.057	0.090	0.007
true $Z Z$	0.012	0.087	0.155	0.047	0.165	0.044

3. Use ATLAS' reported efficiencies, branching ratios, etc, to compute a final Poisson likelihood:

$$
p\left(\left\{n_{i}^{\mathrm{obs}, \alpha}\right\} \mid s_{W W}, s_{W Z}, s_{Z Z}\right)=
$$

$$
\sum_{\alpha=1}^{3} \frac{\exp \left[-\sum_{i \in\{A, B, C, D, E, F\}}\left(\mu_{i}^{S M}+\epsilon \sum_{j=1}^{3} b_{i} s_{j} M_{j i}\right)\right]}{\prod_{i \in\{A, B, C, D, E, F\}} n_{i}^{\mathrm{obs}, \alpha}!}
$$

$$
\prod_{i \in\{A, B, C, D, E, F\}}\left(\mu_{i}^{S M}+\epsilon \sum_{j=1}^{3} b_{i} s_{j} M_{j i}\right)^{n_{i}^{\mathrm{obs}, \alpha}}
$$

Caveats:

- No background uncertainty (ATLAS says it's small)
- ATLAS model is RS KK graviton - W and Z are long. polarized.
- Background expectation ad hoc
- ...

Likelihood results:

- In terms of $\sigma \times B R$ of WW, WZ, and ZZ components
- Best fit at 5.2, 0, 5.8 fb , bzw.
- But pretty flat!

Likelihood results II:

- SM has p-value of $6 \times 10^{-4}(4 \sigma)$
- Likelihood with one channel forced to vanish ($\Delta \chi^{2}<1$)

More questions than answers ...

- How many events are common? 13/17, 15/17, 9/17.
- What is the true global significance? $4 \sigma(3.4<4<5.2)$
- Are these (likely) Ws or Zs? Likely equal WW and ZZ with no WZ

New physics desiderata ...
... from an EFT perspective.

Desiderata I

- $S U(2) \times U(1)$ plus $H \in 2_{\frac{1}{2}}$ plus new resonance
- Dimension ≤ 4 couplings for production and decay
- Integer spin; ≤ 1
- (Spin $0 \Longrightarrow$ tune couplings to prevent vev) \Longrightarrow spin 1

Desiderata II

- Resonance ρ^{μ} with EW charge can couple to quarks and W/Z/H.
- ρ-parameter \Longrightarrow custodial $S U(2)_{L} \times S U(2)_{R}$ symmetry
- Coupling to quarks $\Longrightarrow 1$ or 3 of $S U(2)_{L}$ or $S U(2)_{R}$
- 3 allows diboson coupling via $\sim \rho^{\mu} H^{\dagger} D_{\mu} H$

Desiderata III

- Coupling to quarks \Longrightarrow EWPT non-universal
- LH coupling affects $Z \rightarrow h$ and CKM unitarity
- Flavour: couple universally to light generations

We have arrived at 2 models: EFTs of an $S U(2)_{L}$ or an $S U(2)_{R}$ triplet.

Can either explain the anomaly without conflict with other searches?

e.g. $S U(2)_{L}$ triplet.

$$
\begin{aligned}
\mathcal{L}= & \mathcal{L}_{\mathrm{SM}}-\frac{1}{4} \rho_{\mu \nu}^{a} \rho^{a \mu \nu}+\left(\frac{1}{2} m_{\rho}^{2}+\frac{1}{4} g_{m}^{2} H^{\dagger} H\right) \rho_{\mu}^{a} \rho^{a \mu} \\
& \quad-2 g \epsilon^{a b c} \partial_{[\mu} \rho_{\nu]}^{a} W^{b \mu} \rho^{c \nu}-g \epsilon^{a b c} \partial_{[\mu} W_{\nu]}^{a} \rho^{b \mu} \rho^{c \nu} \\
+ & \left(\frac{1}{2} i g_{\rho} \rho_{\mu}^{a} H^{\dagger} \sigma^{a} D^{\mu} H+\text { h.c. }\right)+g_{q} \rho_{\mu}^{a} \overline{Q_{L}} \gamma^{\mu} \sigma^{a} Q_{L}
\end{aligned}
$$

Callan, Coleman, Wess \& Zumino
e.g. $S U(2)_{L}$ triplet.

$$
\begin{aligned}
& \mathcal{L}= \mathcal{L}_{\mathrm{SM}}-\frac{1}{4} \rho_{\mu \nu}^{a} \rho^{a \mu \nu}+\left(\frac{1}{2} m_{\rho}^{2}+\frac{1}{4} g_{m}^{2} H^{\dagger} H\right) \rho_{\mu}^{a} \rho^{a \mu} \\
&-2 g \epsilon^{a b c} \partial_{[\mu} \rho_{\nu]}^{a} W^{b \mu} \rho^{c \nu}-g \epsilon^{a b c} \partial_{[\mu} W_{\nu]}^{a} \rho^{b \mu} \rho^{c \nu} \\
&+\left(- \text { igo }{ }_{\mu}^{a} H^{\dagger} \sigma^{a} D^{\mu} H+\text { h.c. }\right)-g_{q}{ }_{\mu}^{a} \overline{Q_{L}} \gamma^{\mu} \sigma^{a} Q_{L}
\end{aligned}
$$

Callan, Coleman, Wess \& Zumino
e.g. $S U(2)_{L}$ triplet.

ATLAS, 1409.6190
CMS, 1506.01443
CMS, 1405.1994
CMS, 1501.04198
Pomarol \& Riva, 1308.2803

Summary

- ATLAS anomalies not inconsistent
- Could be WW, WZ, or ZZ
- L- or R-triplet models make sense as bona fide EFTs
- Higgs compositeness?
- Tension with CMS Vh
- We wait with bated breath for an update ...

