

The Coldest Axion Experiment at CAPP/IBS/KAIST in Korea

Woohyun Chung

Center for Axion and Precision Physics Research (CAPP)/KAIST
Institute for Basic Science

OUTLINE

- Introduction
 - Axion and Dark Matter
 - Detecting Axions
 - ADMX and CAPP
- CAPP's Axion Research
 - New Lab Space at Creation Hall
 - High Field Magnet
 - SC Cavity
 - SQUID Development
- CULTASK
 - Cavity Development
 - Cryogenic RF Integration
 - RT Electronics/DAQ
- Summary

Axion & Dark Matter

- Strong CP Problem of QCD in Standard Model
- In 1977 Peccei and Quinn postulated an elegant solution by adding a new global symmetry
- Weinberg and Wilczek pointed out that the existence of a field implied a corresponding particle
- Hypothesized new particle called "Axion" (named after a popular brand of detergent)
- What is Axion?
 - Pseudo Goldstone Boson
 - No Electric Charge
 - Small Mass (1μeV<m_a<100μeV)
 - Very Weakly Interacting

- Dark Matter: A kind of matter to account for gravitational effects that appear to be the result of invisible mass
 - 84.5% of total matter in the universe
 - Doesn't interact with light
 - Not the matter we know

Axion is an excellent Dark Matter Candidate!

Detecting Axions

- Axion Haloscope (on earth): P. Sikivie's Scheme (Phys. Rev. Lett. 1983)
 - Axions will convert to photons in a strong magnetic field
 - Reverse Primakoff Effect
 - Enhanced (as much as Q of Cavity) signal if photon's frequency corresponds to the cavity's resonant frequency
 - Tunable, resonant cavity immersed in a strong B-field

 - Signal power is so small: a great challenge to experimentalists
 - Sensitivity of the detector: Signal to Noise Ratio

SNR =
$$(P_a/P_N)\sqrt{bt} = (P_a/k_BT_S)\sqrt{t/b}$$
.

Mass scan rate: 10 times cooler means 100 times more data!

$$dm_a/dt \propto (B_0^2 V)^2/T_S^2$$

Axion Dark Matter eXperiment and CAPP

- ADMX Gen2 (US DOE and NSF program)
 - Dilution Refrigerator
 - New JPA from UC Berkeley
 - Will explore higher mass range
 - Collaboration with CAPP
 - Separate Setup w/ Stronger Magnet (>20T) (CAPP/ADMX)
- CAPP: What's there to improve?
 - Higher B², Q and V
 - New Superconducting Magnet (>25T)
 - Cavity with Superconducting Walls
 - Running Colder (<100mk): scan faster!
 - New SQUID from KRISS
 - R&D for higher frequencies (higher mass range)
 - Giant Toroidal Cavity

CAPP's Axion Research (Lab Space)

6/25/2015

CAPP's Axion Research (R&D: Cryogenics)

From Dr. Yonuk Chong (KRISS)

				•				
	2014	2015	2016	2017	2018			
						- 9/		
Essential Equipments	CF-DR(RF1) CF-DR(magnet) Wet-He3(large bore)			American Magnetic	American Magnetics			
Quantum Blue	Fors	GUSTARION				\$2700 		
Amplifier	· · · · · · · · · · · · · · · · · · ·	CF-DR(RF2)		30	2			
Research	《 》是16					74 <u>4-</u>		
Small-sclae		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-DR(testbed)	Example of a 77-100m (Protective all	m cryagen free AMI magnet integrated w urninum magnet caver shield not shown i	ith a BF-LD system in picture).		
Integration	CONTRACTOR OF THE PARTY OF THE	GF-	-DR(lesibed)					
Low-noise Experiments			Wet-DR1(precision) Wet-DR2(precision)					
AxionDetector			•		(i) (ii)	8		

11th AxionWIMP Conference

Main DR (Axion Detector)

CAPP's Axion Research (R&D: Magnet)

- R&D Program with BNL's Superconducting Magnet R&D Group (Dr. R. Gupta)
- 3-5 year Program
- Goal is 10 cm inner bore 25T and then 10 cm inner bore 35T (even 40T)
 (Current Axion experiments are using <10T)
- Based on HTS(High Temperature Superconductor) cable (SuNAM, Korean Company)

CAPP's Axion Research (R&D: Cavity)

- Started an R&D Program to achieve high Q (>10⁶) in high B-field
- Cavity with SC walls including special top/bottom plates (by Prof. Jhinhwan Lee of KAIST/IBS)
 - Two to Three year plan
 - Acquiring equipment to develop SC cavities
- Multiple Cavities in-phase
 - Dr. Sungwoo Youn of IBS (Young Scientist Program) will develop with CAPP
 - 5 year Program
- Giant Toroidal Cavity
 - 10 year Program
 - Large Volume for Low Frequencies
 - Opportunity for large collaboration

- SQUID Amplifier at KRISS (Dr. Yong-Ho Lee's Group)
 - Started a development program for Quantum Noise Limited SQUID Amplifiers in the 1-10 GHz range
 - Testing Prototypes begins in summer of 2015
 - Physical temperature aiming for 50 mK
 - Evaluate method for higher frequency
 - 5 year program
- Josephson Parametric Amplifier from UC Berkeley (Prof. Irfan Siddiqi)
 - ADMX has JPA
 - Top notch amplifier with broad bandwidth and tunable frequency range
 - Agreement on Collaboration with CAPP/ADMX in progress

CAPP's Axion Research (Summary)

	2015	2016	2017	2018	
Lab Space	Munji Campus Design & Renovation	Occup	oation	Occupation	
Magnet	Prototype, testing of SuperC cables	25T, 10cm bore SuperC Magnet design	Work on 35T, 10 cm bore SuperC magnet	Magnet Delivery	
Cavity Development	Procure Equip. Development of Study res. and high Q SC geom. resonator		Production of high Q resonator		
Amplifier	Design and production of prototype SQUID for 1-10 GHz Acquire JPA and test		SQUID delivery from KRISS Develop higher freq. amplifier		
Axion Cavity Experiment	Building infrastructure. Engineering Run at KAIST	•	Setup at Munji Runs	High Field Magnet + SQUID + SC Cavity	

CAPP Ultra Low Temp Axion Search in Korea

DR(BlueFors LD400) + SC Magnet (9T, 6cm bore)
 from Prof. Hyoungsoon Choi of KAIST/IBS (4 months)

CAPP Ultra Low Temp Axion Search in Korea

- Great opportunity to prepare ourselves before Creation Hall completion
- "ENGINEERING RUN", building Infrastructure for upcoming experiment
- The coldest axion experiment (base temp. <10 mK)
- Start with ~5 GHz (4.5 cm id) freq. range
- Designing cavities with frequency tuning systems
 - Different inner surface coating techniques (ultra pure Cu and Al >6N)
 - Tuning rod and antenna use piezoelectric actuators
- Cryogenic RF (circulators, HEMT and couplers...)
- Complete RT Electronics/DAQ will be ready
- SQUID amp and SC cavity will not be ready for this run

CULTASK (Cavity Development)

High Q-Factor Cavity

- Will try anything except superconductor (Mostly pure Cu and Al)
- Sputtering pure Cu and Al from TUM (Technical U. of Munich): in July
- Pure Cu and Al sheet roll inside SS (brazing) from STC (Seoul Teracom): in July
- Electroplated cavity (annealed) for practice
- More on Tuning system + simulation

Cavity in DR

- Support Structure: Designed to improve sub 100mK: need thermal analysis
- Seamlessly integrate Piezo Actuator(s)

Monitoring, Control and Measurement

- Measuring Q correctly (and consistently): Thanks, Fritz!
- Has to improve Piezo + Network Analyzer Control and Monitoring
- RRR measurement and RF Q

CULTASK (Cavity Development)

CULTASK (Cavity Development)

CULTASK (First Cool-Down in May)

Cavity in DR

- We've just touched to ~500 mK region
 - Piezo is confirmed to work at this temperature and under 4T B field
 - But we need better experience with complete configuration
 - Piezo doesn't ruin the temperature very much
 - Few mK level found
 - Loaded Q gets better as expected
 - x2.5 enhancement
 - Confirm the relation between B and loaded Q
 - We need a decent cavity with a decent rod for more precise result

CULTASK Summer Engineering Run DAQ

CULTASK (Cavity Development>RRR)

- Residual-Resistance Ratio (copper wire's RRR: 40-50)
- Strongly depends on Impurities and Crystallographic Defects
- Pure Sample → large RRR
- Good Candidates: Cu, Al, Ag, Au
 - 4N, 5N, 6N, 9N Cu
 - 5N, 6N Al
- Annealing Technique is essential
 - 773C for Al
 - 400C and 923C for Cu

a. before annealing

b. after annealing at 400 °C, 1h

Figure 1: Microstructure of NiFl20μmCuPyro samples (as received and after heat treatment) magnification 500:1.

CULTASK (Cavity Development>RRR&Q)

$$Q_0 = Q_c = \frac{2V}{S\sqrt{\frac{2}{\omega\mu\sigma}}}$$

Fig. 9 Measured specific resistivity for high purity aluminium and copper using 0.5 mm thickness sheet annealed at 773 K

Fig. 12 Measured RRR values using high purity aluminium wire specimens annealed at 773 K

CULTASK (Cavity>MAGNET ATTACK!!!)

Magnetoresistance

- More than skin depth needed
- Spiral motion of electrons
- SUMITOMO(Japan) data used
- Investigate surface smoothness effect
- Al's Tc =1.2 K, Bc =10 mT

Table 2 RRR of high purity aluminium and copper at 0 T and 15 T 12)

purity	diameter	transverse		longitudinal	
	(mm)	0 T	15 T	0 T	15 T
5N-Al	0.5	4100	1300	3700	2500
	1.0	3800	1000	5800	3000
6N-Al	0.5	6400	2200	7600	7000
	1.0	7300	2300	11000	7800
6N8-Al	0.5	6600	2500	8100	9400
	1.0	8600	3600	11000	9000
5N-Cu	0.5	1100	36	1100	240

Transverse magnetoresistance at 4.2 K of 0.5-mm-diameter-specimens. Dashed lines show the results obtained using the delta mode method, while solid lines show the results obtained from the use of a DC current source. The literature data are also plotted for comparison as 5N-Cu(ref.) and 6N-Cu(ref.). 12)

CULTASK (Cavity + Cryo RF)

Dr. Yonuk Chong (KRISS) is testing Cryo RF chain now and will integrate them into our system in July.

CULTASK (RT Electronics/DAQ)

Network Analyzer

Spectrum Analyzer

Switch (USB-2SPDT-A18)

Digitizer (4 GHz)

Signal Generator

RT HEMT Amplifiers

Mixers

Filters

RF Cables

+

Rack (temp controlled)

CULTASK (RT Electronics/DAQ)

Summary

- State of the Art Axion Research at CAPP/IBS
- Major R&D Effort on improving Axion Dark Matter eXperiment
 - Higher B Field: 25T and then 35T-40T
 - Higher Q Factor with B Field: Factor of >10 Improvement
 - Larger Volume: Toroidal Cavity (>50)
- CULTASK in summer as Engineering Run to build Infrastructure
 - Cavity R&D
 - Could reach close to QCD Axion!
- Major improvement in Axion Experiment as early as in 5 years

Thank You For Your Attention!