MBI, 2 September 2015



# Composite Higgs models and their implications for EW measurements at the LHC

Andrea Thamm JGU Mainz

# Composite Higgs models

# Composite Higgs Models



heavy resonances expected in the strong sector above  $\Lambda_S$  H no longer elementary d.o.f.  $\longrightarrow$  solves hierarchy problem still large separation between  $\Lambda_{EW}$  and  $\Lambda_S$  which requires some tuning light Higgs present accidentally (e.g. light dilation) or related to longitudinal polarisation of gauge bosons (pNGB)

# Minimal Composite Higgs Models



# Minimal Composite Higgs

partial compositeness:

linear mixing between elementary and composite states

$$\mathcal{L}_{\text{mix}} = \lambda_L \, q_L \mathcal{O}_L^q + \lambda_R \, t_R \mathcal{O}_R^t + \text{h.c.} + g \, A_\mu \mathcal{J}^\mu$$

yields attractive flavour picture





# Minimal Composite Higgs

$$V(h) = f^2 m_{\Psi}^2 \left(\frac{g_{\psi}}{4\pi}\right)^2 \left(\epsilon^2 \mathcal{F}_1^{(1)}(h/f) + \epsilon^4 \mathcal{F}_2^{(1)}(h/f) + \dots\right) + \dots$$



Higgs mass

$$m_h^2 = (125 \,\text{GeV})^2 \,\frac{1}{\epsilon_R^2} \left(\frac{m_\psi}{1 \,\text{TeV}}\right)^2 \frac{\xi}{0.1}$$

need light top partners to obtain light Higgs

[Matsedonskyi, Panico, Wulzer 1204.6333] [Marzocca, Serone, Shu 1205.0770] [Pomarol, Riva 1205.6434] [Panico, Redi, Tesi, Wulzer 1210.7114] [Barbieri, Buttazzo, Sala, Straub, Tesi 1211.5085] [Pappadopulo, Thamm, Torre 1303.3062]



# Beyond the Minimal Model

can build larger cosets with additional physical salars

| G                      | H                                                  | $N_G$ | NGBs rep. $[H] = \text{rep.}[SU(2) \times$                       | $\overline{\mathrm{SU}(2)]}$                                                          |
|------------------------|----------------------------------------------------|-------|------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| SO(5)                  | SO(4)                                              | 4     | ${f 4}=({f 2},{f 2})$                                            | [Agashe, Contino, Pomarol,]                                                           |
| SO(6)                  | SO(5)                                              | 5     | ${f 5}=({f 1},{f 1})+({f 2},{f 2})$                              | [Gripaios, Pomarol, Riva, Serra 0902.1485]                                            |
| SO(6)                  | $SO(4) \times SO(2)$                               | 8     | ${f 4_{+2}}+{f ar 4_{-2}}=2	imes ({f 2},{f 2})$                  | [Mrazek, Pomarol, Rattazzi, Redi, Serra,<br>Wulzer 1105.5403]                         |
| SO(7)                  | SO(6)                                              | 6     | ${f 6}=2	imes ({f 1},{f 1})+({f 2},{f 2})$                       | -                                                                                     |
| SO(7)                  | $G_2$                                              | 7     | ${f 7}=({f 1},{f 3})+({f 2},{f 2})$                              | [Chala 1210.6208]                                                                     |
| SO(7)                  | $SO(5) \times SO(2)$                               | 10    | $10_0 = (3, 1) + (1, 3) + (2,$                                   | <b>2</b> )                                                                            |
| SO(7)                  | $[SO(3)]^{3}$                                      | 12    | ( <b>2</b> , <b>2</b> , <b>3</b> )=3	imes( <b>2</b> , <b>2</b> ) |                                                                                       |
| $\operatorname{Sp}(6)$ | $\operatorname{Sp}(4) \times \operatorname{SU}(2)$ | 8     | $(4, 2) = 2 \times (2, 2), (2, 2) + 2 \times$                    | ( <b>2</b> , <b>1</b> ) [Mrazek, Pomarol, Rattazzi,<br>Redi, Serra, Wulzer 1105.5403] |
| SU(5)                  | $SU(4) \times U(1)$                                | 8     | $4_{-5} + \bar{4}_{+5} = 2 \times (2, 2)$                        |                                                                                       |
| SU(5)                  | SO(5)                                              | 14    | ${f 14}=({f 3},{f 3})+({f 2},{f 2})+({f 1},$                     | <b>1</b> )                                                                            |

larger freedom for fermion representations

# Composite Higgs Model

• predicts direct and indirect effects

• production of EW vector resonances

$$\hat{S} = \frac{m_W^2}{m_\rho^2} \qquad \qquad m_\rho > 2.6 \,\mathrm{TeV}$$

production of top partners light to reproduce  $m_h$ 

[Mrazek, Wulzer: arXiv:0909.3977] [De Simone, Matsedonskyi, Rattazzi, Wulzer: arXiv:1211.5663] modification of Higgs couplings

$$a = g_{WWh} = \sqrt{1 - \xi} \qquad \qquad \xi = \frac{v^2}{f^2}$$

- EWPT (sensitive to effects only computable in specific models)
- Flavour

#### Direct measurements

- heavy vectors
- heavy fermions (top partners)

#### Heavy vectors resonances

$$\mathcal{L}_{V} = -\frac{1}{4} D_{[\mu} V_{\nu]}^{a} D^{[\mu} V^{\nu] a} + \frac{m_{V}^{2}}{2} V_{\mu}^{a} V^{\mu a} \qquad V = (V^{+}, V^{-}, V^{0}) + i g_{V} c_{H} V_{\mu}^{a} H^{\dagger} \tau^{a} \overleftrightarrow{D}^{\mu} H + \frac{g^{2}}{g_{V}} c_{F} V_{\mu}^{a} J_{F}^{\mu a} + \frac{g_{V}}{2} c_{VVV} \epsilon_{abc} V_{\mu}^{a} V_{\nu}^{b} D^{[\mu} V^{\nu] c} + g_{V}^{2} c_{VVHH} V_{\mu}^{a} V^{\mu a} H^{\dagger} H - \frac{g}{2} c_{VVW} \epsilon_{abc} W^{\mu \nu a} V_{\mu}^{b} V_{\nu}^{c}$$

Coupling to SM Vectors



Coupling to SM fermions  $J_F^{\mu \, a} = \sum_f \overline{f}_L \gamma^\mu \tau^a f_L$  f  $V_\mu \quad W_\mu$  $c_F V \cdot J_F \rightarrow c_l V \cdot J_l + c_q V \cdot J_q + c_3 V \cdot J_3$ 

#### Heavy vectors: LHC bounds



#### Strongly coupled model

| $- V^0 \rightarrow tt$               | $ V^{\pm} \rightarrow tb$                         |
|--------------------------------------|---------------------------------------------------|
| $- V^0 \rightarrow 11$               | $ V^{\pm} \rightarrow l^{\pm} \nu$                |
|                                      | $  V^{\pm} \rightarrow W^{\pm} Z \rightarrow jj $ |
| $ V^0 \rightarrow WW \rightarrow jj$ | $ V^0 \rightarrow WW \rightarrow l\nu q\bar{q}'$  |
| $ V^0 \rightarrow \tau \tau$         |                                                   |
| $$ pp $\rightarrow V^0$              | $ pp \to V^+$                                     |
|                                      |                                                   |

similar bounds for ATLAS

- excluded for masses  $< 1.5 \,\text{TeV}$ unconstrained for larger  $g_V$
- di-boson most stringent
- in excluded region  $G_F$ ,  $m_Z$  not reproduced

#### Limits on parameter space

• experimental limits converted into  $(M_V, g_V)$  plane



yellow: CMS  $l^+\nu$  analysis dark blue: CMS  $WZ \rightarrow 3l\nu$ light blue: CMS  $WZ \rightarrow jj$ black: bounds from EWPT

- leptonic final state dominates
- very different for larger coupling
- weaker limits if top partner decays are open

[Pappadopulo, Thamm, Torre, Wulzer: arXiv:1402.4431] [Greco, Liu: arXiv:1410.2883] [Chala, Juknevich, Perez, Santiago :arXiv:1411.1771]

# Top partners

- expect new vector-like fermions at the TeV scale
- minimal case: top-like state and heavy charge 5/3 coloured state
- non-minimal cases: top-, bottom-like states, charge -4/3, 5/3, 8/3
- either pair production, or single production in association with a b or t



#### Limits on parameter space





 $M4_5$ ,  $M1_5$ 





#### Exotic states

- consider different representation, exotic quarks are predicted to be very light e.g. in the 14: quark with charge 8/3
- very interesting phenomenology: 3W and b
- signatures in two-same sign lepton searches
- current bounds

 $m_{8/3} > 700 \,\mathrm{GeV}$ 

[ATLAS-CONF-2012-130] [CMS-PAS-SUS-12-027]



[Pappadopulo, Thamm, Torre: 1303.3062] [Matsedonskyi, Riva, Vantalon: 1401.3740]

## Indirect measurements

- Anomalous Higgs couplings
- EWPT

#### Parameterisation I

singlet

most general parameterisation, assumptions  $m_h \ll m_
ho$ custodial symmetry

$$\mathcal{L} = \frac{1}{2} \left( \partial_{\mu} h \right)^{2} - V(h) + \frac{v^{2}}{4} \operatorname{Tr} \left( D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma \right) \left( 1 + 2a \frac{h}{v} + b \frac{h^{2}}{v^{2}} + b_{3} \frac{h^{3}}{v^{3}} + \dots \right)$$
$$V(h) = \frac{1}{2} m_{h}^{2} h^{2} + d_{3} \left( \frac{m_{h}^{2}}{2v} \right) h^{3} + d_{4} \left( \frac{m_{h}^{2}}{8v^{2}} \right) h^{4} + \dots$$

SM limit  $a = b = d_3 = d_4 = 1$   $b_3 = 0$   $\Sigma(x) = \exp(i\sigma^a \chi^a(x)/v)$ 

#### Parameterisation I

singlet

$$\mathcal{L} = \frac{1}{2} \left( \partial_{\mu} h \right)^{2} - V(h) + \frac{v^{2}}{4} \operatorname{Tr} \left( D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma \right) \left( 1 + 2a \frac{h}{v} + b \frac{h^{2}}{v^{2}} + b_{3} \frac{h^{3}}{v^{3}} + \dots \right)$$
$$V(h) = \frac{1}{2} m_{h}^{2} h^{2} + d_{3} \left( \frac{m_{h}^{2}}{2v} \right) h^{3} + d_{4} \left( \frac{m_{h}^{2}}{8v^{2}} \right) h^{4} + \dots$$

 $\Sigma(x) = \exp\left(i\sigma^a\chi^a(x)/v\right)$ 



perturbativity lost at  $\sqrt{s_*}$  where  $\bar{g}(\sqrt{s_*}) \sim 4\pi$ expect new states at  $m_* \leq \sqrt{s_*}$  with coupling  $\bar{g}(m_*) \leq 4\pi$ 



can find lower bound on strong coupling

 $g_{\rho} > \bar{g}(\sqrt{s}) \sim \sqrt{\delta_{hh}} \, \frac{\sqrt{s}}{v}$ 

set upper bound  $\epsilon_{hh}$ 

with enough precision include subleading corrections

$$\mathcal{A}(2 \to 2) = \delta_{hh} \frac{s}{v^2} \left( 1 + O\left(\frac{s}{m_{\rho}^2}\right) \right)$$

no new states below  $\,M\sim \sqrt{s}/\sqrt{\epsilon_{hh}}\,$ 

$$g_{\rho} > \bar{g}(M) \sim \sqrt{\frac{\delta_{hh}^{exp}}{\epsilon_{hh}}} \frac{\sqrt{s}}{v}$$

stronger bound

#### Parameterisation I

# singlet

independent probe: single Higgs production



implies lower bound on coupling

$$g_{\rho} > \sqrt{\delta_h} \, \frac{M}{v}$$

Summary

We can distinguish whether Higgs is



#### Parameterisation II

#### stronger assumptions

[Giudice, Grojean, Pomarol, Rattazzi: hep-ph/0703164] [Elias-Miro, Espinosa, Masso, Pomarol: arxiv:1302.5661]

doublet

 $\mathcal{L}_{\text{eff}} = \mathcal{L}_{SM} + \text{dim-6 operators} + \dots$ 

#### current experimental evidence!



$$\Delta \mathcal{L} = \lambda h \bar{f} f$$
$$\Delta \mathcal{L} = m_V^2 \left( 1 + 2\frac{h}{v} + \frac{h^2}{v^2} \right) V_\mu V^\mu$$

in the non-linear realisation,Higgs couplings to fermions andgauge bosons arbitrary,but strong correlation observed

#### Parameterisation II

#### stronger assumptions

[Giudice, Grojean, Pomarol, Rattazzi: hep-ph/0703164] [Elias-Miro, Espinosa, Masso, Pomarol: arxiv:1302.5661]

doublet



relation to Higgs anomalous Higgs couplings

$$a = 1 - \frac{c_H}{2} \frac{v^2}{f^2} + \left(\frac{3c_H^2}{8} - \frac{c_H'}{4}\right) \frac{v^4}{f^4}$$
  

$$b = 1 - 2c_H \frac{v^2}{f^2} + \left(3c_H^2 - \frac{3c_H'}{2}\right) \frac{v^4}{f^4} \qquad b_3 = -\frac{4c_H}{3} \frac{v^2}{f^2} + \left(\frac{14c_H^2}{3} - 2c_H'\right) \frac{v^4}{f^4}$$
  

$$d_3 = 1 + \left(c_6 - \frac{3c_H}{2}\right) \frac{v^2}{f^2} + \left(\frac{15c_H^2}{8} - \frac{5c_H'}{4} - \frac{c_6c_H}{2} - \frac{3c_6^2}{2} + 2c_8\right) \frac{v^4}{f^4}$$

#### Parameterisation II

## doublet

relation to Higgs anomalous Higgs couplings

$$a = 1 - \frac{c_H}{2} \frac{v^2}{f^2} + \left(\frac{3c_H^2}{8} - \frac{c_H'}{4}\right) \frac{v^4}{f^4}$$
  
$$b = 1 - 2c_H \frac{v^2}{f^2} + \left(3c_H^2 - \frac{3c_H'}{2}\right) \frac{v^4}{f^4} \qquad b_3 = -\frac{4c_H}{3} \frac{v^2}{f^2} + \left(\frac{14c_H^2}{3} - 2c_H'\right) \frac{v^4}{f^4}$$

at order  $O(v^2/f^2)$  couplings given in terms of one parameter

relation

$$\Delta b = 2\Delta a^2 \left(1 + O(\Delta a^2)\right) \qquad \qquad \Delta a^2 \equiv a^2 - 1 \\ \Delta b \equiv b - 1$$

from single Higgs production: measure  $\Delta a^2$  with an error  $10^{-2}$ from double Higgs production: measure  $\Delta b$  with an error  $10^{-2}$ [Abramowicz: arXiv:1307.5288] [Contino, Grojean, Pappadopulo, Rattazzi, Thamm: arXiv:1309.7038]



imagine we measure  $\Delta a^2, \Delta b \sim 10^{-2}$  relation could not be respected can distinguish doublet and singlet structure theoretically not very motivated except for dilaton with  $\Delta b = \Delta a^2$  Summary

We can distinguish whether Higgs is



#### Parameterisation III

# pNGB

even stronger assumptions: MCHM SO(5)/SO(4) breaking scale f > v

[Contino, Nomura, Pomarol: hep-ph/0306259] [Agashe, Contino, Pomarol: hep-ph/0412089] [Agashe, Contino: hep-ph/0510164 ] [Contino, Da Rold, Pomarol: hep-ph/0612048] [Barbieri, Bellazzini, Rychkov, Varagnolo: hep-ph/ 0706.0432]



at  $O(v^2/f^2)$  can not distinguish a pNGB from a generic doublet at  $O(v^4/f^4)$  pNGB implies  $c'_H = 2c_H^2$ 



imagine we measure  $\Delta a^2, \Delta b \ge 0.1$  relation could not be respected can distinguish pNGB and non-pNGB structure imagine we measure  $\Delta a^2, \Delta b < 0.1$ , then we could not distinguish

#### Parameterisation III

#### independent probe of pNGB nature: triple Higgs production



0 for pNGB due to  $Z_2$  symmetry

 $\pi^{\hat{a}}(x) \to -\pi^{\hat{a}}(x)$ 

non-zero for generic doublet

pNGB

| Delerisation        | Amplitude for         |                |  |
|---------------------|-----------------------|----------------|--|
| 1 Ofai Isation      | PNGB                  | SILH           |  |
| $V_L V_L \to hhh$   | $g^2 v/f^2$           | $\hat{s}v/f^4$ |  |
| $V_L V_T \to h h h$ | $\sqrt{\hat{s}g}$     | $/f^{2}$       |  |
| $V_T V_T \to hhh$   | $\int g^2 v_{\prime}$ | $f^{2}$        |  |

#### Summary

#### We can distinguish whether Higgs is



#### Indirect measurements



## Indirect measurements

| Collider | Energy                                     | Luminosity                                                         | $\xi \ [1\sigma]$           |
|----------|--------------------------------------------|--------------------------------------------------------------------|-----------------------------|
| LHC      | $14\mathrm{TeV}$                           | $300  {\rm fb}^{-1}$                                               | $6.6 - 11.4 \times 10^{-2}$ |
| LHC      | $14\mathrm{TeV}$                           | $3 \mathrm{ab}^{-1}$                                               | $4-10\times 10^{-2}$        |
| ILC      | $250 \mathrm{GeV}$<br>+ $500 \mathrm{GeV}$ | $250  {\rm fb}^{-1}$<br>$500  {\rm fb}^{-1}$                       | $4.8-7.8 	imes 10^{-3}$     |
| CLIC     | $350{ m GeV} + 1.4{ m TeV} + 3.0{ m TeV}$  | $500  {\rm fb}^{-1}$<br>$1.5  {\rm ab}^{-1}$<br>$2  {\rm ab}^{-1}$ | $2.2 \times 10^{-3}$        |
| TLEP     | $240{ m GeV}$<br>+ $350{ m GeV}$           | $10 \text{ ab}^{-1}$<br>$2.6 \text{ ab}^{-1}$                      | $2 \times 10^{-3}$          |

[CMS-NOTE-2012-006] [ATL-PHYS-PUB-2013-014] [Dawson et. al.1310.8361] [CLIC 1307.5288]

## EWPT

• set some of strongest constraints on CH models







## Direct vs indirect



- theoretically excluded  $\xi \leq 1$
- LHC8 at 8 TeV with 20 fb<sup>-1</sup>
   HL-LHC at 14 TeV with 3 ab<sup>-1</sup>
- increase in E: improves mass reach
- increase in L: improves  $g_{\rho}$  reach
- resonances too broad for large  $g_{\rho}$
- direct: more effective for small  $g_{\rho}$ ineffective for large  $g_{\rho}$
- indirect: more effective for large  $g_{\rho}$

# But maybe...

- ... we don't need to consider all of this!
- ATLAS excess in fully hadronic di-bosons at 2 TeV
- fits with a region in the mass coupling plane

| $m_V  [\text{TeV}]$ | $g_V$                  | $(\sigma \times BR)_{V^{\pm}}$ [fb] | $(\sigma \times BR)_{V^0}$ [fb] |
|---------------------|------------------------|-------------------------------------|---------------------------------|
| 1.8                 | $3.95^{+1.65}_{-0.88}$ | 4.51                                | 2.04                            |
| 1.9                 | $3.37^{+1.63}_{-0.83}$ | 4.63                                | 2.09                            |
| 2.0                 | $2.81^{+1.54}_{-0.82}$ | 4.79                                | 2.16                            |



- also some other channels fluctuate up
- some others don't
- maybe this is what it should look like?



# Conclusions

- CH is a very compelling framework
- many ways to look for it:
  - direct: vector resonance and top partners
  - indirect: coupling modifications
- we will definitely learn something from Run2 of LHC

# Backup

## EWPT

• set some of strongest constraints on CH models



[Grojean, Matsedonskyi, Panico: 1306.4655]

- incalculable UV contributions can relax constraints
- $\alpha$  and  $\beta$  constants of order 1
- define  $\chi^2(\xi, m_\rho, \alpha, \beta)$  and marginalise

# EWPT

- define  $\chi^2(\xi, m_\rho, \alpha, \beta)$  and marginalise
- to avoid unnatural cancellations





# HVT IN THE DI-BOSON EXCESS

Thamm, Torre, Wulzer, arXiv:1506.08688



Thamm & Torre

Heavy Vector Triplets and Singlets

## BOOSTED VECTORS TAGGING EFFICIENCIES

Thamm, Torre, Wulzer, arXiv:1506.08688

W-jet: 69.4 GeV < m < 95.4 GeV</li>
Z-jet: 79.8 GeV < m < 105.8 GeV</li>



Heavy Vector Triplets and Singlets

# HVT SIGNAL CROSS SECTION



Thamm, Torre, Wulzer, arXiv:1506.08688

- consider 5 bins [1.75, 2.25]
- total events: 20
- background: 13
- excess events: 7
- need 6.5 fb signal cross section

$$S_{WZ} = \mathcal{L}\mathcal{A}\left[(\sigma \times BR)_{V^{\pm}}BR_{WZ \to had}\epsilon_{WZ \to WZ} + (\sigma \times BR)_{V^{0}}BR_{WW \to had}\epsilon_{WW \to WZ}\right],$$

| $m_V$ [TeV] | $g_V$                  | $(\sigma \times BR)_{V^{\pm}}$ [fb] | $(\sigma \times BR)_{V^0}$ [fb] |
|-------------|------------------------|-------------------------------------|---------------------------------|
| 1.8         | $3.95^{+1.65}_{-0.88}$ | 4.51                                | 2.04                            |
| 1.9         | $3.37^{+1.63}_{-0.83}$ | 4.63                                | 2.09                            |
| 2.0         | $2.81^{+1.54}_{-0.82}$ | 4.79                                | 2.16                            |

#### Heavy Vector Triplets and Singlets

# COMPATIBILITY WITH OTHER SEARCHES



Thamm, Torre, Wulzer, arXiv:1506.08688

a

 $\times \operatorname{BR}_{\operatorname{eff}}(WZ) \left[ \operatorname{pb} \right]$ 

Ь

d)

 $\times \, {\rm BR}_{\rm eff}(WZ) \, [{\rm pb}]$ 

Ь

Heavy Vector Triplets and Singlets