

Recent progress with the KWISP force sensor

G. Cantatore - University and INFN Trieste

on behalf of the working group: G. Cantatore, A. Gardikiotis, D. Hoffmann, M. Karuza, Y. Semertzidis, K. Zioutas

Summary

- KWISP and solar Chameleons
- Recent results in Trieste
- Conclusions, plans and perspectives

KWISP: a novel opto-mechanical sensor for Chameleon searches

- Chameleons are a type of scalar WISPs having an effective mass dependent on the local energy density. Solar Chameleons are Primakoff-produced inside the magnetic field of the Sun and then stream to Earth
- Two couplings, two detection possibilities:
 - inverse Primakoff conversion inside a magnetic field \Rightarrow photon coupling β_Y
 - force exerted at grazing incidence on a surface \Rightarrow direct coupling to matter β_m

 Key idea: build a sensitive force sensor and use it to detect solar Chameleons from their direct interaction with matter

⇒ KWISP - Kinetic WISP detection

Opto-mechanical force sensors

- A nano-membrane (a few 10's of nm thick Si₃N₄) is centered and aligned inside an optical Fabry-Perot resonant cavity
- Membrane displacements in response to an externally applied force shift the cavity mode frequencies
- When a laser beam is frequency-locked to the cavity using a feedback loop, the feedback error signal senses frequency shifts and contains the information on membrane movements

(5 mm)x(5 mm) 100 nm thick SiN₄ nano-membrane set inside its holder

KWISP Motivation & Concept

- Why this complicated technique to measure such a trivial thing as a force?
 - <u>Because extremely tiny forces can be measured</u>: the FP finesse acts a gain multiplier and a further increase in sensitivity comes from the membrane mechanical Q-factor

Chameleonistas...

Chameleonistas...

... and how they subsist ...

Chameleonistas...

Recent results in the INFN Trieste laboratory

KWISP@TS - June 2015

- INFN laboratory in Trieste pilot KWISP setup
 - Fabry-Perot cavity in vacuum excited by IR laser with electro-optic Pound-Drever-Hall frequency-locking feedback
 - sensor running with 5x5 mm², 100 nm thick membrane inserted in the cavity and aligned in-vacuum
 - complete double-beam setup with 1064 nm "sensing" beam and 532 nm "pump" beam
 - solar Chameleon chopper

5x5 mm² membrane

l"-mirror FP cavity

Mirror

Membrane holder

Mirror

Optical bench panorama

Two-beam setup

Membrane&holder

Frequency-lock with membrane

G. Cantatore, 11th Patras Workshop on Axions, WIMPs and WISPs, Zaragoza, June 2015

Þ

INFN

•=

(, **I**

٠

ï

Frequency-lock with membrane

G. Cantatore, 11th Patras Workshop on Axions, WIMPs and WISPs, Zaragoza, June 2015

Þ

INFN

ĩ

Pump beam at 532 nm

Pump beam monitor signal

- Total CW light power at 532 nm incident on membrane :166 μW
- Amplitude modulated at 9.045 kHz with EOM, modulation depth: 28%
- Measured membrane reflectivity
 @ 532 nm: 25%
- Equivalent force on membrane:
 2.8 · 10⁻¹³ N

- Total CW light power at 532 nm incident on membrane :166 μW
- Amplitude-modulated at 9.045 kHz, modulation depth: 28%
- Measured membrane reflectivity
 @ 532 nm: 25%
- Equivalent force on membrane:
 7.9 · 10⁻¹⁴ N
- Sensitivity: $5 \cdot 10^{-14} \text{ N}/\sqrt{\text{Hz}}$

This measurement is equivalent to calibrating a detector with a radioactive source

INFR

Membrane mechanical resonance

• Pre-stessed membrane is equivalent to a drumhead with resonant frequency in the 10's of kHz range

Membrane mechanical resonance

• Pre-stessed membrane is equivalent to a drumhead with resonant frequency in the 10's of kHz range

Measuring the membrane mechanical Q

- To find the membrane mechanical Q-factor the pump beam is modulated at constant amplitude around the resonance frequency
- Recorded force amplitudes are then fitted with a Lorentzian curve
- Fit results:
 - resonance frequency: 82.522 kHz
 - FWHM: 27 Hz
- Membrane mechanical Q ~3000

Amplified force response at resonance

Frequency [Hz]

 When the pump beam is modulated (with constant amplitude) at/near the membrane mechanical resonance frequency the response to the force is amplified by a factor Q

- Consequently the sensitivity is enhanced also by a factor Q
- Sensitivity at resonance:
 I.7 · I0⁻¹⁷ N/√Hz

Results summary

- Sensor under stable lock and working with 5x5 mm², 100 nm thick membrane
- Force sensitivity measured directly with pump beam:
 - off resonance: $5 \cdot 10^{-14} \text{ N}/\sqrt{\text{Hz}}$
 - on resonance: $1.7 \cdot 10^{-17} \text{ N}/\sqrt{\text{Hz}}$

 Key point ⇒ solar Chameleon flux must be amplitude-modulated

Need a "Chameleon chopper": built in Trieste following an original idea(*)

(*) K. Zioutas, M. Karuza, G. Cantatore, paper in preparation

Chopping a Chameleon beam

- <u>Key concept</u>: at the interface between two media of different densities:
 - grazing incidence -> total reflection
 - normal incidence -> transmission

Figure 2 Maximum energy at which a chameleon particle can be focused by an X-ray mirror with density 10 g/cm^3 (\approx the density of a Ni-coated X-ray telescope) and grazing angle ϵ , for several different chameleon models. The dotted horizontal and vertical lines illustrate one example of a 600 eV chameleon incident on a mirror of focusing angle 30', which is, for example, equal to the field-of-view of XMM/Newton. The chameleon will be focused by this mirror if n=4 and $\beta_m = 10^6$, but will pass through the mirror if n=1 and $\beta_m = 10^4$.

K. Baker, A. Lindner, A. Upadhye, K. Zioutas, A chameleon helioscope, http://xxx.lanl.gov/abs/1201.0079 3

Slide courtesy of K. Zioutas

Chameleon chopper v. I

Chopping frequency ~200 Hz

Higher Frequency Chameleon chopper

Chopping frequency ~2 kHz

Chameleon flux

Even Higher Frequency Chameleon chopper

Chameleon flux

Chopping frequencies ~100 kHz

Vacuum turbo pump turbine

Chameleon flux

Gain a further factor 2 ... (suggestion by S. Hofmann)

2 counter-rotating turbines

Preliminary tests in Trieste with the chameleon chopper

- Chameleon chopper built and tested mechanically up to 100 Hz
- Coarsely aligned with the sun position with respect to the KWISP membrane
 - alignment done with ... Solar Geometrical Calculator
 - selected grazing incidence angles 0-20°
 - two-hour window for solar runs
- Preliminary test solar runs with Chameleon chopper

Setting up with the... SGC(*)!

(*) Solar Geometrical Calculator

G. Cantatore – Patras Workshop 2014 – CERN 30/6-4/7 2014

Setting up with the... SGC(*)!

(*) Solar Geometrical Calculator

G. Cantatore – Patras Workshop 2014 – CERN 30/6-4/7 2014

Setting up with the... SGC(*)!

(*) Solar Geometrical Calculator

G. Cantatore – Patras Workshop 2014 – CERN 30/6-4/7 2014

Sample spectrum from test solar Chameleon run

G. Cantatore, 11th Patras Workshop on Axions, WIMPs and WISPs, Zaragoza, June 2015

INFN

Conclusions and plans

• The KWISP force sensor has been calibrated with a directly applied force, also determining the membrane mechanical Q-factor. Measured sensitivity:

off resonance: $5 \cdot 10^{-14} N/\sqrt{Hz}$ on resonance: $1.7 \cdot 10^{-17} N/\sqrt{Hz}$

- Key concept: amplitude modulation of a Chameleon beam
 - built a first version of a Chameleon chopper
 - tested with preliminary "solar" runs
- New in-house technologies under development
 - homodyne detection (differential two-beam readout)
 - membrane cooling
 - membrane coatings for better photon detection

• Detecting the solar chameleon flux at CAST with KWISP (*):

- sensor coupled to the CAST MPE X-ray telescope \Rightarrow factor ~100 increase in flux
- exploit solar tracking capability for unique signal ID
- searching for *real* Chameleon interaction (as opposed to virtual)
- possibility for a first glimpse at the Dark Energy sector

(*) see the CAST proposal to the CERN SPSC at <u>https://cds.cern.ch/record/485291</u>

Suggestions for further reading

G. Cantatore et al., Rev. of Sci. Instr., 66(4) 2785–2787 (1995) on frequency locking Fabry-Perot cavities

M. Karuza et al., J. Opt. 15, 025704 (2013), M.Karuza et al. New J. of Phys 14 (2012) 095015 on detecting micro-membrane displacements

S. Baum, G. Cantatore, D.H.H. Hoffmann, M. Karuza, Y.K. Semertzidis, A. Upadhye, K. Zioutas, Physics Letters B 739, 167–173 (2014) on detecting solar Chameleons with an opto-mechanical force sensor

G. Cantatore, 11th Pat

BACKUP SLIDES

local coordinates 45.6588 N, 13.8297 E, alt +370 m

Physics reach of the KWISP force sensor

- Curves below represent, for different *n* and Λ parameters in the Chameleon potential the fraction of the total incident flux reflected by the Si₃N₄ membrane ("Au" plot refers to a gold coated membrane)
- Dashed lines indicate, for different measurement conditions, the minum fraction detectable by KWISP with the current expected force sensitivity of $5 \cdot 10^{-14}$ N/ \sqrt{Hz} (assuming $L_{ch}/L_{sol} = 0.1$)

Wide β_m reach from < 10 to > 10¹⁰

Curve di sensibilità del sensore KWISP

- Le curve dànno, per diversi *n* nel potenziale e per $\Lambda = 2.4 \times 10^{-3}$ eV, la frazione del flusso di chameleon riflessi dalla membrana di Si₃N₄
- Le linee tratteggiate indicano, per diverse condizioni di misura, la frazione minima rivelabile da KWISP con la sensibilità aspettata corrente di 5×10^{-14} N/ \sqrt{Hz} (assumendo $L_{ch}/L_{sol} = 0.1$)

Short terms plans and SPSC proposal

- Remaining measurements in Trieste
 - $\bullet\,$ determine membrane mechanical resonant frequency ν_m
 - modulate pump beam at V_m : sensitivity increases by a factor $Q \sim 10^4 10^5$
 - repeat test runs
- At CERN (short term)
 - setup of the off-beam bench starts as soon as equipment arrives
- CAST proposal to SPSC
 - CAST new physics proposal to SPSC submitted yesterday
 - KWISP is a substantial part of this program developing over three years

2016	2017	2018
 solar tracking with room temperature membrane study homodyne detection 	 solar tracking with homodyne detection study membrane cooling 	• solar tracking with cooled membrane and homodyne detection