

Deutsches Elektronen-Synchrotron (DESY), Hamburg

Double Parton Scattering experimental results

Paolo Gunnellini

DESY Tuesday Seminar Hamburg - Zeuthen 19th-20th May 2015

Outline

- Introduction
- Choice of sensitive observables
- Choice of physics channels
- Summary of recent DPS measurements
- Extraction of the DPS contribution
- Other DPS-sensitive measurements
- Summary and conclusion

Introduction: the Underlying Event

Introduction: why do we care about DPS?

- Increasing contribution at the LHC when going to higher energy
- Sizeable background for LHC processes (SM and searches), e.g. Higgsstrahlung
- Information about the structure of the proton, i.e. parton correlations

Choice of sensitive observables (I): a four-jet scenario

A four-jet final state may arise from one or two chains:

• the two additional jets may be produced via PS or a 2nd hard scattering

! Selection of jet pairs at different scales helps the jet association !

Choice of sensitive observables (II): a four-jet scenario

Which regions of the phase space are interesting for DPS detection? Studies of SPS and DPS contributions performed with PYTHIA8:

Selection of a four-jet final state in $|\eta| < 4.7$ at two different p_T thresholds (20 and 50 GeV)

A SIMPLE scenario:

- SPS: MPI contribution switched off
- DPS: Two hard scatterings at the parton level forced to happen w/o parton shower

Choice of physics channels

Measurement of a four-jet final state

paolo.gunnellini@desy.de

Measurement of a four-jet final state with b-jets

Measurement of a W+dijet final state

Event selection

Presence of a muon with $p_T > 35$ GeV in $|\eta| < 2.1$ and $E_T^{miss} > 50$ GeV + at least 2 jets: $p_T > 20$ GeV in $|\eta| < 2.0$

paolo.gunnellini@desy.de

How can one extract the DPS contribution from the measured observables?

How to extract σ_{eff} : the template method

- Measurement of DPS-sensitive observables
- Definition of signal and background
- Fit the relative fraction of signal and background
- The signal fraction translates into a value for $\sigma_{\it eff}$

From Ramandeep Kumar, Talk at MPI@LHC 2012 W + jets channel

$$\sigma_{eff} = \frac{\sigma_A \cdot \sigma_B}{\sigma_{DPS}}$$
$$\sigma_{eff} = \frac{N_A^{ev}}{N_{A+B(DPS)}^{ev}} \cdot \sigma_B$$
$$\sigma_{eff} = \frac{N_A^{ev}}{f_{DPS} \cdot N_{A+B}^{ev}} \cdot \sigma_B$$

Extraction of σ_{eff} from W+dijet final state (ATLAS)

First measurement of DPS signal at 7 TeV New J. Phys. 15 (2013) 033038

SELECTION: 2j with $p_T > 20$ GeV in |y| < 2.8, standard W selection CONSIDERED OBSERVABLES: normalized $\Delta_{jets}^n = \frac{|\vec{p}_T^{ij} + \vec{p}_T^{2j}|}{|\vec{p}_T^{ij} + |\vec{p}_T^{2j}|}$ BACKGROUND: ALPGEN+HERWIG+JIMMY with hard MPI excluded SIGNAL: selection of two independent collisions from data DRIVING UNCERTAINTY: model dependence

$$\sigma_{eff} = \frac{N_{W+0j}}{f_{DPS} \cdot N_{W+2j}} \cdot \sigma_{2j}$$
with $f_{DPS} = 8.0\%$ and
$$\frac{N_{W+0j}}{N_{W+2j}} = 23$$
= 15.0 ± 3 (st.) $^{+5}_{-3}$ (sys.) mb

 $\sigma_{eff} =$

Extraction of σ_{eff} from W+dijet final state (CMS)

CONSIDERED OBSERVABLES: normalized ΔS and $\Delta^{rel} p_T$ BACKGROUND: MADGRAPH+P8 with hard MPI above 15 GeV excluded SIGNAL: Two mixed independent scatterings generated with P8 and MG+P8 DRIVING UNCERTAINTY: model dependence

 $\sigma_{\it eff} = 20.7 \pm 0.8$ (stat.) \pm 6.6 (syst.) mb

The inclusive fit method

Experimental difficulties of the template method

- ightarrow How to define the background?
 - Good to exclude hard MPI..but no such possibility in some generators

\rightarrow How to define exclusive and inclusive events?

- N_{W+0j} and N_{W+2j} are sensitive to the jet scales
- \rightarrow These issues have an impact on the systematic uncertainty! Is there a way out?

The inclusive fit method

- Run predictions for different choices of UE parameters
- Fit the MC predictions to the considered observables
- Improve the data description with the examined model
- (..look at the corresponding σ_{eff} ..)

Extraction of σ_{eff} in four-jet final states

paolo.gunnellini@desy.de

DESY Tuesday Seminar

19th May 2015

Where do we stand now?

- UE measurements sensitive to soft MPI
- Observables sensitive to DPS measured in various final states
- Values of $\sigma_{\it eff}$ extracted in W+dijet and four-jet
- Ongoing extraction for the other channels

It is not all.

- CMS Coll. Measurement of Prompt Double J/psi Production at 7 TeV JHEP1409(2014)094
- CMS Coll. Measurement of the cross section and angular correlations for associated production of a Z boson with b hadrons JHEP12(2013)039
- CMS Coll. Measurement of the production cross section for a W boson and two b jets at 7 TeV Phys.Lett.B735(2014)
- ATLAS Coll. Associated production of prompt J/ψ mesons and W boson JHEP04(2014)172
- ATLAS Coll. Measurement of the cross-section for W boson production in association with b-jets New J.Phys.15(2013)033038

Angular correlations in Z+b-hadrons final states

Event selection

Presence of two leptons with $p_T > 20$ GeV in $|\eta| < 2.4$ with invariant mass close to the Z peak and two b-hadrons with $p_T > 15$ GeV in $|\eta| < 2$

What to do next?

\rightarrow Measurements for LHC Run 2

Scale of secondary scatter(s)	Benchmark for the detection of the DPS bb+jj 4j Double J/Ψ		W(μν)+W(μν)		Energy dependence Channel dependence Scale dependence Flavour dependence
			W(μν)+bb Z(μμ)+bb		
			γ+3j W(μν)+jj	Z(μμ)+jj	\rightarrow more statistics \rightarrow double differential
	Semi-hard (Minimum Bias)	j+UE	W+UE	Z(μμ)+UE	distributions $ ightarrow$ access to diboson final states $ ightarrow$ DPS with Higgs
			Scale of prin	nary scatter	

Joined effort between phenomenological and experimental community

Personal remarks and summary

- Important to study first the sensitivity of the physics channel and the considered observables
- Important to produce unfolded results in order to be able to compare predictions from any model
- Double parton scattering is essential for proton structure as well as for background to physics searches
- Several final states can be used for DPS detection
 W+jets, four-jets, two b- + two other jets...
- The measured final states clearly indicate the need for DPS for describing the experimental results
- Future: measure energy dependence get a unified picture of DPS with UE- and MB-sensitive measurements

Personal remarks and summary

- Important to study first the sensitivity of the physics channel and the considered observables
- Important to produce unfolded results in order to be able to compare predictions from any model
- Double parton scattering is essential for proton structure as well as for background to physics searches
- Several final states can be used for DPS detection
 W+jets, four-jets, two b- + two other jets...
- The measured final states clearly indicate the need for DPS for describing the experimental results
- Future: measure energy dependence get a unified picture of DPS with UE- and MB-sensitive measurements

BACK-UP SLIDES

Determination of σ_{eff} in the four-jet channel

Tuning the four-jet observables (Phys.Rev., D89, 2014) with PYTHIA8

Parameter	CDPSTP8S1-4j	CDPSTP8S2-4j	4C
MultipleInteractions:expPow	1.16	0.6921	2.0
MultipleInteractions:ecmPow	0.19*	0.345	0.19
MultipleInteractions:pT0ref	2.09*	2.125	2.09
BeamRemnants:reconnectRange	1.5* *=unchanged wrt 4C	6.526	1.5
χ^2/NdF	0.75	0.42	-
$\sigma_{eff} (mb)$	$21.3^{+1.7}_{-1.3}$	$19.0^{+4.7}_{-3.0}$	30.3

$$\sigma_{eff} = 19.0^{+4.7}_{-3.0} \text{ mb}
ightarrow \sigma_{eff}$$
 (Tune 4C) \sim 30.3 mb

Choice of sensitive observables

paolo.gunnellini@desy.de

DESY Tuesday Seminar

D0 DPS analysis: γ +3jets and γ +b/c jet+2jets

SELECTION 1: $p_T^{\gamma} > 26 \text{ GeV}$, $p_T^{lead} > 35 \text{ GeV}$, $15 < p_T^{oth.} < 35 \text{ GeV}$ in $|\eta| < 2.5$ SELECTION 2: $p_T^{\gamma} > 26 \text{ GeV}$, $p_T^b > 35 \text{ GeV}$, $15 < p_T^{oth.} < 35 \text{ GeV}$ in $|\eta| < 2.5$ CONSIDERED OBSERVABLES: normalized ΔS btw γ -j and dijet systems BACKGROUND: SHERPA sample with MPI simulation off SIGNAL: Two independent events recorded from data DRIVING UNCERTAINTY: model dependence (only samples with MPI off!)

	CMS	ATLAS	D0/CDF
Background and signal should			
cover the full phase space	\checkmark	\checkmark	X
Use more than one MC event generator			
to correctly evaluate the model dependence	\checkmark	\checkmark	\checkmark
and the systematic uncertainty			
Use more than one variable			
for the DPS determination	\checkmark	Х	X

BUT..difficult to define the background template in the same way with different generators!

The proposed new approach

A FEW REMARKS WHEN USING THE TUNING METHOD:

- Investigation of the contribution of different matrix elements used with the same UE simulation
- Output Use more than one MC event generator to study the DPS contribution needed in different models
- Use more than one variable for the DPS determination
- Check if the new set of parameters spoil description of more inclusive distribution

How does the new tune perform in the UE description?

Measurement of charged particle mult. and p_T sum in hadronic events ATLAS Coll. Phys.Rev. D83 (2011) 112001

Tune	$\sigma_{\it eff}~({\sf mb})$
P8 4C	30.3
CDPSTP8S2	$19.0^{+4.7}_{-3.0}$

A tension appears between the description of "softer" and "harder" MPI within the same framework

Charged particle multiplicity (top) and *p*_T sum (bottom) for transverse (left) and toward (right) regions

paolo.gunnellini@desy.de

DESY Tuesday Seminar

19th May 2015

How to fix this?

 \rightarrow Attempt to implement in a tune a value of $\sigma_{\it eff}$ compatible with experimental measurements

HERWIG++ case: $\sigma_{eff} = \frac{28\pi}{\mu}$, with μ inverse proton radius

Tune UE-EE-5C (arXiv:1307.5015) : $\sigma_{eff} = 15 \text{ mb} (\text{CDF})$

It is not all..

- ATLAS Coll. Associated production of prompt J/ ψ mesons and W boson JHEP 04 (2014) 172
- LHCb Coll. *Prompt charm production in pp collisions* HEP 1206 (2012) 141
- ATLAS Coll. Measurement of the cross-section for W boson production in association with b-jets New J. Phys. 15 (2013) 033038
- LHCb Coll. Study of forward Z+jet production in pp collisions JHEP 01 (2014) 033
- CMS Coll. Measurement of the cross section and angular correlations for associated production of a Z boson with b hadrons JHEP 12 (2013) 039
- CMS Coll. Measurement of Prompt Double J/psi Production in pp Collisions JHEP 1409 (2014) 094
- ALICE Coll. J/psi production as a function of charged particle multiplicity in pp collisions at 7 TeV Phys.Lett.B 712, 165 (2012)

No extraction of a value of $\sigma_{\it eff}$ but clear indication of need for DPS !

Cross section measurements sensitive to DPS

ATLAS Collaboration: "Measurements of W+prompt J/ ψ in *pp* collisions at 7 TeV" JHEP 04 (2014) 172

ATLAS Collaboration: "Measurement of the cross-section for W boson production in association with b-jets" New J. Phys. 15 (2013) 033038

Measurements compatible with a DPS contribution with σ_{eff} ~15-20 mb

Keypoints of the choice of variables

- Observables which consider the whole final state are more sensitive to DPS
 - $\bullet~\Delta S,$ sum of transverse momenta, energy of the four objects
- A large phase space for additional radiation reduces the DPS sensitivity
 - Better selection with objects close in transverse momentum
 - BUT..more complicated migration effects (and unfolding procedure)

CMS strategy for the DPS measurement

Compare the data to your own favourite predictions!

4th (future) step: differential distributions with high luminosities..

Cross section measurements sensitive to DPS (I)

Event selection

Presence of two pairs of same-sign muons in $|\eta|<$ 2.2; the two pairs must have invariant mass close to J/ ψ

Correction and phase-space extrapolation assuming unpolarized production

SPS background should dominate the fall at low Δy DPS expected to fill the high Δy region

Useful baseline for building reliable models of J/ψ production before extracting DPS signal

paolo.gunnellini@desy.de

19th May 2015

Cross section measurements sensitive to DPS (III)

Event selection

 $\begin{array}{l} \mbox{Presence of a muon with } p_T > 25 \mbox{ GeV in } |\eta| < 2.1, \ E_T^{miss} > 45 \mbox{ GeV and} \\ \mbox{two b-tagged jets with } p_T > 25 \mbox{ GeV in } |\eta| < 2.4 \end{array}$

Good agreement with SM predictions (MadGraph+Pythia8)

 $\sigma(W + b\bar{b}) = 0.53 \pm 0.05 \pm 0.09 \pm 0.06 \pm 0.01 \text{ pb}$

Good agreement with MCFM predictions corrected with DPS contribution ($\sigma_{DPS} \sim 0.08$ pb)

Measurement of a final state with γ + 3 jets

Event selection

Selection of a photon and at least three jets in $|\eta| < 2.5$: $\gamma+1$ jet: $p_T > 75$ GeV, 2 jets: $p_T > 20$ GeV

$$\sigma_{AB}^{DPS} = \frac{m}{2} \frac{\sigma_A \sigma_B}{\sigma_{eff}}$$

Internal structure of the proton DPS background for any physics channel

 \rightarrow Which channels can be used to look for DPS signals?

of secondary scatter(s)	W(μν)+W(μν)				
	Benchmark for the detection of	:	W(μν)+bb	Z(μμ)+bb	Published by CMS and/or ATLAS
	the DPS	bb+jj <u>4j</u>	<u>γ+3j</u> W(μν)+jj	Z(μμ)+jj	Published by D0 and/or CDF
	Double J/Ψ				How can DPS be
Scale	Semi-hard (Minimum Bias)	+UE	W+UE	Z(μμ)+UE	detected?
			Scale of prin	nary scatter	

The Compact Muon Solenoid experiment

