

the answer? the largest magnet ever to serve axion physics

IAXO Conceptual design report, Armengaud et al. JINST 9 T05002

Wantz, Shellard 2010

Axion DM scenarios

Kawasaki, Saikawa, Sekiguchi 2014

- Axion DM scenarios

Axion dark matter

 $f_a[\text{GeV}]$

10¹

 10^{2}

 10^{3}

104

- Axion DM scenarios

Hints, constraints and models ... any preference?

See also Giannotti's talk!

Tip of the Red Giant branch (M5)
$$g_{ae} = C_{ae} \frac{m_e}{f_a} = (2 \pm 1.5) \times 10^{-13}$$

Viaux, PRD 2011White dwarf luminosity function $g_{ae} = C_{ae} \frac{m_e}{f_a} = (1.4 \pm 1.4) \times 10^{-13}$
Bertolami, JCAP 2014Cassiopeia A: neutron star cooling $g_{an} = C_{an} \frac{m_n}{f_a} = (3.8 \pm 3) \times 10^{-10}$
Leinson, JCAP 2014SN1987A $g_{ap} = C_{ap} \frac{m_p}{f_a} < 0.8 \times 10^{-10}$
Raffelt Lec. Not. Phys. 2008 and ...

Hints, constraints and models ... any preference?

KSVZ (no RG, no WD, no pref.) 0.4 DFSZ χ^2 DFSZZ 0.2 KSVZ $C_{ap} \ C_{an}$ m_u . 0.0 m_d -0.2 C_{ae} KSVZ -0.4DFSZ -0.6 Preliminary 10^{-1} 0.2 0.0 0.4 0.6 0.8 1.0 $\cos^2\beta$ $f_a/10^9 {\rm GeV}$ DFSZ (no RG, no WD, 2 pref.). DFSZ2 DFSZ1 10^{-1} 10 **Preliminary** 0.5 $\cos^2 \beta$ \mathcal{O} \mathfrak{O} \cos^2 \cos^2 **Preliminary Preliminary** 0.2 10^{-1} 10^{-1} 10^{-1} $f_a/10^9 {
m GeV}$ $f_a/10^9 {\rm GeV}$ $f_a/10^9 {\rm GeV}$

See also Giannotti's talk!

Helioscopes

Sikivie PRL 1983

Axions from the Sun

JR, JCAP 2013

Hadronic axions (KSVZ)

Non hadronic (DFSZ, e-coupling!)

typical of non-hadronic meV mass axions

CAST Helioscope

CAST (LHC dipole 9.3 m, 9T)

- 1~2 h tracking/day (sunset,dawn)
- 3 Detectors (2 bores) CCD, Micromegas
- X-ray optics
- He gas for large masses

$$P(a \leftrightarrow \gamma) = \left(\frac{2g_{a\gamma}B_T\omega}{m_a^2 - m_\gamma^2}\right)^2 \sin^2\left(\frac{(m_a^2 - m_\gamma^2)L}{4\omega}\right)$$

hadronic axions

Next generation (proposed) IAXO

Boost parameters to the maximum

-NGAG paper JCAP 1106:013,2011 -Conceptual design report IAXO 2014 JINST 9 T05002 -LOI submitted to CERN, TDR in preparation Large toroidal 8-coil magnet L = ~20 m 8 bores: 600 mm diameter each 8 x-ray optics + 8 detection systems Rotating platform with services

IAXO magnet (under development)

IAXO magnet concept presented in: IEEE Trans. Appl. Supercond. 23 (ASC 2012) Adv. Cryo. Eng. (CEC/ICMC 2013) IEEE Trans. Appl. Supercond. (MT 23)

Property		Value
Cryostat dimension	s: Overall length (m)	25
	Outer diameter (m)	5.2
	Cryostat volume (m ³)	~ 530
Toroid size:	Inner radius, R_{in} (m)	1.0
	Outer radius, R_{out} (m)	2.0
	Inner axial length (m)	21.0
	Outer axial length (m)	21.8
Mass:	Conductor (tons)	65
	Cold Mass (tons)	130
	Cryostat (tons)	35
	Total assembly (tons)	~ 250
Coils:	Number of racetrack coils	8
	Winding pack width (mm)	384
	Winding pack height (mm)	144
	Turns/coil	180
	Nominal current, I_{op} (kA)	12.0
	Stored energy, E (MJ)	500
	Inductance (H)	6.9
	Peak magnetic field, B_p (T)	5.4
	Average field in the bores (T)	2.5
Conductor:	Overall size (mm^2)	35×8
	Number of strands	40
	Strand diameter (mm)	1.3
	Critical current @ 5 T, I_c (kA)	58
	Operating temperature, T_{op} (K)	4.5
	Operational margin	40%
	Temperature margin $@$ 5.4 T (K)	1.9
Heat Load:	at 4.5 K (W)	~ 150
	at 60-80 K (kW)	~ 1.6

IAXO optics

IAXO optics conceptual design
AC Jakobsen et al, Proc. SPIE 8861 (2013)
NuSTAR optics groups LLNL, Columbia U.,
DTU Denmark all in IAXO

Telescopes	8
N, Layers (or shells) per telescope	123
Segments per telescope	2172
Geometric area of glass per telescope	0.38 m^2
Focal length	5.0 m
Inner radius	50 mm
Outer Radius	300 mm
Minimum graze angle	2.63 mrad
Maximum graze angle	15.0 mrad
Coatings	W/B ₄ C multilayers
Pass band	1 - 10 keV
IAXO Nominal, 50% EEF (HPD)	0.29 mrad
IAXO Enhanced, 50% EEF (HPD)	0.23 mrad
IAXO Nominal, 80% EEF	0.58 mrad
IAXO Enhanced, 90% EEF	0.58 mrad
FOV	2.9 mrad

IAXO detectors

IAXO timeline

							1													1					
		~ 3.5 v							V CC	construction															
																				_					
							N								_		-						-	-	
		~18 month TDP											~ 2	2.5	ii v	nte	qra	tio	n/c	om	mis	sior	ning		
															1	•				•			N		
				_	_			_	_																
	Years			1			2	2			:	3			4	•			4	5			e	\$	
	Months	3	6	9	12	15	18	21	24	27	30	33	36	39	42	45	48	51	54	57	60	63	66	69	72
Magnet			-										_						r –			_			
Design				-		_															╞──┦				⊢]
	- 11													_				_			┢──┦				
Demo co																					$\left \right $				
Product	ion																						\vdash		
Service		-	-	-		_						_													
Optics	>		L	1																-					
Optic de	esian study			_															_		 7				
Prototy	pe construction																				+				
Calibrat	ion																				+				
Finalize	design																								
Build as	sembly machines																								
Procure	mandrels & ovens																								
Build co	pating facilities																								
Slump g	glass																								
Deposit	coatings																								
Assemb	ole optics																								
Calibrat	e optics																								
Installat	ion																								
Detectors																									
Prototyp	pe																								
Constru	ction (incl. spares)																								
Installat	ion & commissioning																								

Physics reach: Axions

(preliminary)

Hadronic axions (KSVZ)

Non hadronic (DFSZ, e-coupling!)

Possibility to unveal the hints in DSFZ P1, P2!

Physics reach: Axions-like

Axion-like particles easing gamma-ray propagation across the universe?

IAXO will cover the exciting parameter space !

Physics case + : Betelgeuse goes bang

If Betelgeuse is the next galactic SN ...

- up to 5 1014 a's (E~80 MeV) in 10 sec
- Early warning (Si nu's) to point
- check visibility
- 50-100 MeV detectors
- needs a boost ~30

Physics case + : Axion DM detectors @ IAXO

JR, talk at Patras 2014

DM detectors inside IAXO volume (see JR, talk at Patras 2014)

- huge magnetic volume

ADMX ADMX-HF 8 (T) 8 2.5 * 9 9 h,R=100,21 h,R=25.5 h,R*=2000,30 h,R=920,2.2 Dimensions [cm] V [L] 2 140 8 x 1700 2 x 14 $P_{\rm out} \propto |{\bf B}|^2 V \, [{\rm T}^2 {\rm L}]$ 160 8 x 35000 2 x 1100 9000

- Low masses

-High masses: long/flat cav's, combine)

- Dielectric filters

- Dish antenna (miniclusters)

IAXO costs

Item	Cost (MCHF)	Subtotals (MCHF)
Magnet		31.3
Eight coils based assembled toroid	28	
Magnet services	3.3	
Optics		16.0
Prototype Optic: Design, Fabrication, Calibration, Analysis	1.0	
IAXO telescopes (8 + 1 spare)	8.0	
Calibration	2.0	
Integration and alignment	5.0	
Detectors		5.8
Shielding & mechanics	2.1	
Readouts, DAQ electronics & computing	0.8	
Calibration systems	1.5	
Gas & vacuum	1.4	
0		
Dome, base, services building and integration		3.7
Sum		56.8

Table 5: Estimated costs of the IAXO setup: magnet, optics and detectors. It does not include laboratory engineering, as well as maintenance & operation and physics exploitation of the experiment.

Conclusions

- Extraordinary physics case
 - meV axions (relevant in astrophysics?, (sub) dominant dark matter?)
 - Axion-like particles and gamma-ray transparency
 - Direct Axion DM detection (much to do!)
 - Next galactic supernova?
 - Others... HPs, MCPs ...
- Doable!, built upon CAST experience
 - key expertise covered (magnet, optics, detectors)
- New Physics case "white paper" soon

- We are a few ... but

Conclusions

- Extraordinary physics case
 - meV axions (relevant in astrophysics?, (sub) dominant dark matter?)
 - Axion-like particles and gamma-ray transparency
 - Direct Axion DM detection (much to do!)
 - Next galactic supernova?
 - Others... HPs, MCPs ...
- Doable!, built upon CAST experience
 - key expertise covered (magnet, optics, detectors)
- New Physics case "white paper" soon

- We are a few ... but

