

SEARCH FOR AXION-LIKE PARTICLE SIGNATURES IN THE GAMMA-RAY SPECTRUM OF NGC 1275

MANUEL MEYER FOR THE *FERMI*-LAT COLLABORATION

JUNE 26, 2015 11TH PATRAS WORKSHOP 2015 ZARAGOZA, SPAIN MANUEL.MEYER@FYSIK.SU.SE

EVIDENCE FOR LIGHT SHINING THROUGH THE WALL?

• Evidence for higher-than-expected γ-ray flux has been found

[e.g. De Angelis et al. 2009; Horns & MM 2012; Robtsuv & Troitsky 2015]

• Recent re-analysis did not find a hint [Biteau & Williams, 2015]

Required ALP parameters:

 $g_{ay} \gtrsim 10^{-11} \text{ GeV}^{-1}$ $m_a < 1 \text{ µeV}$

[De Angelis et al. 2007, 2009, 2011,2014; Mirrizzi et al. 2007,2009; Sanchez-Conde et al. 2009; Dominguez & Sanchez-Conde, 2011; MM et al. 2013; Galanti et al. 2015]

- Minimum requirements [Arias et al. 2012]:
 - ALP field starts to oscillate at matter radiation equality
 - Initial misalignment angle $|\theta_1| \leq \Pi$
- Can be probed with γ rays

If ALPs make up all the dark matter:

$$\frac{g_{a\gamma}}{\text{GeV}^{-1}} \lesssim 2.2 \times 10^{-12} \theta_1 \mathcal{N} \sqrt{\frac{m_a}{10 \text{ neV}}}$$

ADDITIONAL PREDICTION:

SPECTRAL IRREGULARITIES

E.G. MIXING IN GALAXY CLUSTER AND THE MILKY WAY

[Östman & Mörtsell 2005; Wouters & Brun 2013; H.E.S.S. Collaboration 2013]

THE FERMI LARGE AREA TELESCOPE (LAT)

Energy range	30 MeV - over 300 GeV
Effective Area ($E > 1$ GeV)	~ 1 m ²
Point spread function (PSF)	~ 0.8° at 1 GeV
Field of view	2.4 sr
Orbital period	91 minutes
Altitude	565 km

- Survey mode: observes full sky every 3 hours
- **Public data**, available within 12 hours
- Just celebrated 7 years in orbit

PASS 8

- Pass := corresponds to version of LAT data:
 - Instrument simulation
 - Reconstruction code
 - Event selection
 - Instrument Response Functions (IRFs)
 - Systematic uncertainties
 - •
- New Pass 8 just released for the public
- Improves effective area, PSF, ...
- Now possible to split data corresponding to quality of energy reconstruction
- Joint analysis for these 4 EDISP event types

NGC 1275 AND THE PERSEUS CLUSTER

- Radio galaxy NGC 1275, bright
 Fermi source
 [e.g. Abdo et al. 2009]
- In the center of cool-core cluster,
 redshift z = 0.01759
- Rotation measures: central B field ~25µG, morphology on larger scales (~100 kpc) unknown
 [Taylor+ 2006]
- B ≥ 2 µG from non-observation
 of γ rays [Aleksic et al. 2012]

PHOTON SURVIVAL PROBABILITY FROM NGC 1275

- B-field modelled as gaussian turbulent field [MM et al. 2014]
- Turbulence spectrum taken from galaxy cluster A2199 [Vacca et al. 2012]
- Central B field: 10 μG [Aleksic et al. 2012]
- B field decreases with electron density
- Irregularities washed out with energy dispersion

PHOTON SURVIVAL PROBABILITY FROM NGC 1275

- B-field modelled as gaussian turbulent field [MM et al. 2014]
- Turbulence spectrum taken from galaxy cluster A2199

- SEARCH FOR IRREGULARITIES IN Y-RAY SPECTRUM OF NGC 1275 USING LOG-LIKELIHOOD RATIO TEST
- B field decreases with electron density
- Irregularities washed out with energy dispersion

- Extract likelihood for expected counts in every energy bin → independent of assumed spectrum [similar to dwarf spheroidal dark matter analysis, e.g. Ackermann et al. 2014, 2015]
- **Joint likelihood fit** over EDISP event types *i* using bin-by-bin likelihood
- Number of expected counts in reconstructed energy bin k' and event type i:

$$\mu_{ijk'} = \sum_{k} D_{kk'}^{i} \int_{\Delta E_{k}} dE \, P_{\gamma\gamma} F(E) \mathcal{E}^{i}(E)$$

- Extract likelihood for expected counts in every energy bin → independent of assumed spectrum [similar to dwarf spheroidal dark matter analysis, e.g. Ackermann et al. 2014, 2015]
- Joint likelihood fit over EDISP event types i using bin-by-bin likelihood
- Number of expected counts in reconstructed energy bin k' and event type i:

$$\mu_{ijk'} = \sum_{k} D^{i}_{kk'} \int_{\Delta E_{k}} dE \, P_{\gamma\gamma} F(E) \mathcal{E}^{i}(E)$$
intrinsic
spectrum

[Aleksic et al. 2012; Ackermann et al. 2015 (3FGL)]

- Extract likelihood for expected counts in every energy bin → independent of assumed spectrum
 [similar to dwarf spheroidal dark matter analysis, e.g. Ackermann et al. 2014, 2015]
- Joint likelihood fit over EDISP event types i using bin-by-bin likelihood
- Number of expected counts in reconstructed energy bin k' and event type i:

Preliminary

Energy (GeV)

- Extract likelihood for expected counts in every energy bin → independent of assumed spectrum [similar to dwarf spheroidal dark matter analysis, e.g. Ackermann et al. 2014, 2015]
- Joint likelihood fit over EDISP event types i using bin-by-bin likelihood
- Number of expected counts in reconstructed energy bin k' and event type i:

- Extract likelihood for expected counts in every energy bin → independent of assumed spectrum [similar to dwarf spheroidal dark matter analysis, e.g. Ackermann et al. 2014, 2015]
- **Joint likelihood fit** over EDISP event types *i* using bin-by-bin likelihood
- Number of expected counts in reconstructed energy bin k' and event type i:

- Extract likelihood for expected counts in every energy bin → independent of assumed spectrum [similar to dwarf spheroidal dark matter analysis, e.g. Ackermann et al. 2014, 2015]
- **Joint likelihood fit** over EDISP event types *i* using bin-by-bin likelihood
- Number of expected counts in reconstructed energy bin k' and event type i:

$$\mu_{ijk'} = \sum_{k} D^i_{kk'} \int_{\text{Energy}} dE P_{\gamma\gamma} F(E) \mathcal{E}^i(E)$$

$$\text{photon survival prob.} \text{intrinsic spectrum obs. time)}$$

$$\text{Exposure (A_{eff} x obs. time)}$$

COMPARE NO-ALP AND ALP HYPOTHESES WITH

LOG-LIKELIHOOD RATIO TEST

FOR EACH TESTED MAGNETIC FIELD REALIZATION

SIMULATED OBSERVATIONS (NO ALP) FOR NGC 1275

SIMULATED OBSERVATIONS (NO ALP) FOR NGC 1275

fit w/ ALP

 $m_{\rm a} = 3.96 \; {\rm neV}$

= 1.49 x 10⁻¹¹ GeV⁻¹

EXPECTED LIMITS FOR 200 SIMULATED OBSERVATIONS

- For limits: select Bfield realization that maximizes (95% quantile) likelihood
- Shape loosely follows expectation from critical energy

COMPARING THE EXPECTED LIMITS

CONCLUSION & OUTLOOK

- ALP have been proposed to explain potential evidences for larger-than-expected γ -ray fluxes from extragalactic sources
- Further general prediction: spectral irregularities around critical energy
- For ALP masses $0.5 \text{ neV} < m_a < 50 \text{ neV}$: critical energy within Fermi-LAT energy range
- Expected sensitivity in un-probed parameter space, similar to sensitivity of future laboratory experiments
- Probably we will not be able to probe ALP dark matter scenarios in which ALPs make up all the dark matter
- Data analysis almost complete, stay tuned!

BACK UP SLIDES

NULL DISTRIBUTION FROM MC WHAT IS THE TS VALUE FOR WHICH WE CAN CLAIM EVIDENCE FOR ALPS?

- Non-linear behaviour of ALP effect, scales with photon-ALP coupling,
 ALP mass, and magnetic field
- Testing 228 values of ALP mass and photon-ALP coupling introduces trial factor
- ⇒ Derive null distribution from simulations
- For i-th B-field realization and j-th pseudo experiment the null distribution is formed by the test statistic

$$TS_{ij} = -2 \ln \left(\frac{\mathcal{L}(\boldsymbol{\mu}_0, \hat{\boldsymbol{\theta}} | \mathbf{D}_j)}{\mathcal{L}(\hat{\boldsymbol{\mu}}_i, \hat{\boldsymbol{\theta}} | \mathbf{D}_j)} \right)$$

NULL DISTRIBUTION FROM MC WHAT IS THE TS VALUE FOR WHICH WE CAN CLAIM EVIDENCE FOR ALPS?

EXTRACTING THE BIN-BY-BIN LIKELIHOOD

- 1. Fit entire Region Of Interest (ROI) over full energy range (100 MeV 500 GeV)
- 2. Fix spectral parameters of background sources to best-fit values
- 3. **Re-fit central source** (NGC 1275) in narrow energy bins
- 4. Step over expected number of counts, **extract likelihood** in each step
- Background sources:
 - Point sources
 - Galactic diffuse emission
 - **Isotropic diffuse emission** (includes residual cosmic-ray contamination)

x = background point source

JOINT LIKELIHOOD FIT AND SETTING LIMITS

(instead of maximizing)

Joint likelihood \forall event types *i* and reconstructed energy bins k':

$$\mathcal{L}(\pmb{\mu},\pmb{\theta},|\mathbf{D}) = \prod_{i,k'} \mathcal{L}(\mu_{ik'},\theta_i|D_{ik'})$$
 expected number nuisance of counts parameters

Maximize likelihood for ALP parameters: profile over nuisance parameters:

$$\lambda(m_a, g_{a\gamma}, \tilde{\mathbf{B}}) = \prod_i \mathcal{L}(m_a, g_{a\gamma}, \tilde{\mathbf{B}}, \hat{\hat{\boldsymbol{\theta}}}(m_a, g_{a\gamma}, \tilde{\mathbf{B}}) | \mathbf{D}_i)$$

Setting limits: steps away from best fit parameters → increase TS value until above a certain threshold (depends on confidence level):

$$\Delta ext{TS} = -2 \ln \left(\frac{\lambda(m_a, g_{a\gamma}, \tilde{\mathbf{B}})}{\lambda(\hat{m}_a, \hat{g}_{a\gamma}, \tilde{\mathbf{B}})} \right)$$
 B-Field that corresponds to 95% quantile (instead of maximizing)