Tith Patras Workshop on Axions, WIMPs and WISPs

Axino dark matter and X-ray lines based on work with H.K. Dreiner, F. Staub and L. Ubaldi

Stefano Colucci

Axino DM + X rays

June 23, 2015 1 / 13

Zaragoza

Outline

The 3.5 KeV line

- How to make the axino light
 KSVZ vs DFSZ
 - High vs low SUSY breaking scale

3 Axino dark matter

- Axino decay into photon and R-parity
- 5 The role of the gravitino
- **6** Summary and conclusions

イロト イポト イヨト イヨト

The 3.5 KeV line

Facts:

- There has been interest recently in an unidentified 3.5 keV line in X-ray observations of galaxy clusters. [Boyarsky et al.,1402.4119; Bulbul et al.,1402.2301]
- Some authors have already pointed out that a generic decaying axino could explain the line.

[Liew, 1403.6621; Park et al.,1403.1536]

- To explain the 3.5 keV line via dark matter (DM) decay one needs a decay rate of $\Gamma_{X \to \gamma + ...} \sim (10^{28} s)^{-1} \sim 10^{-53}$ GeV, assuming that the decaying DM contributes 100% to the relic abundance.
- The evidence that the 3.5 keV line is due to DM decay has weakened, but one can still wonder wheter it is possible or not to get a X-ray signal from the axino decay.

・ロト ・ 四ト ・ ヨト ・ ヨト …

All axion models contain a scalar field A(x), charged under $U(1)_{PQ}$: the <u>axion</u> a(x) corresponds to the phase of that field.

In KSVZ models:

- the axion is coupled to heavy quarks Q, while the rest of SM do not carry any charge.
- The coupling $f_a A \bar{Q} Q$ generates the coupling $a G_{\mu\nu} \tilde{G}^{\mu\nu} \rightarrow$ solve the strong CP problem.
- In their SUSY extensions loop corrections induce high masses:

$$m_{\tilde{a}} \sim 10~{\rm GeV}\left(\frac{m_{3/2}f_Q^2}{100~{\rm GeV}}\right)$$

Embedded in supergravity.

 \rightarrow The KVSZ axino prefers to be heavy.

$$m_{\widetilde{a}} \sim 0.3 \,\, {
m GeV}\left(rac{m_{\widetilde{g}} f_Q^2}{1 \,\, {
m TeV}}
ight)$$

Also always 2-loop contributions from gluino masses.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

How to make the axino light: KSVZ vs DFSZ models

In DSFZ models:

How to make the axino light: KSVZ vs DFSZ models

In DSFZ models:

• All particles are charged under $U(1)_{
m PQ} o$ in SUSY : $W_{
m PQ} \supset c_1 \hat{A} \, \hat{H}_u \hat{H}_d$

[Rajagopal, Turner and Wilczek, Nucl.Phys. B358, 447 (1991)]

• The VEV $\langle A \rangle \sim f_a \gtrsim 10^9 \text{GeV}$ to evade supernova constraints $\rightarrow c_1$ small.

[Raffelt, 0611350]

radiative corrections ∝ c₁ⁿ → they are small once m_ã ~ keV
 → easier to get a light DFSZ axino

Only the operator $c_1 \hat{A} \hat{H}_u \hat{H}_d$ only leads to tachyonic saxion.

[Dreiner, Staub and Ubaldi, 1402.5977]

[J. E. Kim, Phys. Lett. B136, 378 (1984)]

Extended the superpotential by terms

$$W_{\mathrm{PQ}} = \lambda \hat{\chi} \left(\hat{A} \hat{\bar{A}} - rac{1}{4} f_a^2
ight) \, ,$$

with 3 superfields \hat{A} , $\hat{\bar{A}}$, $\hat{\chi}$.

Charges:

 $\begin{cases} Q_{\rm PQ}(\hat{A}) = -Q_{\rm PQ}(\hat{\bar{A}}) \\ Q_{\rm PQ}(\hat{\chi}) = 0 \end{cases}$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

June 23, 2015 5 / 13

Two possibilities for the scale of symmetry breaking (sparticles masses \gtrsim TeV):

1) Low-scale SUSY breaking: $M_{SB} < f_a \Rightarrow m_{\tilde{a}} \sim \frac{M_{SUSY}^2}{f_a} \sim \frac{\text{TeV}^2}{f_a}$, natural in gauge mediation. Cosmological problems from the 3-loop saxion mass: $m_s \sim 0.1 \text{ keV } \left(\frac{c_1}{10^{-9}}\right) \left(\frac{m_{\tilde{f}}}{1 \text{ TeV}}\right)$ $\overline{s} = - - \frac{\tilde{H}}{c_1}$

2) High-scale SUSY breaking: $M_{SB} > f_a \Rightarrow m_{\tilde{a}} \sim M_{SUSY} \sim \text{TeV}$, natural in gravity mediation.

• No significant loop corrections, $m_{\tilde{a}}$ can be lowered by tuning down a single parameter λ .

Different dependences on reheating temperature T_R :

$$\Omega_{\tilde{a}}^{\rm DFSZ} h^2 = 0.78 \left(\frac{m_{\tilde{a}}}{7~{\rm keV}}\right) \left(\frac{10^{10}~{\rm GeV}}{f_a}\right)^2$$

for $T_R > \mu$

$$\begin{split} \Omega_{\tilde{a}}^{\rm KSVZ} h^2 &= \frac{6.9}{10^3} \left(\frac{m_{\tilde{a}}}{7~{\rm keV}}\right) \left(\frac{10^{10}~{\rm GeV}}{f_a}\right)^2 \left(\frac{T_R}{10^3~{\rm GeV}}\right) \\ & \text{for } 10^3~{\rm GeV} < T_R < f_a \end{split}$$

イロト イポト イヨト イヨト

 $\mu \sim {\rm TeV}$ is the SUSY parameter that determines the higgsino mass

In both cases the abundances drop very quickly when T_R is below 100 - 1000 GeV.

∃ 990

The couplings of the axino to the gauge fields is best understood by performing a field rotation that leads to the GKR basis in which all the matter fields are invariant under a PQ transformation [Georgi, Kaplan and Randall, Phys. Lett. B169, 73 (1986)]

$$\mathcal{L}_{a\lambda V} = \frac{\tilde{a}}{16\pi^2 f_a} \sigma_{\mu\nu} \left(g_1^2 C_{aBB} \tilde{B} B^{\mu\nu} + g_2^2 \frac{C_{aWW}}{C_{aWW}} \tilde{W}^a W^{a\mu\nu} + g_3^2 \tilde{G}^a G^{a,\mu\nu} \right)$$

Decay channel can be still different according to the R-symmetry of the superpotential. The minimal one

$$W_{\text{MSSM}} = Y_u^{ij} \widetilde{Q}_i \widetilde{H}_u \widetilde{\tilde{U}}_j + Y_d^{ij} \widetilde{Q}_i \widetilde{H}_d \widetilde{\tilde{D}}_j + Y_e^{ij} \widetilde{L}_i \widetilde{H}_d \widetilde{\tilde{E}}_j + \mu \widetilde{H}_u \widetilde{H}_d \,,$$

can be expanded by L/B number operators:

$$W_{\mathsf{RPV}} = \mu'^{\,i} \widetilde{L}_i \widetilde{H}_u + \frac{1}{2} \lambda^{ijk} \widetilde{L}_i \widetilde{L}_j \widetilde{E}_k + \lambda'^{\,ijk} \widetilde{L}_i \widetilde{Q}_j \widetilde{D}_k + \frac{1}{2} \lambda''^{\,ijk} \widetilde{U}_i \widetilde{D}_j \widetilde{D}_k \,.$$

Stefano Colucci

June 23, 2015 8 / 13

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - つへ⊙

R-parity conserving models: the bino is lighter than the axino, the X-ray line could be produced by the decay $\tilde{a} \rightarrow \tilde{B} + \gamma$. [Dutta, Gogoladze, Khalid, and Shafi, 1407.0863]

$$\Gamma_{\tilde{a} \to \tilde{B} + \gamma} = \frac{1}{128\pi^3} \frac{m_{\tilde{a}}^3}{f_a^2} C_{aBB}^2 \left(\frac{g_1^2}{4\pi}\right)^2 \cos^2\theta_W \sim 7 \times 10^{-52} \text{ GeV} \left(\frac{m_{\tilde{a}}}{7 \text{ keV}}\right)^3 \left(\frac{10^{14} \text{ GeV}}{f_a}\right)^2$$

 $f_a > 10^{14}$ GeV required \Rightarrow DFSZ axino excluded, KVSZ could work for $T_R \sim 10^{12}$ GeV. One has to consider though the axion produce through misalignment mechanism:

[Bae, Choi and Im, 1106.2452; Kawasaki and Nakayama, 1301.1123]

$$\Omega_{a,{
m mis}} h^2 = 0.18 \ heta_1^2 \left(rac{f_a}{10^{12} \ {
m GeV}}
ight)^{1.19} \left(rac{\Lambda_{
m QCD}}{400 \ {
m MeV}}
ight) \, .$$

 \Rightarrow overabundant DM, unless you don't tune down θ to really small values.

tano	

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Axino decay into photon: RpV

RpV models: the term $W = \epsilon_i L_i H_u$ introduces mixing among neutrinos, bino and wino, and opens up the decay channel $\tilde{a} \rightarrow \nu_i + \gamma$:

$$\begin{split} \Gamma_{\tilde{a} \to \nu_i + \gamma} &= \frac{1}{128\pi^3} \frac{m_{\tilde{a}}^3}{f_a^2} \left[r_{\nu_i \tilde{B}}^2 C_{aBB}^2 \left(\frac{g_1^2}{4\pi} \right)^2 \cos^2 \theta_W + r_{\nu_i \tilde{W}}^2 C_{aWW}^2 \left(\frac{g_2^2}{4\pi} \right)^2 \sin^2 \theta_W \right] \\ &\sim 7 \times 10^{-42} \text{ GeV} \left(r_{\nu_i \tilde{B}}^2 + 3r_{\nu_i \tilde{W}}^2 \right) \left(\frac{m_{\tilde{a}}}{7 \text{ keV}} \right)^3 \left(\frac{10^9 \text{ GeV}}{f_a} \right)^2 \end{split}$$

[SC, Dreiner, Staub and Ubaldi, in preparation]

Axino decay into photon: RpV

RpV models: the term $W = \epsilon_i L_i H_u$ introduces mixing among neutrinos, bino and wino, and opens up the decay channel $\tilde{a} \rightarrow \nu_i + \gamma$:

$$\begin{split} \Gamma_{\tilde{a} \to \nu_i + \gamma} &= \frac{1}{128\pi^3} \frac{m_{\tilde{a}}^3}{f_a^2} \left[r_{\nu_i \tilde{B}}^2 C_{aBB}^2 \left(\frac{g_1^2}{4\pi} \right)^2 \cos^2 \theta_W + r_{\nu_i \tilde{W}}^2 C_{aWW}^2 \left(\frac{g_2^2}{4\pi} \right)^2 \sin^2 \theta_W \right] \\ &\sim 7 \times 10^{-42} \text{ GeV} \left(r_{\nu_i \tilde{B}}^2 + 3r_{\nu_i \tilde{W}}^2 \right) \left(\frac{m_{\tilde{a}}}{7 \text{ keV}} \right)^3 \left(\frac{10^9 \text{ GeV}}{f_a} \right)^2 \end{split}$$

[SC, Dreiner, Staub and Ubaldi, in preparation]

What do we know about *r*'s ?

 $\Rightarrow \text{ Diagonalize the neutralino mass matrix: } R\mathcal{M}_0R^T = \text{diag}(\mathcal{M}_0) \text{ to get}$ [Hirsch and Valle, hep-ph/9812463, 0405015]

$$r_{\nu_i,\tilde{B}}, r_{\nu_i,\tilde{W}} \propto (\Lambda_i, M_1, M_2), \qquad \Lambda_i = \mu \omega_i - v_d \epsilon_i$$

The parameters Λ_i are related to the neutrino mixing angles:

$$an heta_{13} = -rac{\Lambda_{ extsf{e}}}{(\Lambda_{\mu}^2 + \Lambda_{ au}^2)^{1/2}}\,, \qquad an heta_{23} = rac{\Lambda_{\mu}}{\Lambda_{ au}}\,.$$

Stefano Colucci

June 23, 2015 10 / 13

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

<u>Measured values</u>: $\theta_{13} \sim \pi/20$, $\theta_{23} \sim \pi/4 \Rightarrow \Lambda_{\mu} = \Lambda_{\tau} \equiv \Lambda$, $\Lambda_e = 0.23\Lambda$.

From CMB $m_{\nu_3} < 0.23 {\rm eV}$ and with $\mu, M_1, M_2 \sim {\rm TeV}$ (and no *magic cancellation*):

$$r_{
u_1 ilde{B}}^2 < 2.3 imes 10^{-15} \, ,$$

and similarly for the others. Plugging these values back into $\Gamma_{\tilde{a} \rightarrow \nu_i + \gamma}$ we find that the rate is too small to explain the 3.5 keV line.

<u>Measured values</u>: $\theta_{13} \sim \pi/20$, $\theta_{23} \sim \pi/4 \Rightarrow \Lambda_{\mu} = \Lambda_{\tau} \equiv \Lambda$, $\Lambda_e = 0.23\Lambda$.

From CMB $m_{\nu_3} < 0.23 \text{eV}$ and with $\mu, M_1, M_2 \sim \text{TeV}$ (and no magic cancellation):

$$r_{
u_1 ilde{B}}^2 < 2.3 imes 10^{-15}$$
,

and similarly for the others. Plugging these values back into $\Gamma_{\tilde{a} \rightarrow \nu_i + \gamma}$ we find that the rate is too small to explain the 3.5 keV line.

 \Rightarrow Massless neutralino might still be a possibility, but force some tuning between f_a and T_R .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - つへ⊙

The role of the gravitino

The axino is expected to be heavier than the gravitino. A light gravitino would overclose the universe unless T_R is sufficiently small: [Cheung, Elor and Hall, 1104.0692]

$$\begin{split} \Omega_{3/2}h^2 &= 0.27 \left(\frac{T_R}{100~{\rm GeV}}\right) \left(\frac{{\rm keV}}{m_{3/2}}\right) \,, & \Omega_{3/2}^{\rm HDM} h^2 \sim 0.1 \frac{m_{3/2}}{100~{\rm eV}} \,, \\ & \text{for } m_{3/2} \gtrsim {\rm keV} \end{split}$$

The axino decays into a gravitino and an axion with a lifetime

$$\tau_{\tilde{a} \to G+a} \simeq 10^9 \text{ s} \left(\frac{m_{3/2}}{\text{MeV}}\right)^2 \left(\frac{\text{GeV}}{m_{\tilde{a}}}\right)^5 \stackrel{!}{\underset{\text{age of universe}}{\overset{\text{log} 18}{\underset{\text{of universe}}{\overset{\text{geo} f}{\underset{\text{max}}{\underset{\text{def} of universe}}}} \Rightarrow m_{3/2} > 10^{-5} \text{ keV}$$

 $\Rightarrow \frac{\text{RpC case}}{\text{For heavier gravitino too much DM if } T_R \text{ is such that you get a line.}$

 \Rightarrow <u>RpV case</u> $m_{3/2} \ll \text{keV}$ prefered, no T_R dependence (still limits from ν 's)

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Summary and conclusions

A light axino has been often presented as a good DM candidate to explain the 3.5 keV line

- In principle many possible scenarios:
 - KSVZ vs DFSZ models
 - high vs low SUSY breaking-scale
 - R-parity conserved or violated
- Ocsmological constraints (neutrinos, gravitinos, ...) reduce drastically the available parameter space.
 - It seems very unlikely to explain the line with the axino !

Thanks for your attention!

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○