Anatomy of the ATLAS diboson anomaly

Ben Gripaios

Cambridge

September 2015

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Ben Allanach, BMG & Dave Sutherland 1507.01638, to appear in PRD

Outline

- The anomaly in a nutshell
- Likelihood analysis
- New physics desiderata

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Models

ATLAS

- seeks 2, 2-prong fat jets with m_j ∈ [69.4,95.4] (a 'W') or ∈ [79.8,105.8] (a 'Z')
- finds bumps at 2 TeV in 'WW', 'WZ', & 'ZZ' of 2.6, 3.4, & 2.9 σ bzw.

ATLAS, 1506.00962

э

ヘロト ヘポト ヘヨト ヘヨト

More questions than answers ...

m_j ∈ [69.4,95.4] (a ' W') or ∈ [79.8,105.8] (a ' Z') ⇒ signals overlap

(ロ) (同) (三) (三) (三) (三) (○) (○)

- How many events are common?
- What is the true global significance?
- Are these (likely) Ws or Zs?

▶ ...

Start by trying to answer some of these qq ...

... by a poor man's (i.e. theorist's) likelihood analysis.

cf. Brehmer & al., 1507.00013 Fichet & von Gersdorff, 1508.04814

1. In an ancillary file far, far away, we are told the numbers in the 'WW+ZZ' and 'WW+WZ+ZZ' regions

・ロト ・母ト ・ヨト ・ヨー うへで

$$WW = A + B + C,$$

$$ZZ = C + E + F,$$

$$WZ = B + C + D + E,$$

$$WW + ZZ = A + B + C + E + F,$$

$$WW + WZ + ZZ = A + B + C + D + E + F.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Even a theorist can't solve 5 eqns in 6 unknowns! For the 3 bins around 2 TeV:

	A	B	C	D	E	F
$n_i^{\mathrm{obs},1}$	2	6	5	0	4	0
$n_i^{\mathrm{obs},2}$	1	7	5	0	3	1
$n_i^{\mathrm{obs},3}$	0	8	5	0	2	2
μ_i^{SM}	2.09	2.72	1.00	2.43	0.46	0.34

2. Read off probabilities (from ATLAS model simulation) for bosons from a 2 TeV resonance to fall in the signal regions:

W jet	tag or	nly W	and Z	Z jet ta	ag Z j	et tag	only	
W 0.25		0.36				0.04		
true Z 0.11		0.39				0.21		
M_{ji}		B	C	D	E	F		
WW	0.063	0.182	0.132	0.018	0.025	0.001		
e WZ	0.028	0.139	0.143	0.057	0.090	0.007		
e ZZ	0.012	0.087	0.155	0.047	0.165	0.044		
	$\frac{W \text{ jet}}{0}$ $\frac{W_{ji}}{WW}$ WW WZ WZ WZ	W jet tag or 0.25 0.11 M_{ji} A $e WW$ 0.063 $e WZ$ 0.028 $e ZZ$ 0.012	W jet tag only W 0.25 0.11 M_{ji} A B WW 0.063 0.182 WZ 0.028 0.12 0.012	W jet tag only W and Z 0.25 0.3 0.11 0.3 M_{ji} A B C WW 0.063 0.182 0.132 WZ 0.028 0.139 0.143 e ZZ 0.012 0.087 0.155	W jet tag only W and Z jet ta 0.25 0.36 0.11 0.39 M_{ji} A B C D e WW 0.063 0.182 0.132 0.018 e WZ 0.028 0.139 0.143 0.057 e ZZ 0.012 0.087 0.155 0.047	W jet tag only W and Z jet tag Z j 0.25 0.36 0.11 0.39 M_{ji} A B C D E WW 0.063 0.182 0.132 0.018 0.025 e WZ 0.028 0.139 0.143 0.057 0.090 e ZZ 0.012 0.087 0.155 0.047 0.165	W jet tag only W and Z jet tag Z jet tag 0.25 0.36 0.04 0.11 0.39 0.21 M_{ji} A B C D E F e WW 0.063 0.182 0.132 0.018 0.025 0.001 e WZ 0.028 0.139 0.143 0.057 0.090 0.007 e ZZ 0.012 0.087 0.155 0.047 0.165 0.044	

▲ロト ▲御 ▶ ▲ 善 ▶ ▲ ● ● ● ● ● ● ● ●

3. Use ATLAS' reported efficiencies, branching ratios, etc, to compute a final Poisson likelihood:

$$p(\{n_{i}^{\text{obs},\alpha}\}|s_{WW}, s_{WZ}, s_{ZZ}) = \sum_{\alpha=1}^{3} \frac{\exp\left[-\sum_{i \in \{A,B,C,D,E,F\}} \left(\mu_{i}^{SM} + \epsilon \sum_{j=1}^{3} b_{i}s_{j}M_{ji}\right)\right]}{\prod_{i \in \{A,B,C,D,E,F\}} n_{i}^{\text{obs},\alpha}!} \prod_{i \in \{A,B,C,D,E,F\}} \left(\mu_{i}^{SM} + \epsilon \sum_{j=1}^{3} b_{i}s_{j}M_{ji}\right)^{n_{i}^{\text{obs},\alpha}},$$

Caveats:

- No background uncertainty (ATLAS says it's small)
- ATLAS model is RS KK graviton W and Z are long. polarized.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Background expectation ad hoc

▶ ...

Likelihood results:

- In terms of $\sigma \times BR$ of WW, WZ, and ZZ components
- Best fit at 5.2, 0, 5.8 fb, bzw.
- But pretty flat!

Likelihood results II:

- SM has p-value of 6×10^{-4} (4 σ)
- Likelihood with one channel forced to vanish ($\Delta \chi^2 < 1$)

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

More questions than answers ...

- ▶ How many events are common? 13/17, 15/17, 9/17.
- What is the true global significance? 4σ (3.4 < 4 < 5.2)
- Are these (likely) Ws or Zs? Likely equal WW and ZZ with no WZ

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

New physics desiderata

... from an EFT perspective.

Desiderata I

- $SU(2) \times U(1)$ plus $H \in 2_{\frac{1}{2}}$ plus new resonance
- ► Dimension ≤ 4 couplings for production and decay
- ► Integer spin; ≤ 1
- (Spin 0 \implies tune couplings to prevent vev) \implies spin 1

(ロ) (同) (三) (三) (三) (三) (○) (○)

Desiderata II

- Resonance ρ^μ with EW charge can couple to quarks and W/Z/H.
- ρ -parameter \implies custodial $SU(2)_L \times SU(2)_R$ symmetry

(ロ) (同) (三) (三) (三) (三) (○) (○)

- Coupling to quarks \implies 1 or 3 of $SU(2)_L$ or $SU(2)_R$
- ▶ 3 allows diboson coupling via $\sim
 ho^{\mu} H^{\dagger} D_{\mu} H$

Desiderata III

- Coupling to quarks => EWPT non-universal
- LH coupling affects $Z \rightarrow h$ and CKM unitarity
- Flavour: couple universally to light generations

(ロ) (同) (三) (三) (三) (三) (○) (○)

We have arrived at 2 models: EFTs of an $SU(2)_L$ or an $SU(2)_R$ triplet.

Can either explain the anomaly without conflict with other searches?

e.g.
$$SU(2)_L$$
 triplet.

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{4}\rho^a_{\mu\nu}\rho^{a\mu\nu} + (\frac{1}{2}m^2_\rho + \frac{1}{4}g^2_m H^{\dagger}H)\rho^a_{\mu}\rho^{a\mu}$$

$$-2g\epsilon^{abc}\partial_{[\mu}\rho^a_{\nu]}W^{b\mu}\rho^{c\nu} - g\epsilon^{abc}\partial_{[\mu}W^a_{\nu]}\rho^{b\mu}\rho^{c\nu}$$

$$+ (\frac{1}{2}ig_\rho\rho^a_\mu H^{\dagger}\sigma^a D^{\mu}H + \text{h.c.}) + g_q\rho^a_\mu \overline{Q_L}\gamma^{\mu}\sigma^a Q_L$$

Callan, Coleman, Wess & Zumino

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

e.g.
$$SU(2)_L$$
 triplet.

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{4}\rho^a_{\mu\nu}\rho^{a\mu\nu} + (\frac{1}{2}m^2_\rho + \frac{1}{4}g^2_m H^{\dagger}H)\rho^a_{\mu}\rho^{a\mu}$$

$$-2g\epsilon^{abc}\partial_{[\mu}\rho^a_{\nu]}W^{b\mu}\rho^{c\nu} - g\epsilon^{abc}\partial_{[\mu}W^a_{\nu]}\rho^{b\mu}\rho^{c\nu}$$

$$+(\underbrace{ig\rho}^a_{\mu}H^{\dagger}\sigma^a D^{\mu}H + \text{h.c.})\underbrace{gq}^a_{\mu}\overline{Q_L}\gamma^{\mu}\sigma^a Q_L$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Callan, Coleman, Wess & Zumino

ATLAS, 1409.6190 CMS, 1506.01443 CMS, 1405.1994 CMS, 1501.04198 Pomarol & Riva, 1308.2803

 Summary

- ATLAS anomalies not inconsistent
- Could be WW, WZ, or ZZ
- L- or R-triplet models make sense as bona fide EFTs
- Higgs compositeness?

Thamm & al., 1506.08688

Low & al., 1507.07557

Niehoff & al., 1508.00569

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Tension with CMS Vh
- We wait with bated breath for an update ...