

COSMOLOGICAL TESTS OF ULTRA-LIGHT AXIONS

DANIEL GRIN UNIVERSITY OF CHICAGO Axion-WIMP 2015 (Zaragoza)

R.Hlozek, DG, D.J. E. Marsh, P.Ferreira, arXiv:1410.2896, PRD 91, 103512

COSMOLOGICAL TESTS OF ULTRA-LIGHT AXIONS

DANIEL GRIN UNIVERSITY OF CHICAGO Axion-WIMP 2015 (Zaragoza)

R.Hlozek, DG, D.J. E. Marsh, P.Ferreira, arXiv:1410.2896, PRD 91, 103512

Strong CP problem

* Strong interaction violates CP through θ -vacuum term

QCD strong-CP problem

$$\mathcal{L}_{\rm CPV} = \frac{\theta g^2}{32\pi^2} G\tilde{G}$$

* Limits on the neutron electric dipole moment are strong. Fine tuning?

$$d_n \simeq 10^{-16} \ \theta \ \mathrm{e} \ \mathrm{cm}$$

 $\theta \lesssim 10^{-10}$,

WHAT AREAXISTAS?

New scalar field with global U(1) symmetry!

* Couples to Sypgauge fields (via fermions) $\mathcal{L}_{CPV} = \frac{g^2 G G}{g^2 G G} - \frac{g^2 G G}{g^2 G G}$ * Dynamicall 32 Fases QCD CP-violation

* Mass through pion mixing

Peccei + Quinn (1977), Weinberg +Wilczek (1978), Kin<u>+</u>1977), Shifman et. al (1980), Zhitnitsky (1980), Dine et al. (1981), Sikivie (1983), D.<u>B. Kaplan</u> (1985), A.E. Nelson (1985, 1998)

WHAT AREAXISTAS?

New scalar field with global U(1) symmetry!

* Couples to Sypgauge fields (via fermions) $\mathcal{L}_{CPV} = \frac{GG}{32\pi^2} GG - \frac{g^2 GG}{g^2 GG}$ * Dynamicall 32 Tases QCD CP-violation

* Mass through pion mixing

Peccei + Quinn (1977), Weinberg +Wilczek (1978), Kin<u>+</u>1977), Shifman et. al (1980), Zhitnitsky (1980), Dine et al. (1981), Sikivie (1983), D.<u>B. Kaplan</u> (1985), A.E. Nelson (1985, 1998)

QCD AXIONS ARE DM CANDIDATES

* Field misaligned $m_a \gg 3H \rightarrow \text{oscillation}$

 $* \rho_a \propto (1+z)^3$ [as cold dark matter should]

* Axions **ARE** cold $v_a/c \lesssim 10^{-13}$ at CMB decoupling timescales

QCD AXIONS ARE DM CANDIDATES

The QCD axion is a cold dark matter candidate

$$\Omega_{\rm mis}h^2 = 0.236 \left\langle \theta_i^2 f(\theta_i) \right\rangle \left(\frac{m_a}{6.2\mu {\rm eV}} \right)^{-7/6}$$

Solves a problem in particle physics: Gives us a dark matter candidate for free!

Papers by Turner + Steinhardt, Sikivie, Hagmann, Shellard, Abbott and others

* In string theory, extra dimensions compactified: Calabi-Yau manifolds

* In string theory, extra dimensions compactified: Calabi-Yau manifolds

Hundreds of scalars with approx shift symmetry

. . . .

* In string theory, extra dimensions compactified: Calabi-Yau manifolds

Hundreds of scalars with approx shift symmetry Many axions

* In string theory, extra dimensions compactified: Calabi-Yau manifolds

* Mass acquired non-perturbatively (instantons, D-Branes)

$$m_a^2 = \frac{\mu^4}{f_a^2} e^{-\text{Volume}}$$

* In string theory, extra dimensions compactified: Calabi-Yau manifolds

* Mass acquired non-perturbatively (instantons, D-Branes) Scale of new ultra-violet physics $m_a^2 = \frac{\mu^4}{f^2} e^{-\text{Volume}}$

* In string theory, extra dimensions compactified: Calabi-Yau manifolds

* Mass acquired non-perturbatively (instantons, D-Branes)

Scale of extra dimensions

in Planck units

$$m_a^2 = \frac{\mu^4}{f_a^2} e^{-\text{Volume}}$$

* In string theory, extra dimensions compactified: Calabi-Yau manifolds

Axiverse! Arvanitaki+ 2009 Witten and Srvcek (2006), Acharya et al. (2010), Cicoli (2012)

COSMOLOGY OF ULTRA-LIGHT AXIONS: Dark matter and dark energy candidates

Scale corresponding to typical galaxy separation today

Frieman et al 1995, Coble et al. 1997 ULA as dark energy with specific w(z)

 $m_a \lesssim 10^{-27} \; {
m eV}$ ULA matter behavior starts too late for struct. formation

COSMOLOGY OF ULTRA-LIGHT AXIONS: Dark matter and dark energy candidates

Scale corresponding to typical galaxy separation today

Frieman et al 1995, Coble et al. 1997 ULA as dark matter

 $m_a \gtrsim 10^{-27} \text{ eV}$

ULA matter behavior starts in time for struct. formation

Scale corresponding to typical galaxy separation today

Frieman et al 1995, Coble et al. 1997

Corresponds to time of matter/radiation equality, when $\rho_m = \rho_\gamma + \rho_\nu$

Scale corresponding to typical galaxy separation today

Frieman et al 1995, Coble et al. 1997

Simple relic density constraints:

$$10^{-33} \text{ eV} < m_a < 10^{-18} \text{ eV}$$

Ultra-light axions are dark matter and dark energy candidates

What about ultra-light axions (ULAs)? Photon couplings are model-dependent: Use gravity and cosmological data to test ULAs

AXICAMB

CMB and matter perturbation code including ULAs! Code in prep for public release as part of CosmoSIS package

ULA of any mass is self-consistently followed from DE to DM regime

9

GROWTH OF ULA PERTURBATIONS

*Perturbed Klein-Gordon + Gravity $k = 2\pi/\lambda$: wavenumber $\ddot{\delta\phi} + 2\mathcal{H}\delta\dot{\phi} + (k^2 + m_a^2 a^2)\delta\phi = \mathcal{O}(H^2, m^2)\Psi$

*Axionic Jeans Scale is macroscopic [in contrast to QCD axion]:

$$\lambda_J = 2.5 \text{ Mpc} \left(\frac{m_a}{10^{-25} \text{ eV}} \right)^{-1/2} h^{-1/2}$$

Axion deBroglie wavelength Macroscopic length scale

GROWTH OF ULA PERTURBATIONS

*Perturbed Klein-Gordon + Gravity $k = 2\pi/\lambda$: wavenumber $\ddot{\delta\phi} + 2\mathcal{H}\delta\dot{\phi} + (k^2 + m_a^2 a^2)\delta\phi = \mathcal{O}(H^2, m^2)\Psi$

*Axionic Jeans Scale is macroscopic [in contrast to QCD axion]:
*Computing observables is expensive for m_a >> 3H:
* Coherent oscillation requires prohibitive time step
* WKB approximation at late time, exact KG early times

$$c_a^2 = \frac{\delta P_a}{\delta \rho_a} = \frac{k^2 / m_a^2}{4 / (1+z)^2 + k^2 / m_a^2}$$

GROWTH OF ULA PERTURBATIONS

*Pressure stabilization for modes with $k \gg k_{\rm J} \sim \sqrt{m}\mathcal{H}$ *Otherwise ULAs behave like cold dark matter (CDM)

D (sensitive to any energy source)

D (sensitive to any energy source)

$$\theta_s \equiv \frac{r_s}{d_{\rm A}(z=1100)} = \left(l_{\rm CMB}^{\rm peak}\right)^-$$

$$d_A \propto \int \frac{dz}{H(z)}$$

Absorb and lock onto usual peaks by lowering H_0

ULAS AS DARK ENERGY AND PERTURBATIONS IN OTHER FLUIDS Low mass (DE-like) case: late Integrated Sachs-Wolfe Effect

CMB temperature anisotropies from potential decay $\Delta T_{\rm ISW} = -2 \int_0^{\eta_{\rm dec}} d\eta \dot{\Phi}(\eta, \hat{n}\eta)$

ULAS AS DARK ENERGY AND PERTURBATIONS IN OTHER FLUIDS Low mass (DE-like) case: late Integrated Sachs-Wolfe Effect

CMB temperature anisotropies from potential decay $\Delta T_{\rm ISW} = -2 \int_0^{\eta_{\rm dec}} d\eta \dot{\Phi}(\eta, \hat{n}\eta)$

ULAS AS DARK ENERGY AND PERTURBATIONS IN OTHER FLUIDS Low mass (DE-like) case: late Integrated Sachs-Wolfe Effect

ULAs and the CMB: high mass and early ISW

Higher mass (DM-like) case: high-l ISW

CMB temperature anisotropies from potential decay $\Delta T_{\rm ISW} = -2 \int_0^{\eta_{\rm dec}} d\eta \dot{\Phi}(\eta, \hat{n}\eta)$

$$\Phi \propto \frac{1}{k^2} \left\{ \frac{\Omega_m \delta_m \left(1 - \frac{\Omega_a}{\Omega_m} \right)}{a^3} + \frac{\delta_R \Omega_R}{a^4} \right\}$$
ULAs and the CMB: high mass and early ISW

Higher mass (DM-like) case: high-l ISW

CMB temperature anisotropies from potential decay $\Delta T_{\rm ISW} = -2 \int_0^{\eta_{\rm dec}} d\eta \dot{\Phi}(\eta, \hat{n}\eta)$

$$\Phi \propto \frac{1}{k^2} \left\{ \frac{\Omega_m \delta_m \left(1 - \frac{\Omega_a}{\Omega_m} \right)}{a^3} + \frac{\delta_R \Omega_R}{a^4} \right\}$$

ULAs and the CMB: high mass and early ISW

Higher mass (DM-like) case: high-l ISW

Radiation pressure causes potential decay

$$\Phi \propto \frac{1}{k^2} \left\{ \frac{\Omega_m \delta_m \left(1 - \frac{\Omega_a}{\Omega_m} \right)}{a^3} + \frac{\delta_R \Omega_R}{a^4} \right\}$$

14

 $\Delta \overline{P\Delta A} > \rho \delta V \nabla \Phi$

ULAs and the CMB: high mass and early ISW

Higher mass (DM-like) case: high-l ISW

$$\Phi \propto \frac{1}{k^2} \left\{ \frac{\Omega_m \delta_m \left(1 - \frac{\Omega_a}{\Omega_m} \right)}{a^3} + \frac{\delta_R \Omega_R}{a^4} \right\}$$

*DM perturbation growth severely suppressed if $k > k_J \simeq \sqrt{mH}$ *Suppression grows with $\frac{\Omega_a}{\Omega_a + \Omega_c}$

*Analogous to effect of neutrinos

*Suppression grows with $\frac{\Omega_a}{\Omega_a + \Omega_c}$ *Analogous to effect of neutrinos

θ_s fixed to lock CMB

 $ho_{
m rad}$

 θ_s fixed to lock CMB H_0

Matter-radiation equality delayed

DATA

*Planck 2013 temperature anisotropy power spectra (+SPT+ACT) *Cosmic variance limited to $\ell \sim 1500$

*WiggleZ galaxy survey (linear scales only $k \leq 0.2h \text{ Mpc}^{-1}$)

*240,000 emission line galaxies at z<1

*3.9 m Anglo-Australian Telescope (AAT)

DATA

Convolve with WiggleZ window function

$$m_a, \Omega_a h^2, \Omega_c h^2, \Omega_b h^2, \Omega_\Lambda, n_s, A_s, \tau_{\text{reion}}$$

$$m_a, \Omega_a h^2, \Omega_c h^2, \Omega_b h^2, \Omega_\Lambda, n_s, A_s, \tau_{reion}$$

$$m_a, \Omega_a h^2, \Omega_c h^2, \Omega_b h^2, \Omega_\Lambda, n_s, A_s, \tau_{reion}$$

Densities of standard species

$$m_a, \Omega_a h^2, \Omega_c h^2, \Omega_b h^2, \Omega_\Lambda, n_s, A_s, \tau_{\text{reion}}$$

$$\Delta_{\mathcal{R}}^{2}(k) \equiv A_{s} \left(\frac{k}{k_{0}}\right)^{n_{s}-1} \text{ Initial conditions}$$

$$m_a, \Omega_a h^2, \Omega_c h^2, \Omega_b h^2, \Omega_\Lambda, n_s, A_s, \tau_{\text{reion}}$$

$$\tau_{\rm reion} = \int dl n_e \sigma_T$$

$m_a, \Omega_a h^2, \Omega_c h^2, \Omega_b h^2, \Omega_\Lambda, n_s, A_s, \tau_{\text{reion}}$

Addressed using nested sampling MULTINEST (Hobson, Feroz, others 2008)

CONSTRAINTS

*Interesting constraints over 7 orders of magnitude in mass:

Thanks to AXICAMB and MULTINEST

*ULAs highly constrained if $10^{-32} \text{ eV} \lesssim m_a \lesssim 10^{-25.5} \text{ eV}$ *ULAs are viable DM/DE candidates in linear theory outside ``belly'' 19

A slice of (dark matter) life at $z\sim 1$

A slice of (dark matter) life at $z\sim 1$

$$\kappa(\vec{\theta}) = \frac{1}{2} \nabla_{\vec{\theta}}^2 \psi(\vec{\theta}) = \frac{1}{2} \vec{\nabla} \cdot \vec{\alpha}$$
$$\psi(\vec{\theta}) = \frac{2d_c(\eta_{ls})}{d_c(\eta_l)d_c(\eta_s)} \int \Phi(d_c(\eta)\theta, \eta)d\eta$$

A slice of (dark matter) life at $z\sim 1$

$$\kappa(\vec{\theta}) = \frac{1}{2} \nabla_{\vec{\theta}}^2 \psi(\vec{\theta}) = \frac{1}{2} \vec{\nabla} \cdot \vec{\alpha} \qquad \text{Deflection angle}$$

$$\psi(\vec{\theta}) = \frac{2d_c(\eta_{ls})}{d_c(\eta_l)d_c(\eta_s)} \int \Phi(d_c(\eta)\theta, \eta)d\eta$$
ULAs change

ULAs change lens geometry and growth of structure

ONGOING WORK: PREPARING AXICAMB FOR PUBLIC RELEASE

*CosmoSIS (Zuntz, Paterno, Jennings, Rudd, Manzotti, Dodelson+) allows

*Easy and modular use of power spectra codes

*Comparison with many different data sets/likelihoods

*Variety of cross-correlation studies

*Clever samplers for difficult parameter spaces

*We are packaging AxiCAMB in a wrapper to allow use in CosmoSIS

*Added self-consistent treatment of Ω_K and m_{ν}

$* \text{ If } f_a > H_I$

some schematics from Wands. Enavist. Lvth. Takahashi (2012-2015)

Quantum zero-point fluctuations! $\rho_a \ll \rho_{\text{tot}} \rightarrow \Phi_a \ll 10^{-5}$

$$S_{a\gamma} = \frac{\delta n_a}{n_a} - \frac{\delta n_\gamma}{n_\gamma} = \frac{\delta \rho_a}{\rho_a} - \frac{3}{4} \frac{\delta \rho_\gamma}{\rho_\gamma} \sim 10^{-5}$$

$* \text{ If } f_a > H_I$

CDM isocurvature

 Neutrinos

 CDM

 Photons

 Baryons

$* \text{ If } f_a > H_I$

Adiabatic fluctuations

$$m_a = 10^{-32} \text{ eV}$$

 $m_a = 10^{-29} \text{ eV}$
 $m_a = 10^{-28} \text{ eV}$
 $m_a = 10^{-20} \text{ eV}$

Planck 2013 TT

$$\alpha \equiv \frac{P_{S_{c\gamma}}(k)}{P_{S_{c\gamma}}(k) + P_{\mathcal{R}}(k)} \le 0.039$$

$$\frac{H_I}{f_a \overline{\theta}} \frac{\Omega_a}{\Omega_d} \lesssim 4 \times 10^{-5}$$

$$\frac{\text{QCD axion}}{\Omega_a + \Omega_c} \lesssim 10^{-12} \left(\frac{10^{14} \text{GeV}}{H_I}\right)^{7/2} \qquad \frac{\Omega_a}{\Omega_a + \Omega_c} \lesssim 10^{-3} \left(\frac{10^{14} \text{GeV}}{H_I}\right)$$

D.J.E. Marsh, DG , R. Hlozek, P.Ferreira: arXiv:1403.4216, Phys. Rev. Lett. 113, 011801 arXiv:1303.3008, Phys. Rev. D 87, 121701(R) Also see Gondolo and Visinelli 2012,2013

FORECAST/FUTURE WORK: TENSORS AND ULAS

* Primordial gravitational waves are sensitive to H_I

Potentially observable CMB polarization signature

* Current limits are $H_I \lesssim 10^{14}$ GeV. If saturated by a detection:

$$\frac{\Omega_a}{\Omega_a + \Omega_c} \lesssim 10^{-12}$$

$$\frac{\Omega_a}{\Omega_a + \Omega_c} \lesssim 10^{-3}$$

FORECAST/FUTURE WORK: TENSORS AND ULAS

* Primordial gravitational waves are sensitive to H_I

Potentially observable CMB polarization signature

* Current limits are $H_I \lesssim 10^{14}$ GeV. If saturated by a detection:

QCD axion

$$\frac{\Omega_a}{\Omega_a + \Omega_c} \lesssim 10^{-12}$$

$$\frac{\Omega_a}{\Omega_a + \Omega_c} \lesssim 10^{-3}$$

FORECAST/FUTURE WORK: TENSORS AND ULAS

* Primordial gravitational waves are sensitive to H_I

Potentially observable CMB polarization signature

* Current limits are $H_I \lesssim 10^{14}$ GeV. If saturated by a detection:

$$\frac{\Omega_a}{\Omega_a + \Omega_c} \lesssim 10^{-12} \left(\frac{0.2}{r}\right)$$

$$rac{\Omega_a}{\Omega_a + \Omega_c} \lesssim 10^{-3} \left(rac{0.2}{r}
ight)$$
 ULAs
FORECAST/FUTURE WORK: TENSORS AND ULAS

* Primordial gravitational waves are sensitive to H_I

Potentially observable CMB polarization signature

* Current limits are $H_I \lesssim 10^{14}$ GeV. If saturated by a detection:

* *Warning!* Polarized foregrounds are challenging [e.g. BICEP2+Planck 2015]

Forecast/future work: Tensors and Ulas

* Primordial gravitational waves are sensitive to H_I

Potentially observable CMB polarization signature

* Current limits are $H_I \lesssim 10^{14}$ GeV. If saturated by a detection:

* *Warning!* Polarized foregrounds are challenging [e.g. BICEP2+Planck 2015]

* Limits may be evaded with non-trivial PQ breaking or moduli-decay thermal history (see talks by Rajendra 2014)

ULAS AS AN INFLATIONARY PROBE

* Discovery of QCD axion/ULA dark matter — trouble for

* GUT-scale inflation

QCD $H_I \sim 10 \text{ GeV}$ ULA $H_I \sim 10^5 \text{ GeV}$

* Null prediction for primordial B-mode searches

* Avoidable with non-trivial thermal history/richer PQ symmetry breaking story (see Rajendran 2014)

Forecast/future work: Tensors and Ulas

* Polarized foregrounds are tricky: e.g. BICEP2+Planck

FORECAST/FUTURE WORK: TENSORS AND ULAS

- * Low-l plateau disappears
- * Information lost
- * Planck limits assume CDM isocurvature

* For $m_a \leq 10^{-27}$ eV, constraints cannot be simply remapped. * MCMC in progress

CONCLUSIONS AND TAKE-AWAY

- *Ultra-light axions may be probed at the 0.5% level using current cosmological data
- *Entropy fluctuations and tensor perturbations are a powerful ULA probe
- *Public AxiCAMB will be available later this summer

Additional slides for question time

FUTURE WORK: ULAS AND GALAXIES

*ULA with $m_a \sim 10^{-22}$ eV have $\lambda_J \sim 100$ kpc

possibly helping with two challenges for ΛCDM

Cusp/core problem

Figure from Brooks 2014/Oh 2011

Figure from Bullock 2010

FUTURE WORK: ULAS AND GALAXIES

*ULA with $m_a \sim 10^{-22}$ eV have $\lambda_J \sim 100$ kpc

possibly helping with two challenges for ΛCDM

*Elegant analytic arguments that ULA can help with both problems (Marsh et al. 2013 and 2014)

FUTURE WORK: ULAS AND GALAXIES

*ULA with $m_a \sim 10^{-22}$ eV have $\lambda_J \sim 100$ kpc

possibly helping with two challenges for ΛCDM

*Scant simulation work (N-body not appropriate for ULA) (Schive 2014)

ULAS AND GALAXIES

*Future growth in mode number driven by galaxy surveys

*Galaxies (and DM halos) are biased tracers of matter field (e.g. Baugh 2013)

*Generally bias scale-dependent for structure suppressing species (LoVerde 2013) 30

ULAS AND GALAXIES

*Future growth in mode number driven by galaxy surveys

*Galaxies (and DM halos) are biased tracers of matter field (e.g. Baugh 2013)*Future surveys will revolutionize:

*Weak lensing

*Strong lensing

*Substructure [via timing]

*MW dwarf population

Essential to understand how (or if) ULAs populate halos

Additional slides: Introduction

ACOUSTIC OSCILLATIONS IN THE CMB

Gravity compresses Ψ and drives $\dot{\Psi}$

*****Baryons: Inertia $p_b \propto \frac{1}{a}$

 $*e^- \gamma$ coupled through Thomson scattering $\Gamma \propto n_e \sigma_T$ *Restoring force: Radiation Pressure

$$\delta P_{\gamma} = c_s^2 \delta \rho_{\gamma} \qquad c_s^2 = \frac{1}{3} \left[1 + 3\rho_{\rm b}/4\rho_{\gamma} \right]^{-1}$$

ACOUSTIC OSCILLATIONS IN THE CMB

*****Baryons: Inertia $p_b \propto \frac{1}{a}$

Gravity compresses Ψ and drives $\dot{\Psi}$

* $e^- \gamma$ coupled through Thomson scattering $\Gamma \propto n_e \sigma_T$ *Restoring force: Radiation Pressure

$$\delta P_{\gamma} = c_s^2 \delta \rho_{\gamma}$$

$$c_s^2 = \frac{1}{3} \left[1 + 3\rho_{\rm b}/4\rho_{\gamma} \right]^{-1}$$

ACOUSTIC OSCILLATIONS IN THE CMB

*****Baryons: Inertia $p_b \propto \frac{1}{a}$

Gravity compresses Ψ and drives $\dot{\Psi}$

* $e^- \gamma$ coupled through Thomson scattering $\Gamma \propto n_e \sigma_T$ *Restoring force: Radiation Pressure

$$\delta P_{\gamma} = c_s^2 \delta \rho_{\gamma}$$

$$c_s^2 = \frac{1}{3} \left[1 + 3\rho_{\rm b}/4\rho_{\gamma} \right]^{-1}$$

ONGOING/FUTURE OBSERVATIONS

SPIDER

Scientific targets: Modified Gravity Neutrino hierarchy Dark energy equation of state Substructure in halos (via lensing)

SPT/BICEP2-3/KECK

CORE Cosmic Origins Explorer

Wide-Field Infrared Survey Telescope

ONGOING/FUTURE OBSERVATIONS [21-CM LINE]

21-cm cosmology [probes of structure on small scales and early times]

ONGOING/FUTURE OBSERVATIONS [21-CM LINE]

21-cm cosmology [probes of structure on small scales and early times]

Additional slides: QCD Axion theory/experiment

in collaboration with R. Hložek (Princeton), D. J. E. Marsh (Perimeter Institute), P. Ferreira (Oxford):

arXiv:1303.3008, Phys. Rev. D 87, 121701 (2013) arXiv:1403.4216, Phys. Rev. Lett. 113, 011801 (2014) arXiv:1410.2896, submitted to Phys, Rev. D

Strong CP problem

- * Strong interaction violates CP through θ -vacuum term QCD strong-CP problem $\mathcal{L}_{CPV} = \frac{\theta g^2}{32\pi^2} G\tilde{G}$
- * Limits on the neutron electric dipole moment are strong. Fine tuning?

$$d_n \simeq 10^{-16} \ \theta \ \mathrm{e} \ \mathrm{cm}$$

 $\theta \lesssim 10^{-10} \ ,$

Cleaning up the dark matter mess?

Cleaning up the dark matter mess?

Strong CP problem

* Strong interaction violates CP through θ -vacuum term

QCD strong-CP problem

$$\mathcal{L}_{\rm CPV} = \frac{\theta g^2}{32\pi^2} G\tilde{G}$$

* Limits on the neutron electric dipole moment are strong. Fine tuning?

$$d_n \simeq 10^{-16} \ \theta \ \mathrm{e} \ \mathrm{cm}$$

 $\theta \lesssim 10^{-10}$,

Strong CP problem

- * Strong interaction violates CP through θ -vacuum term QCD strong-CP problem $\mathcal{L}_{CPV} = \frac{\theta g^2}{32\pi^2} G\tilde{G}$
- * Limits on the neutron electric dipole moment are strong. Fine tuning?

$$d_n \simeq 10^{-16} \ \theta \ \mathrm{e} \ \mathrm{cm}$$

 $\theta \lesssim 10^{-10} \ ,$

KEY QUESTIONS:

*Can the *dark matter* or *dark energy* be an ultralight boson, like an axion?

*What is the connection between the physics of inflation and the physics of the dark sector? Are initial fluctuations in different species spatially locked?

*What new probes of the dark sector could we soon have at our disposal?

KEY QUESTIONS:

* Can the dark matter or dark energy be an ultra-light boson, like an axion?

*What is the connection between the physics of inflation and the physics of the dark sector? Are initial fluctuations in different species spatially locked?

*What new probes of the dark sector could we soon have at our disposal?

KEY QUESTIONS:

* Can the dark matter or dark energy be an ultra-light boson, like an axion?

*What is the connection between the physics of inflation and the physics of the dark sector? Are initial fluctuations in different species spatially locked?

*What new probes of the dark sector could we soon have at our disposal?

in collaboration with R. Hložek (Princeton), D. J. E. Marsh (Perimeter Institute), P. Ferreira (Oxford):

arXiv:1303.3008, Phys. Rev. D 87, 121701 (2013) arXiv:1403.4216, Phys. Rev. Lett. 113, 011801 (2014) arXiv:1410.2896, submitted to Phys, Rev. D

Strong CP problem

- * Strong interaction violates CP through θ -vacuum term QCD strong-CP problem $\mathcal{L}_{CPV} = \frac{\theta g^2}{32\pi^2} G\tilde{G}$
- * Limits on the neutron electric dipole moment are strong. Fine tuning?

$$d_n \simeq 10^{-16} \ \theta \ \mathrm{e} \ \mathrm{cm}$$

 $\theta \lesssim 10^{-10} \ ,$

WHAT AREAXISTAS?

New scalar field with global U(1) symmetry!

* Couples to Sypgauge fields (via fermions) $\mathcal{L}_{CPV} = \frac{g^2 G G}{g^2 G G} - \frac{g^2 G G}{g^2 G G}$ * Dynamicall 32 Fases QCD CP-violation

* Mass through pion mixing

42

Peccei + Quinn (1977), Weinberg +Wilczek (1978), ½in<u>+(</u>1977), Shifman et. al (1980), Zhitnitsky (1980), Dine et al. (1981), D.B. Kaplan (1985), A.E.Nelson (1985,1990)

WHAT AREAXISTAS?

New scalar field with global U(1) symmetry!

* Couples to Sypgauge fields (via fermions) $\mathcal{L}_{CPV} = \frac{g^2 G G}{g^2 G G} - \frac{g^2 G G}{g^2 G G}$ * Dynamicall 32 Fases QCD CP-violation

* Mass through pion mixing

42

Peccei + Quinn (1977), Weinberg +Wilczek (1978), ½in<u>+(</u>1977), Shifman et. al (1980), Zhitnitsky (1980), Dine et al. (1981), D.B. Kaplan (1985), A.E. Nelson (1985,1990)

WHAT ARE AXIONS?

New scalar field with global U(1) symmetry! Broken at scale f_a

$$\mathcal{L}_{\rm CPV} = \frac{\theta g^2}{32\pi^2} G\tilde{G} - \frac{a}{f_{\rm a}} g^2 G\tilde{G}$$

* Mass acquired non-perturbatively

- * Small coupling to SM gauge fields
- * Solves strong CP problem

Peccei + Quinn (1977), Weinberg +Wilczek (1978), Kim (1979), Shifman et. al (1980), Zhitnitsky (1980), Dine et al. (1981), D.B. Kaplan (1985) 43

WHAT ARE AXIONS?

New scalar field with global U(1) symmetry! Broken at scale f_a

$$\mathcal{L}_{\rm CPV} = \frac{\theta g^2}{32\pi^2} G\tilde{G} - \frac{a}{f_{\rm a}} g^2 G\tilde{G}$$

* Mass acquired non-perturbatively

- * Small coupling to SM gauge fields
- * Solves strong CP problem

Peccei + Quinn (1977), Weinberg +Wilczek (1978), Kim (1979), Shifman et. al (1980), Zhitnitsky (1980), Dine et al. (1981), D.B. Kaplan (1985) 43

Axions solve the strong CP problem

* New field (axion) and U(1) symmetry dynamically drive net CP-violating term to 0

$$\mathcal{L}_{\rm CPV} = \frac{\theta g^2}{32\pi^2} G\tilde{G} - \frac{a}{f_{\rm a}} g^2 G\tilde{G}$$

* Through coupling to pions, axions pick up a mass

$$m_a \simeq \frac{\Lambda_{\rm QCD}^2}{f_a}$$

$$\Lambda_{\rm QCD} \simeq 200 \ {\rm MeV}$$
Axions solve the strong CP problem

* New field (axion) and U(1) symmetry dynamically drive net CP-violating term to 0

$$\mathcal{L}_{\rm CPV} = \frac{\theta g^2}{32\pi^2} G\tilde{G} - \frac{a}{f_{\rm a}} g^2 G\tilde{G}$$

* Through coupling to pions, axions pick up a mass

$$m_a = 6.2\mu \text{ eV}\left(\frac{10^{12} \text{ GeV}}{f_a}\right)$$

Two-photon coupling of axion

* Axions interact weakly with SM particles $\Gamma,\sigma \sim lpha^2$

* Axions have a two-photon coupling

$$g_{a\gamma\gamma} = -\frac{3\alpha}{8\pi f_a} \xi \qquad \qquad \mathcal{L} \propto g_{a\gamma\gamma} \vec{E} \cdot \vec{B}$$

* Very little freedom once f_a specified

LIMITS

 $\mathcal{L} \propto g_{a\gamma\gamma} a \vec{E} \cdot \vec{B} \quad g_{a\gamma\gamma} \propto 1/f_a$

LIMITS

Cosmoloaical abundance

 $\mathcal{L} \propto g_{a\gamma\gamma} a \vec{E} \cdot \vec{B} \quad g_{a\gamma\gamma} \propto 1/f_a$

Dark matter axion abundance

* QCD axion couples to quarks/pions, temp-dependent mass* High-temp regime

$$m_{\rm a} = 0.02 m_{\rm a}^{(T=0)} \left(\frac{\Lambda_{\rm QCD}}{T}\right)^4 \text{ if } T \gg \Lambda_{\rm QCD}$$

* Low-temp regime $m_{\rm a} = m_{\rm a}^{(T=0)}$ if $T \leq \Lambda_{\rm QCD}$

$$\Omega_{\rm mis}h^2 = 0.236 \left\langle \theta_i^2 f(\theta_i) \right\rangle \left(\frac{f_a}{10^{12} \text{ GeV}} \right)^{7/6}$$

if $f_a \lesssim 10^{18} \text{ GeV}$

if $f_a \gtrsim 10^{18} \text{ GeV}$

$$\Omega_{\rm mis}h^2 = 0.005 \left\langle \theta_i^2 f(\theta_i) \right\rangle \left(\frac{f_a}{10^{12} \text{ GeV}} \right)^{3/2}$$

* Axion field is relatively homogeneous

$$\left\langle \theta^2 \right\rangle = \overline{\theta}^2 + \left(\frac{H_I}{2\pi f_a}\right)^2$$

* Axion field is relatively homogeneous

$$\left\langle \theta^2 \right\rangle = \overline{\theta}^2 + \left(\frac{H_I}{2\pi f_a}\right)^2$$

Misalignment in our Hubble Patch

* Axion field is relatively homogeneous

Vacuum fluctuations from inflation

De Sitter expansion imprints scale invariant fluctuations

From Raffelt 2012

* Axion field is relatively homogeneous

$$\left\langle \theta^2 \right\rangle = \overline{\theta}^2 + \left(\frac{H_I}{2\pi f_a}\right)^2$$

* Abundance

$$\Omega_a h^2 \simeq 0.43 \left(\frac{f_a}{10^{12} \text{ GeV}} \right)^{7/6} \theta_i^2$$
$$\Omega_a h^2 \simeq 0.005 \left(\frac{f_a}{10^{12} \text{ GeV}} \right)^{3/2} \theta_i^2$$

 $*\theta$ can be tuned to get DM abundance for many axion masses

Classic axion window: $f_a < \max\{T_{RH}, H_I\}$

* Axion field is very inhomogeneous

$$\left\langle \overline{\theta}_i^2 \right\rangle = \frac{\pi^2}{6}$$

* Defects [domain walls, strings, etc..]

$$\mathcal{O}(1) \lesssim \alpha_{\text{defect}} \lesssim \mathcal{O}(10^2)$$

$$\Omega_a h^2 \simeq 2.0 \{1 + f_{\text{defect}}\} \left(\frac{f_a}{10^{12} \text{ GeV}}\right)^{7/6}$$

Classic axion window: $f_a < \max\{T_{RH}, H_I\}$

* Axion field is very inhomogeneous

$$\left\langle \overline{\theta}_i^2 \right\rangle = \frac{\pi^2}{6}$$

* Defects [domain walls, strings, etc..]

$\mathcal{O}(1) \lesssim \alpha_{\text{defect}} \lesssim \mathcal{O}(10^2)$ **CONTROVERSY!**

$$\Omega_a h^2 \simeq 2.0 \{1 + f_{\text{defect}}\} \left(\frac{f_a}{10^{12} \text{ GeV}}\right)^{7/6}$$

Classic axion window: $f_a < \max\{T_{RH}, H_I\}$

* Axion field is very inhomogeneous

$$\left\langle \overline{\theta}_i^2 \right\rangle = \frac{\pi^2}{6}$$

* Defects [domain walls, strings, etc..]

$$\mathcal{O}(1) \lesssim \alpha_{\text{defect}} \lesssim \mathcal{O}(10^2)$$

$$\Omega_a h^2 \simeq 2.0 \{1 + f_{\text{defect}}\} \left(\frac{f_a}{10^{12} \text{ GeV}}\right)^{7/6}$$

Classic axion window: $f_a < \max\{T_{RH}, \overline{H_I}\}$

* Axion field is very inhomogeneous

$$\left\langle \overline{\theta}_i^2 \right\rangle = \frac{\pi^2}{6}$$

* Defects [domain walls, strings, etc..]

$\mathcal{O}(1) \lesssim \alpha_{\text{defect}} \lesssim \mathcal{O}(10^2)$ **CONTROVERSY!**

$$\Omega_a h^2 \simeq 2.0 \{1 + f_{\text{defect}}\} \left(\frac{f_a}{10^{12} \text{ GeV}}\right)^{7/6}$$

HOW TO LOOK FOR A QCD AXION

*ADMX: Use the DM axions the universe gives you

 $\mathcal{L} \propto g_{a\gamma\gamma} a \vec{E} \cdot \vec{B} \ g_{a\gamma\gamma} \propto 1/f_a$

P. Sikivie 1983

HOW TO LOOK FOR A QCD AXION

*ADMX: Use the DM axions the universe gives you

 $\mathcal{L} \propto g_{a\gamma\gamma} a \vec{E} \cdot \vec{B} \ g_{a\gamma\gamma} \propto 1/f_a$

P. Sikivie 1983

(ADMX) L. Rosenberg and G. Rybka +....

Limits and horizon

Limits and horizon

Limits and horizon

Cosmological abundance limits (more soon...)

Experimental constraints ULA and axion-like particles (ALPs)

 $\mathcal{L} \propto g_{a\gamma\gamma}ec{E}\cdotec{B}$

Experimental constraints ULA and axion-like particles (ALPs)

Experimental desert: Gravitational constraints essential

 $|\mathcal{L} \propto g_{a\gamma\gamma}ec{E}\cdotec{B}|$

From arXiv: 1205.2671

Experimental constraints ULA and axion-like particles (ALPs)

Cosmological abundance limits (more soon...)

 $|\mathcal{L} \propto g_{a\gamma\gamma}ec{E} \cdot ec{B}|$

Lay of the land

 μ_{v} μ_{a}

Axion helioscopes

* Resonance condition $m_{\gamma}(eV) \approx \sqrt{0.02 \frac{P(mbar)}{T(K)}}$

$$qL < \pi \implies \sqrt{m_{\gamma}^2 - \frac{2\pi E_a}{L}} < m_a < \sqrt{m_{\gamma}^2 + \frac{2\pi E_a}{L}}$$

* Broad axion energy spectrum

Axion helioscopes

* Backwards Primakoff process (Sikivie, Zioutas, and many others)

Axion helioscopes

* Backwards Primakoff process (Sikivie, Zioutas, and many others)

CAST/IAXO

* CAST

≻ LHC test magnet (B=9 T, L=9.26 m)

* IAXO proposal: 15-20m length magnet, optimized shape [not LHC DUD]

CAST/IAXO

* CAST

≻ LHC test magnet (B=9 T, L=9.26 m)

* IAXO proposal: 15-20m length magnet, optimized shape [not LHC DUD]

Making axions in stars, II

From Raffelt 2012

 $\overline{g_{a\gamma\gamma}} \lesssim 10^{-10} \,\,\mathrm{GeV}^{-1}$

Making axions in stars, II

From Raffelt 2012

 $g_{a\gamma\gamma} \lesssim 10^{-10} \,\,\mathrm{GeV}^{-1}$

Making axions in (exploding) stars, III

Making axions in (exploding) stars, III

Making axions in (exploding) stars, III

Hot axion production at early times

 Axions produced through interactions between non-relativistic pions in chemical equilibrium with rate

Axion hot dark matter

* Axion temperature lowered

 $\frac{T_{\rm a}}{T_{\nu}} \propto \left(\frac{T_{\rm rh}}{T_{\rm F}}\right)^{5/3}$

* Free streaming-length modified

$$\lambda_{\rm fs} \simeq \frac{196 \text{ Mpc}}{m_{\rm a,eV}} \left(\frac{T_{\rm a}}{T_{\nu}}\right)$$

with T.L. Smith and M. Kamionkowski Phys. Rev. D77 085020, 0711.1342

$$\Omega_a \to \Omega_a \left(\frac{T_{\rm rh}}{T_{\rm F}}\right)^5$$

Physics *Helioscopes (CAST) or stellar evolution

Sun

Experimental constraints Axions and other axion-like particles (ALPS)

From arXiv: 1205.2671
Experimental constraints Axions and other axion-like particles (ALPS)

CASPer

From arXiv: 1205.2671

Laser experiments

Light shining through walls (e.g. GammeV)

Polarization experiments (e.g. PVLAS)

BICEP2 [inflationary energy scale detected?]

* Hard to accomodate QCD axion DM w/o classical window (defects)! [Marsh +yours truly+others 1403.4216 (2014), Gondolo et al. 2014 1403.4594]

$$\frac{\Omega_a}{\Omega_d} \lesssim 5 \times 10^{-12} \left(\frac{f_a}{10^{16} \text{ GeV}}\right)^{5/6}$$

66

More on ULA motivations

Light axions and string theory

- * String theory has extra dimensions: compactify (6)!
- Form fields and gauge fields: `Axion' is KK zeromode of form field

 $m_a^2 = \frac{\mu^4}{f_a^2} e^{-\text{Volume}}$

figure adapted from DJEM 2014

Independent of axion SM couplings: uncertainties astrophysical!

 $m_a^2 = \frac{\mu^4}{f_a^2} e^{-\text{Volume}}$

figure adapted from DJEM 2014

Independent of axion SM couplings: uncertainties astrophysical!

Forecast: uncertain scales

figure adapted from DJEM 2014

 $m_a^2 = \frac{\mu^4}{f_a^2} e^{-\text{Volume}} - -$

Independent of axion SM couplings: uncertainties astrophysical!

Constraint: astrophysical uncertainties

figure adapted from DJEM 2014

 $m_a^2 = \frac{\mu^4}{f_a^2} e^{-\text{Volume}} \longrightarrow \begin{array}{c} \text{Flat log} \\ \text{Very} \end{array}$

Independent of axion SM couplings: uncertainties astrophysical!

Forecast

figure adapted from DJEM 2014

 $m_a^2 = \frac{\mu^4}{f_a^2} e^{-\text{Volume}} -$

Independent of axion SM couplings: uncertainties astrophysical!

Underway

 $m_a^2 = \frac{\mu^4}{f_a^2} e^{-\text{Volume}}$

figure adapted from DJEM 2014

Independent of axion SM couplings: uncertainties astrophysical! DUST!

figure adapted from DJEM 2014

 $m_a^2 = \frac{\mu^4}{f_a^2} e^{-\text{Volume}} \quad ----$

Independent of axion SM couplings: uncertainties astrophysical!

Rough forecast

figure adapted from DJEM 2014

 $m_a^2 = \frac{\mu^4}{f_a^2} e^{-\text{Volume}} \longrightarrow \begin{array}{c} \text{Flat log} \\ \text{Very log} \end{array}$

Independent of axion SM couplings: uncertainties astrophysical!

IRONCLAD: this work

 $m_a^2 = \frac{\mu^4}{f_a^2} e^{-\text{Volume}}$

figure adapted from DJEM 2014

$$m_a^2 = \frac{\mu^4}{f_a^2} e^{-\text{Volume}} \qquad f_a \propto \frac{M_{\text{pl}}}{\text{Volume}} \qquad \mathcal{L} \propto g_{a\gamma\gamma} \vec{E}_{\text{gauge}} \cdot \vec{B}_{\text{gauge}} \\ g_{a\gamma\gamma} \propto \frac{1}{f_a}$$

Also Witten and Srvcek (2006), Acharya et al. (2010), Cicoli (2012)

70

Scalars with approximate shift symmetry —> "Axion"

Scalars with approximate shift symmetry — "Axion"

$$m \ll 3H \rightarrow n_a \propto \text{ const}, w_a \equiv \frac{P_a}{\rho_a}, w_a \simeq -1$$

$$m \gg 3H \to n_a \propto a^{-3}, \langle w_a \rangle_{T=2\pi/m_a} = 0$$

Misalignment production $V(\theta) \wedge Coherent oscillation, Axions act like CDM$

 $m \ll 3H \rightarrow n_a \propto \text{const}, w_a \equiv \frac{P_a}{\rho_a}, w_a \simeq -1$

$$m \gg 3H \to n_a \propto a^{-3}, \langle w_a \rangle_{T=2\pi/m_a} = 0$$

For QCD axion, we have a CDM candidate!

$$\Omega_{\rm mis}h^2 = 0.236 \left\langle \theta_i^2 f(\theta_i) \right\rangle \left(\frac{m_a}{6.2\mu {\rm eV}} \right)^{-7/6}$$

Different parameter space for non-QCD axion(Frieman et al 1995, Coble et al. 2007)

$$10^{-33} \text{ eV} < m_a < 10^{-18} \text{ eV}$$

Different parameter space for non-QCD axion(Frieman et al 1995, Coble et al. 2007)

 $a \equiv a_{\rm osc}$ $m_a = 3H(a)$

$$10^{-33} \text{ eV} < m_a < 10^{-18} \text{ eV}$$

Different parameter space for non-QCD axion(Frieman et al 1995, Coble et al. 2007)

`DM' axions

$$a_{\rm osc} < a_{\rm eq}$$

 $m_a > 10^{-27} \, \mathrm{eV}$

DE axions

 $a_{
m osc} > a_{
m eq}$ Oscillation starts too late for struct. formation $m_a < 10^{-27} \, {
m eV}$ 71

Oscillation starts in time for struct. formation

Additional slides: ULA search details

ISW TEST

Getting under the hood: The need for numerical care

Getting under the hood: The need for numerical care

$$\begin{split} \dot{\delta_a} &= 3\mathcal{H} \left[w_a - 1 \right] \delta_a - (1 + w_a) \left(k v_a + \dot{h} \right) \\ \dot{v}_a &= -3\mathcal{H} \left[1 - 3w_a \right] v_a - \frac{\dot{w}_a}{(1 + w_w)} v_a + \frac{k \delta_a}{(1 + w_a)} \\ \dot{w}_a &= -3\mathcal{H} \left(1 + w_a \right) \left[c_{\rm ad}^2 - w_a \right] \\ \dot{w}_a &= -3\mathcal{H} \left(1 + w_a \right) \left[c_{\rm ad}^2 - w_a \right] \\ c_{\rm ad}^2 &= \frac{\dot{P}_a}{\dot{\rho}_a} = -1 + \frac{2m_a a}{\mathcal{H}} \sqrt{\frac{(1 - w_a)}{(1 + w_a)}} \\ \dot{\rho}_a &= -3\mathcal{H} \rho_a \left(1 + w_a \right) \end{split}$$

Synchronous gauge 00-Einstein

$$\dot{h} \propto \eta \left[\frac{3\delta_{\rm R}}{a^2} + 3a^2 \mathcal{A} \delta_a \right]$$

Synchronous gauge 00-Einstein

$$\dot{h} \propto \eta \left[\frac{3\delta k}{\sqrt{2}} + 3a^2 \mathcal{A} \delta_a \right]$$

Perrotta and Baccigalupi, astro-ph/9811156

NOT KOSHER!

Solve Eigensystem and expand systematically

$$\frac{d\vec{U}_{\vec{k}}}{d\ln x} = (\underline{A}_0 + \underline{A}_1 x + \dots \underline{A}_n x^n) \vec{U}_{\vec{k}}$$

Bucher, Moodley, and Turok, PRD62, 083508, sol'ns can be obtained using this technique, outlined in Doran et al., astro-ph/0304212

ULAS AND THE ANGULAR SOUND HORIZON

$$\theta_s \equiv \frac{r_s}{d_{\rm A}(z=1100)} = \left(l_{\rm CMB}^{\rm peak}\right)^{-1}$$

Diagram by T. Smith (used with permission)
ULAS AND THE ANGULAR SOUND HORIZON

/2

$$\equiv \frac{r_s}{d_A(z=1100)} = \left(l_{\rm CMB}^{\rm peak}\right)^2$$
$$d_A \propto \int \frac{dz}{H(z)}$$

$$H(z) = H_0 \left\{ \frac{\Omega_m}{a^3} + \frac{\Omega_{\text{axion}}}{a^3 \int [1+w(\eta)]d\eta} \right\}^1$$

Faster early expansion brings LSS closer

ULAS AND THE ANGULAR SOUND HORIZON

 $\theta_s \equiv \frac{r_s}{d_{\rm A}(z=1100)} = \left(l_{\rm CMB}^{\rm peak}\right)^{-1}$

$$d_A \propto \int \frac{dz}{H(z)}$$

Faster early expansion brings LSS closer

76

ULAS AND THE ANGULAR SOUND HORIZON

 $\theta_s \equiv \frac{r_s}{d_{\rm A}(z=1100)} = \left(l_{\rm CMB}^{\rm peak}\right)^{-1}$

$$d_A \propto \int \frac{dz}{H(z)}$$

Absorb and lock onto usual peaks by lowering H_0

Faster early expansion brings LSS closer

Higher mass (DM-like) case: high-l ISW

CMB temperature anisotropies from potential decay $\Delta T_{\rm ISW} = -2 \int_0^{\eta_{\rm dec}} d\eta \dot{\Phi}(\eta, \hat{n}\eta)$

$$\Phi \propto \frac{1}{k^2} \left\{ \frac{\Omega_m \delta_m \left(1 - \frac{\Omega_a}{\Omega_m} \right)}{a^3} + \frac{\delta_R \Omega_R}{a^4} \right\}$$

Higher mass (DM-like) case: high-l ISW

CMB temperature anisotropies from potential decay $\Delta T_{\rm ISW} = -2 \int_0^{\eta_{\rm dec}} d\eta \dot{\Phi}(\eta, \hat{n}\eta)$

$$\Phi \propto \frac{1}{k^2} \left\{ \frac{\Omega_m \delta_m \left(1 - \frac{\Omega_a}{\Omega_m} \right)}{a^3} + \frac{\delta_R \Omega_R}{a^4} \right\}$$

Higher mass (DM-like) case: high-l ISW

Radiation pressure causes potential decay

$$\Phi \propto \frac{1}{k^2} \left\{ \frac{\Omega_m \delta_m \left(1 - \frac{\Omega_a}{\Omega_m} \right)}{a^3} + \frac{\delta_R \Omega_R}{a^4} \right\}$$

77

 $\Delta P \Delta A > \rho \delta V \nabla \Phi$

Higher mass (DM-like) case: high-l ISW

GROWTH OF ULA PERTURBATIONS

*Perturbed Klein-Gordon + Gravity

$$\ddot{\delta\phi} + 2\mathcal{H}\delta\dot{\phi} + (k^2 + m_a^2 a^2)\delta\phi = 4\dot{\Psi}\dot{\phi_0} - \Psi a^2 m_a^2\phi_0$$

*Axionic Jeans Scale is macroscopic [in contrast to QCD axion]:

$$\lambda_J = 2.4 h^{-1/2} \left(\frac{m}{10^{-25} \text{ eV}}\right)^{-1/2} \text{ Mpc}$$

*Computing observables is expensive for $m \gg 3\mathcal{H}$:

* Coherent oscillation time scale $\Delta \eta \sim (ma)^{-1} \ll \Delta \eta_{\text{CAMB}}$

***** WKB approximation

 $\delta\phi = A_c \Delta_c(k,\eta) \cos\left(m\eta\right) + A_s \Delta(k,\eta) \sin\left(m\eta\right)$

$$c_a^2 = \frac{\delta P}{\delta \rho} = \frac{k^2 / (4m^2 a^2)}{1 + k^2 / (4m^2 a^2)}$$

GROWTH OF ULA PERTURBATIONS

*"Pressure" stabilization

DATA

*Planck 2013 temperature anisotropy power spectra (+SPT+ACT+BAO) *Cosmic variance limited to $\ell \sim 1500$ *Power spectrum already shown

*WiggleZ galaxy survey (linear scales only $k \leq 0.2h \ {
m Mpc}^{-1}$) *Galaxy bias marginalized over *Theory P(k) convolved with survey window function *240,000 emission line galaxies at z<1

*3.9 m Anglo-Australian Telescope (AAT)

θ_s fixed to lock CMB

 $ho_{
m rad}$

 θ_s fixed to lock CMB H_0

Matter-radiation equality delayed

80

Data

*Planck 2013 temperature anisotropy power spectra (+SPT+ACT+BAO) *Cosmic variance limited to $\ell \sim 1500$ *Power spectrum already shown

*WiggleZ galaxy survey (linear scales only $k \leq 0.2h \text{ Mpc}^{-1}$) *Galaxy bias marginalized over *Theory P(k) convolved with survey window function

*240,000 emission line galaxies at z<1

*3.9 m Anglo-Australian Telescope (AAT)

Data

$$m_a, \Omega_a h^2, \Omega_c h^2, \Omega_b h^2, \Omega_\Lambda, n_s, A_s, \tau_{\text{reion}}$$

$$m_a, \Omega_a h^2, \Omega_c h^2, \Omega_b h^2, \Omega_\Lambda, n_s, A_s, \tau_{\text{reion}}$$

$$\Delta_{\mathcal{R}}^{2}(k) \equiv A_{s} \left(\frac{k}{k_{0}}\right)^{n_{s}-1} \text{ Initial conditions}$$

$$m_a, \Omega_a h^2, \Omega_c h^2, \Omega_b h^2, \Omega_\Lambda, n_s, A_s, \tau_{\text{reion}}$$

$$\tau_{\rm reion} = \int dl n_e \sigma_T$$

 $m_a, \Omega_a h^2, \Omega_c h^2, \overline{\Omega_b h^2}, \overline{\Omega_\Lambda, n_s, A_s, \tau_{\text{reion}}}$

Addressed using nested sampling MULTINEST (Hobson, Feroz, others 2008)

$$m_a, \Omega_a h^2, \Omega_c h^2, \Omega_b h^2, \Omega_\Lambda, n_s, A_s, \tau_{\text{reion}}$$

$$m_a, \Omega_a h^2, \Omega_c h^2, \Omega_b h^2, \Omega_\Lambda, n_s, A_s, au_{reion}$$

$$m_a, \Omega_a h^2, \Omega_c h^2, \Omega_b h^2, \Omega_\Lambda, n_s, A_s, \tau_{reion}$$

Densities of standard species

$$m_a, \Omega_a h^2, \Omega_c h^2, \Omega_b h^2, \Omega_\Lambda, n_s, A_s, \tau_{\text{reion}}$$

$$\Delta_{\mathcal{R}}^{2}(k) \equiv A_{s} \left(\frac{k}{k_{0}}\right)^{n_{s}-1} \text{ Initial conditions}$$

$$m_a, \Omega_a h^2, \Omega_c h^2, \Omega_b h^2, \Omega_\Lambda, n_s, A_s, \tau_{\text{reion}}$$

$$\tau_{\rm reion} = \int dl n_e \sigma_T$$

$m_a, \Omega_a h^2, \Omega_c h^2, \Omega_b h^2, \Omega_\Lambda, n_s, A_s, \tau_{\text{reion}}$

Addressed using nested sampling MULTINEST (Hobson, Feroz, others 2008)

 $m_a, \Omega_a h^2, \Omega_c h^2, \Omega_b h^2, \Omega_\Lambda, n_s, A_s, \tau_{\text{reion}}$

$m_a, \Omega_a h^2, \Omega_c h^2, \Omega_b h^2, \Omega_\Lambda, n_s, A_s, \tau_{\text{reion}}$

Addressed using nested sampling MULTINEST (Hobson, Feroz, others 2008)

Degeneracies/Weak gravity conjecture

Amendola and Barbieri

Old power spectrum constraints from Amendola and Barbieri, arXiv:hep-ph/0509257

- 1) Grid search
- 2) No isocurvature
- 3) No marginalization over foregrounds
- 4) No lensing, no polarization
- 5) No real Boltzmann code [step in power spectrum, or unclustered DE at low m]

Additional slides: ULAs and galaxies

FUTURE WORK: ULAS AND GALAXIES

*Galaxies are biased tracers

FUTURE WORK: ULAS AND GALAXIES

*Galaxies are biased tracers

$$\delta_g = b\left(\frac{\delta\rho_m}{\rho_m}\right)$$
 vs. $\delta_g = b\left(\frac{\delta\rho_m + \delta\rho_a}{\rho_m + \rho_a}\right)$
Unfair penalty on scales where axions don't cluster
*Galaxies are biased tracers

$$\delta_g = b\left(\frac{\delta\rho_m}{\rho_m}\right) \quad \text{vs.} \quad \delta_g = b\left(\frac{\delta\rho_m + \delta\rho_a}{\rho_m + \rho_a}\right)$$

Doesn't include ULAs as matter component on scales where they cluster

Collapse threshold for ULA DM unknown

δ

 $\delta_c^{\Lambda \text{CDM}} = 1.686$ $\delta_c^{\Lambda \text{ULA}} = ????$

FUTURE WORK: ULAS CORES + CUSPS?

Cores! (Hu/Gruzinov/Barkana 2001, see also Marsh and Silk 2013, Marsh and Pop 2015, Matos 2012, Schive 2014, and others)

FUTURE WORK: ULAS CORES + CUSPS?

$$m_{\phi} = 1 \times 10^{-24} \text{ eV}$$

 $m_{\phi} = 1 \times 10^{-23} \text{ eV}$
 $m_{\phi} = 1 \times 10^{-22} \text{ eV}$
 $m_{\phi} = 2 \times 10^{-22} \text{ eV}$
 $m_{\phi} = 3 \times 10^{-22} \text{ eV}$
 $m_{\phi} = 4 \times 10^{-22} \text{ eV}$
 $m_{\phi} = 5 \times 10^{-22} \text{ eV}$

Missing satellite problem?

Marsh et al 2014, Klypin 1999, Bullock 2010

*Galaxy lensing

*Substructure in halos [flux ratio anomalies in multiply lensed]

ULA substructure?

*Galaxies are biased tracers

*Galaxies are biased tracers

$$\delta_g = b \left(\frac{\delta \rho_m}{\rho_m} \right) \quad \text{vs.} \quad \delta_g = b \left(\frac{\delta \rho_m + \delta \rho_a}{\rho_m + \rho_a} \right)$$

*Galaxies are biased tracers

$$\delta_g = b \left(\frac{\delta \rho_m}{\rho_m} \right) \quad \text{vs.} \quad \delta_g = b \left(\frac{\delta \rho_m + \delta \rho_a}{\rho_m + \rho_a} \right)$$

Unfair penalty on scales where axions don't cluster

*We use hard switch at $k_{osc} = k_{eq}; k_{osc} \equiv a_{osc} H_{osc}$

*Galaxies are biased tracers

$$\delta_g = b\left(\frac{\delta\rho_m}{\rho_m}\right) \quad \text{vs.} \quad \delta_g = b\left(\frac{\delta\rho_m + \delta\rho_a}{\rho_m + \rho_a}\right)$$

Doesn't include ULAs as matter component on scales where they cluster

*We use hard switch at $k_{osc} = k_{eq}; k_{osc} \equiv a_{osc}H_{osc}$

*Galaxies are biased tracers

$$\delta_g = b\left(\frac{\delta\rho_m}{\rho_m}\right) \quad \text{vs.} \quad \delta_g = b\left(\frac{\delta\rho_m + \delta\rho_a}{\rho_m + \rho_a}\right)$$

Doesn't include ULAs as matter component on scales where they cluster

*We use hard switch at $k_{osc} = k_{eq}; k_{osc} \equiv a_{osc}H_{osc}$

*Realistic [smooth] treatment of scale-dependent bias needed (incorporating physics of ULA formation in halos)

*Often neglected (but shouldn't be) for neutrinos (LoVerde 2013)

FUTURE WORK: RICHER MODELING AND AXIVERSE

*Include spectrum of N axions (and interactions) in AXICAMB

 $\frac{dn}{d\ln m_a} \propto \text{const}$

BICEP2 [inflationary energy scale detected?]

* Hard to accomodate QCD axion DM w/o classical window (defects)! [Marsh +yours truly+others 1403.4216 (2014), Gondolo et al. 2014 1403.4594]

$$\frac{\Omega_a}{\Omega_d} \lesssim 5 \times 10^{-12} \left(\frac{f_a}{10^{16} \text{ GeV}} \right)^{5/6}$$

94