Laboratory Search for New Spin-dependent Interaction (at Center for Axion and Precision Physics)

YUN CHANG SHIN, DONG-OK KIM, YANNIS SEMERTZIDIS, CAPP, IBS

for the Axion Resonant InterAction Detection Experiment (ARIADNE)

11th Patras Workshop, Universidad de Zaragoza, Spain June 22~26th, 2015

Outline

- Introduction
- Axion Search at CAPP, IBS
- Axion search with new spin-dependent interaction
- ARIADNE Collaboration
- CAPP contribution and future plan
- Summary

Particle Physics and Axion

- The strong CP problem in QCD
 - ✓ CP violating term in Lagrangian: $L_{\theta} = \theta \frac{\alpha_s}{8\pi} G_{\mu\nu} \tilde{G}^{\mu\nu}$
 - ✓ Vacuum Angle : θ
 - ✓ It gives neutron EDM of : $d_n \sim \frac{e}{M_n} \left(\frac{m_q}{M_n}\right) \theta \sim \theta \times 10^{-15} e \cdot cm$
 - ✓ But Current Experimental Limit of nEDM [1]: $d_n^{exp} \sim 3 \times 10^{-26} e \cdot cm$
 - ✓ Lack of explanation for why $\theta \leq 10^{-10}$ so small
- Axion field is introduced as a dynamical θ parameter[2]

✓ a→a+constant, broken only by CP-anomalous term

[1] C.A.Baker et al. Phys. Rev. Lett. 97, 131801 (2006)
[2] R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977) 3

Dark Matter and Axion

- A large fraction of our Universe: some how "Dark Matter"
- The evidence comes from a variety of sources at all scales
 - Galaxy Rotation Curves
 - CMB Observations
- Axion as a Dark matter candidate :
 - ✓ The coupling with matters suppressed by decay constant f_a : - $f_a \approx 10^9 \sim 10^{12} \text{ GeV}$
 - Non thermal production mechanism
 - $\theta \rightarrow 0$, $m_a \neq 0$: axion get mass
 - No damping mechanism for axion oscillation
 - Energy density freezes out until today
 - behaves like non-relativistic matter

Dark Matter and Axion

- Cosmological boundary
 - \checkmark relic energy density $\Omega_a \propto m_a$ -7/6
 - ✓ for the condition of $\Omega_a \approx 1$
 - No over-close of Universe
 - ✓ $1\mu eV \le m_a \le 10\mu eV \rightarrow m_a > 1\mu eV$
- Astrophysics boundary
 - $\sim m_a < 1 meV$
 - SN1987a stellar evolution

Center for Axion and Precision Physics

- Established in 2013 through Institute for Basic Science in Korea (Director : Prof. Yannis Semertzidis)
- Focused on issues of modern particle and astrophysics
 - Nature of Dark Matter : Axion
 - Nature of Universe: Matter-antimatter asymmetry : pEDM

CAPP Axion program

- Extensive R&D on axion dark matter experiments with
 - Microwave Cavity Experiment at T<100mK (Chung)
 - CERN Axion Solar Telescope Collaboration (Miceli)
 - ADMX Collaboration (Ko)
 - R&D collaboration (with BNL) on High field SCM (Konikowska)
- Axion search from long-range, spin-dependent interaction with high precision NMR

- Theoretical ideas imply weakly-coupled, long-range interaction[1][2]:
 - between macroscopic objects could exist
 - could be induced by the exchange of new light bosons
 - 16 interaction potentials : 8 parity-even, 8 parity-odd[2]
- The discovery of new force with a range longer than a micrometer :
 - tremendous impact on contemporary physics
 - few precision experiments have been conducted over "meso-scopic" ranges

[1] J. E. Moody and F. Wilczek. Physical Review D, 30 (130), 1984
[2] B. A. Dobrescu and I. Mocioiu. Journal of High Energy Physics, 11(5), 2006

$$U_{sp}(r) = \frac{g_s g_p \hbar^2}{8\pi m_p} (\hat{\sigma} \cdot \hat{r}) \left(\frac{1}{r\lambda_a} + \frac{1}{r^2}\right) \exp(-r/\lambda_a)$$

$$= -\left(\frac{g_s g_p \hbar^2}{8\pi m_p}\right) \vec{\nabla} \left(\frac{1}{r} \exp(-r/\lambda_a)\right) \cdot \hat{\sigma}$$

$$= -\vec{\nabla} V_a(r) \cdot \hat{\sigma}$$

$$= -\vec{\nabla} V_a(r) \left(\frac{2}{\hbar \gamma_f}\right) \cdot \hat{\sigma} \left(\frac{\hbar \gamma_f}{2}\right)$$

$$= -\vec{B}_{eff} \cdot \vec{\mu}_f \quad (Magnetic potential Energy)$$
10

- Different than normal electromagnetic field
- Independent from fermion's magnetic moment
- Does not couple to the angular moment or charge : No Maxwell equation → can't be screened by magnetic shielding

ARIADNE Proposal

- Time varying B_{eff} drives spin precession $\vec{B}_{eff} \approx \frac{1}{\hbar \gamma_N} \nabla V_a(r) (1 + \cos(n\omega_{rot}t))$
- Produce transverse magnetization [1]

$$M_x(t) \approx \frac{1}{2} n_s p \mu_N \gamma_N B_{\text{eff}} T_2(e^{-t/T_1} - e^{-t/T_2}) \cos(\omega t)$$

• Signal linearly grows until $t \sim T_2 : Q \sim \omega T_2$ [1] p: polarized fraction, n_s: spin density of sample, T2: spin relaxation time

Searchable Regime

[1] J. Beringer et al. [Particle Data Group Collaboration], PRD 86, 010001 (2012)

ARIADNE Proposal

PI: Andrew Geraci (U. Nevada Reno), co-PIs: Aharon Kapitulnik (Stanford),
Chen-Yu Liu (Indiana U.), Josh Long (Indiana U.), Mike Snow (Indiana U.),
Mina Arvanitaki (Waterloo), Yannis Semertzidis (CAPP Korea)
Senior Personnel: Eli Levenson-Falk (Stanford), Yunchang Shin (CAPP Korea)

- Polarized 3He gas at 4K with precession : ω_{3He}
- Rotating mass oscillates force in resonance at : $n \omega_{rot}$
- Detect M_x with SQUID
- Limit : Transverse spin projection noise
- Longer T_2 and Higher $n_{3He\uparrow}$

$$B_{min} \approx p^{-1} \sqrt{\frac{2\hbar b}{n_s \mu_{^3}_{\mathrm{He}} \gamma V T_2}} = 3 \times 10^{-19} \mathrm{T} \times \left(\frac{1}{p}\right) \sqrt{\left(\frac{b}{1\mathrm{Hz}}\right) \left(\frac{1\mathrm{mm}^3}{V}\right) \left(\frac{10^{21}\mathrm{cm}^3}{n_s}\right) \left(\frac{1000\mathrm{s}}{T_2}\right)}$$

[1] A. Arvanitaki and A. Geraci, Phys. Rev. Lett. 113, 161801 (2014).

Expected Reach

Technical Challenges

Systematic Effect/Noise source	Background Level	Notes
Magnetic gradients	$3 \times 10^{-6} \mathrm{T/m}$	Limits T_2 to ~ 100 s
		Possible to improve w/shield geometry
Vibration of mass	$10^{-22} { m T}$	For 10 μm mass wobble at ω_{rot}
External vibrations	$5 \times 10^{-20} \mathrm{T}/\sqrt{\mathrm{Hz}}$	For 1 μ m sample vibration (100 Hz)
Patch Effect	$10^{-21} (\frac{V_{\text{patch}}}{0.1\text{V}})^2 \text{ T}$	Can reduce with V applied to Cu foil
Flux noise in squid loop	$2 \times 10^{-20} \text{ T}/\sqrt{\text{Hz}}$	Assuming $1\mu\Phi_0/\sqrt{\text{Hz}}$
Trapped flux noise in shield	$7 \times 10^{-20} \frac{\mathrm{T}}{\sqrt{\mathrm{Hz}}}$	Assuming 10 cm^{-2} flux density
Johnson noise	$10^{-20} (\frac{10^8}{f}) T / \sqrt{Hz}$	f is SC shield factor (100 Hz)
Barnett Effect	$10^{-22} (\frac{10^8}{f})$ T	Can be used for calibration above 10 K
Magnetic Impurities in Mass	$10^{-25} - 10^{-17} (\frac{\eta}{1 \text{ppm}}) (\frac{10^8}{f}) \text{ T}$	η is impurity fraction (see text)
Mass Magnetic Susceptibility	$10^{-22} (\frac{10^8}{f})$ T	Assuming background field is 10^{-10} T
	J	Background field can be larger if $f > 10^8$

Metastability Exchange Optical Pumping

- The ground state (1^1S_0)
 - ✓ singlet with L=0 (orbital)
 - ✓ total electron J=0
- Total angular moment
 y purely nuclear F=I=1/2
- RF discharge to populate higher excited states (50W, 1~10MHz)
- small faction of the atoms in 2³S₁ (~ppm) : metastable state

MEOP in standard condition

- OP with σ⁺ light at 1083nm enables transitions between 2³S₁ and 2³P₀ (C8) with angular momentum selection
- Population of $m_F=-1/2$ is depleted relative to $m_F=1/2$
- The electronic optical orientation enforces nuclear orientation : hyperfine coupling
- Net polarization of total angular momentum

MEOP in standard condition

- Nuclear polarization of 3He by metastability exchange collision
- $3\text{He}+3\text{He}^* \uparrow \rightarrow 3\text{He}^*+3\text{He}^{\uparrow}$
- Net transfer of nuclear orientation from 2³S₁ to 1¹S₀
- Repeat whole process to accumulate more 3He polarization

3He Polarization System

- at Indiana University
- Polarization of 3He and 3He/ 4He mixtures by MEOP at 1 mbar pressure
- Compression system can produce polarized 3He unto 1bar
- Can deliver arbitrary pressure of 3He or 3He/4He between 1mbar to 1bar
- Complication of polarized 3He transport

[1] D. S. Hussey et. al, Review of Scientific Instruments, 76(5),053503 (2005)

CAPP's contribution (Yun Shin, Dong-Ok Kim)

Compact 3He Polarization Unit

22

- Integrated 3He polarization
 system with 3He optical cell
 - pumping cell, compressor and storage are in one single unit
 - non-magnetic parts
 - integrated uniform guide field from multi coil set
 - \checkmark within layers of μ -metal shielding
 - can be mounted in any position 1083nm
 - no field complication

Uniform Guiding Field

Uniform guide field simulation with OPERA 3D

- six square coils configuration : more volume
- Iess than 1% of field fluctuation with different number of turns for each coil and distances

Magnetic Shielding Room

- Dimension : 2.8m×2.5m×2.5m(H)
- Built with Coam-Tech in S. Korea
- Shielding performance
 - 0.01 Hz: 200 times or more
 - ✓ 0.1 Hz: 300 times or more
 - ✓ 1 Hz: above 2000 times or more
 - 10 Hz ~ 400 MHz: more than 10,000 times
 - ✓ 400 MHz ~ 1000 MHz: more than 1,000 times
- Residual Field : 2nT
- Field gradient : 0.5nT
- will be installed in Creation Hall
- plan to improve : with Prof. Fierlinger at TMU

PIT (Anti-vibration platform)

- Creation Hall Experimental area
 - Located at KAIST Munji Campus
 - Seven anti-vibration platforms

Frequency	Supression Efficiency (dB)	
10Hz	> -15	
20Hz	> -25	
>30Hz	> -35	

CAPP Concept

Plan at CAPP

- Ongoing R&D in ARIADNE Collaboration
 - prototype cryostat cold test at Indiana University
- Contribute with
 - Compact 3He polarization system
 - Magnetic Shielding (with Coam-Tech)
 - SQUID (with help from Dr. Yong-Ho Lee at KRISS)
 - * Anti-vibration platform (at CAPP at KAIST Munji Campus)
 - Other improvements
- Launch the experiment at CAPP

Summary

- Various approaches to look for axions at CAPP
- Laboratory search for axion from long range spindependent interaction can be very complementary
- Improvement in sensitivity can be made from new spindependent interaction experiment