SEARCHING FOR ULTRA-LIGHT HIDDEN PHOTONS

with:

Peter Graham, Jeremy Mardon & Yue Zhao

and experimental collaborators:

Kent Irwin, Saptarshi Chaudhuri, Sami Tantawi, Vinod Bharadwaj

OUTLINE

I. Ultra-light hidden photons: theory

- 2. Searching for ultra-light hidden photons
- 3. The importance of the longitudinal mode
- 4. Searching for hidden photon dark matter
- 5. Cosmological Solution to the Hierarchy Problem

ULTRA-LIGHT HIDDEN PHOTONS

"ULTRA-LIGHT HIDDEN PHOTONS"

Hidden Photons:

Kinetically-mixed, massive, U(1)' gauge boson A':

$$\int = \int SM + \int_{A'} + \int_{kin.\ mix} - 2\varepsilon F_{\mu\nu} F'^{\mu\nu}$$

$$(-\frac{1}{4}F'^{2} + \frac{1}{2}m_{\gamma'}^{2}A'_{\mu}^{2})$$

Kinetic mixing $\varepsilon \ll 1$

Ultra-light: Macroscopic Compton wavelength

$$\lambda_{Compton} = 1 \text{ m} \times (10^{-6} \text{ eV}/m_{\gamma'})$$

WHAT DOES THIS NEW FIELD DO?

Macroscopic, mixes with photon

WHAT DOES THIS NEW FIELD DO?

Important point I

all effects decouple when $m_{\gamma'}^2 \rightarrow 0$

Important point I

all effects decouple when $m_{\gamma'}^2 \rightarrow 0$

Interaction basis

- interacting photon non-interacting hidden photon - mass mixing $\begin{pmatrix} 0 & \varepsilon \\ \varepsilon & 1 \end{pmatrix} m_{\gamma'}^2$

Important point I

all effects decouple when $m_{\gamma'}^2 \rightarrow 0$

Important point I

all effects decouple when $m_{\gamma'}^2 \rightarrow 0$

Important point I

all effects decouple when $m_{\gamma'}^2 \rightarrow 0$

Important point 2

a massive hidden photon has 2 transverse modes + 1 longitudinal

ULTRA-LIGHT HIDDEN-PHOTON CONSTRAINTS

from 1002.0329, 1302.3884

DETECTING ULTRA-LIGHT HIDDEN PHOTONS

our motto: Fields leak through shields

our motto: Fields leak through shields

field

sensor

our motto: Fields leak through shields

Signal size: first estimate

- Source fields (E, B)_{source}
- ϵ to produce hidden photon
- ϵ for hidden photon to backreact on sensor

$\rightarrow \quad (E, B)_{\text{detected}} \sim \varepsilon^2 (E, B)_{\text{source}} ?$

Signal size: first estimate

- Source fields (E, B)_{source}
- ϵ to produce hidden photon
- ϵ for hidden photon to backreact on sensor

$$\rightarrow (E, B)_{\text{detected}} \sim \epsilon^2 (E, B)_{\text{source}}$$
?

$$\rightarrow (E, B)_{detected} \sim (...) \varepsilon^2 (E, B)_{source}$$

missing factor to give
decoupling as $m_{Y'} \rightarrow 0$

Improve with resonance

Improve with resonance

Signal size: first estimate

- Source fields (E, B)_{source}
- ϵ to produce hidden photon
- ϵ for hidden photon to backreact on sensor
- $Q \gg 1$ resonant enhancement

$$\rightarrow (E, B)_{\text{detected}} \sim \epsilon^2 (E, B)_{\text{source}}$$
?

$$\rightarrow (E, B)_{detected} \sim (...) Q \varepsilon^2 (E, B)_{source}$$

missing factor to give
decoupling as $m_{Y'} \rightarrow 0$

Interaction basis

— *interacting* photon *non-interacting* hidden photon

mass mixing
$$\begin{pmatrix} 0 & \varepsilon \\ \varepsilon & 1 \end{pmatrix} m_{\gamma'^2}$$

 \rightarrow (E, B)_{detected} ~ ($m_{\gamma}{}^{A}L^{2}/\omega^{2}$) Q ε^{2} (E, B)_{source}

"Light Shining through Walls" experiments

- The ALPs axion search uses this setup (+ static B-field)
- Can immediately repurpose for hidden photons Ahlers et al 0706.2836 — Laser cavities: probes μm wavelengths

MICROWAVE CAVITIES

Microwave cavities are ideal

- amazing resonators: $Q \sim 10^{10}$
- 2 cavities can be tuned to same frequency
- cm-m wavelengths
- same signal scaling as above

Early-stage experiments

Povey et al 1003.0964
ADMX 1007.3766
CROWS 1310.8098

Jaekel & Ringwald 0707.2063

MICROWAVE CAVITIES

Microwave cavities are ideal

- amazing resonators: $Q \sim 10^{10}$
- 2 cavities can be tuned to same frequency
- cm-m wavelengths

- same signal scaling as above

Early-stage experiments — Povey et al 1003.0964 — ADMX 1007.3766 — CROWS 1310.8098

Jaekel & Ringwald 0707.2063

CERN RESONANT WEAKLY-INTERACTING SUB-EV PARTICLE SEARCH (CROWS)

1310.8098

THE IMPORTANCE OF THE LONGITUDINAL MODE

$$\rightarrow (E, B)_{\text{detected}} \sim (m_{\gamma'}^4 L^2 / \omega^2) Q \epsilon^2 (E, B)_{\text{source}}$$

 \rightarrow (*E*, *B*)_{detected} ~ ($m_{\gamma'}^2/\omega^2$) Q ε^2 (*E*, *B*)_{source}

MICROWAVE CAVITIES

Microwave cavities are ideal Jaekel & Ringwald 0707.2063 — amazing resonators: $Q \sim 10^{10}$ - 2 cavities can be tuned to same frequency — self-shielding — cm-m wavelengths improved from $(m_{\gamma'}^{4}/\omega^{4}) \epsilon^{2}$ --- same signal scaling as above $(m_{\nu'}^2/\omega^2) \epsilon^2$ to Early-stage experiments Driven "emitter" cavity Shielded "receiver" cavity — Povey et al 1003.0964 — ADMX 1007.3766 Signal field source field Dower Signal Superconducting walls

CERN RESONANT WEAKLY-INTERACTING SUB-EV PARTICLE SEARCH (CROWS)

P.Graham, J.Mardon, S. R. & Y. Zhao 1407.4806

FUTURE EXPERIMENTS

FUTURE EXPERIMENTS

Stage I: $B_{em}=I T$, size ~10 cm, Q=10¹⁰, T= 4K, I month

Stage 2: B_{em} =I T, size ~I m, Q=10¹², T= 0.1K, I year

DM DETECTION WITH A RADIO INSIDE A FARADAY CAGE

HIDDEN-PHOTON DARK MATTER

Boson with $m \ge 10^{-20} \,\mathrm{eV}$ can be good DM (e.g. axion)

- must be very cold
- must have very high occupation number
- --- Hidden photon could work

Nelson & Scholtz 1105.2812

Hidden-Photon DM is an oscillating E' field with

- −− $ρ_{DM}$ ≈ E'^2
- --- Random direction (Lorentz breaking, but hard to tell)
- Frequency $\omega = m_{\gamma'}$
- Coherence time $t \sim 1/(v^2\omega) \sim 10^6/\omega$

Cosmology

- Energy density dilutes as $1/a(t)^2$ when $H > m_{\gamma'}$
- Avoid this with non-minimal coupling $\mathcal{L} \supset (1/_{12}) \mathcal{R} A'_{\mu^2}$
 - \longrightarrow Large mass from graviton loops?
 - \longrightarrow Overproduced by inflationary perturbations if R=0.2
- Is there a safe way to produce it? (yes, through inflation)

Arias et al 1201.5902

HIDDEN-PHOTONS AS DARK MATTER

Like an electric field that penetrates conducting shields $-E' \approx \sqrt{\rho_{\text{DM}}} \approx 2000 \text{ V/m}$

Has fixed frequency

 $-\omega = m_{\gamma'}$, $\delta \omega / \omega = 10^{-6}$

Can excite an electromagnetic resonator

electromagnetic cavities

— ADMX is automatically sensitive! Arias et al 1201.5902

— restricted to $m_{\gamma'} \sim 10^{-4}$ -10⁻⁶ eV (set by cavity size)

HIDDEN-PHOTONS AS DARK MATTER

EXPERIMENTAL SETUP

oscillating E' field (dark matter)

EXPERIMENTAL SETUP

THE SIGNAL INSIDE THE BOX

THE SIGNAL INSIDE THE BOX

EXPERIMENTAL SETUP

oscillating E' field (dark matter) Metal box to shield backgrounds (Faraday cage)

Tunable resonant LC circuit (a radio)

REACH

STAGE I size ~ 350ml — 1m Q~10⁶ T~4K, thermal noise limited

FULL DESIGNsize ~ 1mQ~106T~0.1K, thermal noise limited

COSMOLOGICAL SOLUTION TO THE HIERARCHY PROBLEM

QCD axion + Long Period of inflation solves Hierarchy Problem

$$\mathcal{L} \supset (-M^2 + g\phi)|h|^2 + gM^2\phi + g^2\phi^2 + \dots + \Lambda^4 \cos\frac{\phi}{f}$$

M cuts off SM loops.

Continuous shift symmetry broken completely by g.

The axion here is non-compact.

$$\mathcal{L} \supset (-M^2 + g\phi)|h|^2 + gM^2\phi + g^2\phi^2 + \dots + \Lambda^4 \cos\frac{\phi}{f}$$

- Take initial ϕ value such that $m_h^2 > 0$
- During inflation, ϕ slow-rolls, scanning physical Higgs mass.
- ϕ hits value where ~ m_h^2 crosses zero.
- Barriers grow until rolling has stopped.

$$\mathcal{L} \supset (-M^2 + g\phi)|h|^2 + gM^2\phi + g^2\phi^2 + \dots + \Lambda^4 \cos\frac{\phi}{f}$$

- Take initial ϕ value such that $m_h^2 > 0$
- During inflation, ϕ slow-rolls, scanning physical Higgs mass.
- ϕ hits value where ~ m_h^2 crosses zero.
- Barriers grow until rolling has stopped.

Higgs vev.

$$\mathcal{L} \supset (-M^2 + g\phi)|h|^2 + gM^2\phi + g^2\phi^2 + \dots + \Lambda^4 \cos\frac{\phi}{f}$$

- Take initial ϕ value such that $m_h^2 > 0$
- During inflation, ϕ slow-rolls, scanning physical Higgs mass.
- ϕ hits value where ~ m_h^2 crosses zero.
- Barriers grow until rolling has stopped.

Can push cut-off to M ~ 1000 TeV

Key: Barriers grow because they depend on the Higgs vev. $V(\phi)$

Relaxion Conditions

Self-organized criticality?

- Dissipation Dynamical evolution of Higgs mass (field) must stop.
 Hubble friction.
- Higgs back-reaction EWSB must stop the evolution at the appropriate value. **Yukawa couplings**.
- Long time period There must be a sufficiently long time period during the early universe for scanning. **Inflation**.
- Self-similarity Cutoff-dependent quantum corrections will choose an arbitrary point where the Higgs mass is cancelled. **Periodic axion**.

Critical - Need
$$\frac{\partial V}{\partial h} = 0, \frac{\partial^2 V}{\partial h^2} \approx 0$$

THANK YOU

HIDDEN PHOTON DARK MATTER FROM INFLATION

"Vector Dark Matter from Inflationary Fluctuations" Peter Graham, Jeremy Mardon & Surjeet Rajendran arXiv:1504.02102

INFLATIONARY VECTOR PRODUCTION

Requirements:

No special couplings

 \odot Stueckelberg mass or Higgs scale above H_I

Vector automatically fluctuated into existence

• Ends up as cold matter

$$\frac{\Omega_A}{\Omega_{\rm cdm}} \approx \sqrt{\frac{m}{6 \times 10^{-6} \, {\rm eV}}} \left(\frac{H_I}{10^{14} \, {\rm GeV}}\right)^2$$

Spectrum peaked at intermediate wavelengths
 dangerous large-scale isocurvature is absent

NEW PROBE OF INFLATION

 Map out direction and amplitude as experiment sweeps through space

— Could we infer the primordial power spectrum?
— This: <a href="https://www.u.gov/www

goes through non-linear structure formation (very complicated)

--- If primordial spectrum reconstructed, would give a **new probe of inflation** itself

PRODUCTION SUMMARY

Inflation produced full DM abundance

PRODUCTION SUMMARY

Inflation produced full DM abundance

DETECTION SUMMARY

THANK YOU

EXPECTED REACH

Stage I: size ~50 cm, T= 4K, Q=10⁶, I year scan

Stage 2: size ~1 m, T= 10mK, Q=10⁶, 1 year scan

EXPECTED REACH

Stage I: size ~50 cm, T= 4K, Q=10⁶, I year scan

Stage 2: size ~1 m, T= 10mK, Q=10⁶, 1 year scan