

Dark matter searches with the LUX experiment

PATRAS 2015 Zaragoza, 22June 2015

Paolo Beltrame (on behalf of the LUX collaboration)

Direct DM search with LUX (a "reminder")

Status and preparation of new results

A taste of wider searches in LUX

direct

Indirect Detection (DM annihilation)

PAMELA, ANTARES, Fermi, IceCube, MAGIC, CTA, AMS, HESS

P. Beltrame - University of Edinburgh

P. Beltrame - University of Edinburgh

P. Beltrame - University of Edinburgh

PATRAS 2015 - Zaragoza, 22 - 26 June 2015

Dual-phase Xenon Time Projection Chamber

(Scintillation) S1: LXe is an excellent scintillator

- Density: 3 g/cm³
- light yield: > 60 ph/keV (zero field)
- scintillator light: 178 nm
- nuclear recoil threshold: ~ 2 keV

(Ionisation) **S2**: LXe excellent ionisation detector

- S1 + S2 allows mm vertex reconstruction
- single ionisation electron capability
- nuclear recoil threshold: < 1 keV

WIMP target:

- scalar WIMP-nucleon scattering $dR/dE \sim A^2$
- odd-neutron isotopes (129Xe, 131Xe) enable spin-dependent
- no damaging intrinsic background (¹²⁷Xe,^{129m/131m}Xe, ¹³⁶Xe, ⁸⁵Kr)
- light WIMP search search with low S2 threshold
- alternative searches

LUX (Large Underground Xenon detector) is a dual-phase Xe TPC

- 250 kg of active LXe, $47 \times 49 \text{ cm}^2 \text{ TPC}$
- S1 and S2 read out by two arrays each of 61 ultra-pure PMTs
- Low background (Xe self shielding, low background materials, external water tank Cherenkov μ detector)

LUX (Large Underground Xenon detector) is a dual-phase Xe TPC

- 250 kg of active LXe, $47 \times 49 \text{ cm}^2 \text{ TPC}$
- S1 and S2 read out by two arrays each of 61 ultra-pure PMTs
- Low background (Xe self shielding, low background materials, external water tank Cherenkov μ detector)

LUX (Large Underground Xenon detector) is a dual-phase Xe TPC

- 250 kg of active LXe, $47 \times 49 \text{ cm}^2 \text{ TPC}$
- S1 and S2 read out by two arrays each of 61 ultra-pure PMTs
- Low background (Xe self shielding, low background materials, external water tank Cherenkov μ detector)

Same cavern where solar neutrinos were first discovered.

MAJORANA DEMONSTRATOR

Electroforming laboratory

LUX, located on the 4850 level (~1.5 km underground) in Lead, South Dakota. ~10⁷ reduction in cosmic muon rate.

4850 Level DIANA Laboratory

· DIANA

Richard Gaitskell PI, Professor Simon Fiorucci Research Associate Samuel Chung Chan Graduate Student **Dongqing Huang** Graduate Student Will Taylor Graduate Student Casey Rhyne Graduate Student James Verbus Graduate Student Imperial College Imperial College London London PI, Reader Henrique Araujo Professor Tim Sumner Postdoc Alastair Currie Adam Bailey

Brown

David Taylor

Graduate Student Graduate Student Khadeeja Yazdani

erearer. Lawrence Berkeley + UC Berkeley

Bob Jacobsen	PI, Professor
Murdock Gilchriese	Senior Scientist
Kevin Lesko	Senior Scientist
Peter Sorensen	Scientist
Victor Gehman	Scientist
Attila Dobi	Postdoc
Daniel Hogan	Graduate Student
Mia Ihm	Graduate Student
Kate Kamdin	Graduate Student
Kelsey Oliver-Mallory	Graduate Student

Lawrence Livermore

Adam Bernstein Kareem Kazkaz Brian Lenardo

PI, Leader of Adv. Detectors Grp. Staff Physicist Graduate Student

LIP Coimbra

CHARTER	
Isabel Lopes	PI, Professor
Jose Pinto da Cunha	Assistant Professor
Vladimir Solovov	Senior Researcher
Francisco Neves	Auxiliary Researcher
Alexander Lindote	Postdoc
Claudio Silva	Postdoc
SLAG SLAC Nation Accelerator Laboratory	

KIPAG

Thomas Shutt	PI, Professor
Dan Akerib	PI, Professor
Kim Palladino	Project Scientist
Tomasz Biesiadzinski	Research Associate
Christina Ignarra	Research Associate
Wing To	Research Associate
Rosie Bramante	Graduate Student
Wei Ji	Graduate Student
T.J. Whitis	Graduate Student

Doug Tiedt

PI, Professor Graduate Student

Project Engineer Support Scientist Mark Hanhardt

Matthew Szydagis PI, Professor Jeremy Mock Postdoc Steven Young Graduate Student

PI, Professor

PI, Professor

Graduate Student

Graduate Student

James White † Robert Webb **Rachel Mannino** Paul Terman

Harry

Mike V Susani

Dean'

Carme

Scott

Curt N

Melih

UC Davis

Mani Tripathi	PI, Professor
Britt Hollbrook	Senior Engineer
John Thmpson	Development Engineer
Dave Herner	Senior Machinist
Ray Gerhard	Electronics Engineer
Aaron Manalasay	Postdoc
Scott Stephenson	Postdoc
James Moard	Graduate Student
Sergey Uvarov	Graduate Student
Jacob Cutter	Graduate Student

UC Santa Barbara

Nelson	PI, Professor
Vitherell	Professor
ne Kyre	Engineer
White	Engineer
en Carmona	Postdoc
Haselschwardt	Graduate Student
lehrkorn	Graduate Student
Solmaz	Graduate Student

University College London

Chamkaur Ghag	PI, Lecturer
Lea Reichhart	Postdoc
Sally Shaw	Graduate Student

University of Edinburgh

Alex Murphy PI, Reader **Research Fellow** Paolo Beltrame James Dobson Postdoc Graduate Student Maria Francesca Marzioni Tom Davison Graduate Student

University of Maryland

PI, Professor **Richard Knoche** Graduate Student Graduate Student

University of Rochester

PI, Professor
Senior Scientist
Graduate Student
Graduate Student
Graduate Student

U

University of South Dakota

Received and the second second	
Dongming Mei	PI, Professor
Chao Zhang	Postdoc
Angela Chiller	Graduate Student
Chris Chiller	Graduate Student
Yale Yale	
Daniel McKinsey	PI, Professor
Ethan Bernard	Research Scientist

Ethan Bernard	Research Scientist
Markus Horn	Research Scientist
Blair Edwards	Postdoc
Scott Hertel	Postdoc
Kevin O'Sullivan	Postdoc
Elizabeth Boulton	Graduate Student
Nicole Larsen	Graduate Student
Evan Pease	Graduate Student
Brian Tennyson	Graduate Student
Lucie Tvrznikova	Graduate Student

Ċ

Carter Hall

Jon Balajthy

.....

0

The LUX 'Run 3' results

LUX underground in July 2012

Cooling down in January 2013, Xe condensed in February 2013 Kr and AmBe calibrations throughout, CH3T after WIMP searches

Events recorded in the Run 3 WIMP search data

Events recorded in the Run 3 WIMP search data

WIMP nuclear Spin Independent (SI) cross section

P. Beltrame - University of Edinburgh

WIMP nuclear Spin Independent (SI) cross section

P. Beltrame - University of Edinburgh

Status and preparation for new results

LUX towards 'Run 4' WIMP searches and re-analysis

Before Run 4

- End of 2013: high-stats calibration with CH₃T and DD neutron, for Run 3
- First half of 2014: optimising grids HV. Increased extraction field by 17%

Run 4 started in Sep 2014 after finalising new stable run parameters

- 4 weeks of DD neutron data + 5 days of CH_3T data
- So far ~100 live-days of WIMP search data
- March-April: second set of $DD + CH_3T$ calibrations
- Aiming for 300 live-days WIMP search (+ calibrations) before June 2016

Before Run 4

- End of 2013: high-stats calibration with CH_3T and DD neutron, for Run 3
- First half of 2014: optimising grids HV. Increased extraction field by 17%

Run 4 started in Sep 2014 after finalising new stable run parameters

- 4 weeks of DD neutron data + 5 days of CH_3T data
- So far ~100 live-days of WIMP search data
- March-April: second set of DD + CH₃T calibrations
- Aiming for 300 live-days WIMP search (+ calibrations) before June 2016

Prospects

- Expected improvement of a factor of 2 4
 - ¹²⁷Xe has disappeared
 - Better background modelling for Profile Likelihood Ratio (PLR) analysis
 - Improved detector response calibration at very low energy

Before Run 4

- End of 2013: high-stats calibration with CH_3T and DD neutron, for Run 3
- First half of 2014: optimising grids HV. Increased extraction field by 17%

Run 4 started in Sep 2014 after finalising new stable run parameters

- 4 weeks of DD neutron data + 5 days of CH_3T data
- So far ~100 live-days of WIMP search data
- March-April: second set of DD + CH₃T calibrations
- Aiming for 300 live-days WIMP search (+ calibrations) before June 2016

Prospects

- Expected improvement of a factor of 2 4
 - ¹²⁷Xe has disappeared
 - Better background modelling for Profile Likelihood Ratio (PLR) analysis
 - Improved detector response calibration at very low energy

The last two last can also be applied to Run 3 data.

Calibration data: Nuclear Recoil

DD generator

- Double scatters along beam line inside LUX. Angle gives deposited energy.
 => Absolute calibration of ionisation response: Q_Y
- Apply ionisation scale to single scatter
 => Absolute calibration of scintillation response: L_Y
- Q_{γ} measured down to 0.8 keVnr
- L_{γ} measured down to 1.2 keVnr

Dedicated papers in preparation For the Run 3 re-analysis used modified LUX Monte Carlo simulation (LUXSim and NEST) with new Q_Y and L_Y

Calibration data: Nuclear Recoil

1

P. Beltrame - University of Edinburgh

PATRAS 2015 - Zaragoza, 22 - 26 June 2015

Injection of of CH₃T

- Homogeneous β source with Q = 18 keV
- Removal with $\tau < 12h$
- Safe WIMP search data 5 days after 3 Bq injection
- ER light and charge yields vs energy down to ~1 keVee
- Detection efficiency vs energy
- Informative of the background shape
- Precise determination of ER event "leaks" down into NR S2/S1 region, as a function of S1 from [0.2 - 5] keVee
- Uniformly distributed, used with ^{83m}Kr for fiducial volume evaluation

Dedicated papers in preparation

Highly relevant for low mass and alternative searches

Calibration data: Electron Recoil

Injection of of CH₃T

- Homogeneous β source with Q = 18 keV
- Removal with $\tau < 12h$
- Safe WIMP search data 5 days after 3 Bq injection
- ER light and charge yields vs energy down to ~1 keVee
- Detection efficiency vs energy
- Informative of the background shape
- Precise determination of ER event "leaks" down into NR S2/S1 region, as a function of S1 from [0.2 - 5] keVee
- Uniformly distributed, used with ^{83m}Kr for fiducial volume evaluation

Dedicated papers in preparation

Highly relevant for low mass and alternative searches

Calibration data: Electron Recoil

20

Small increase to statistics with higher datasets acceptance

Updates to pulse finding algorithm

Updates to position reconstruction algorithm

- Use of photon counting at very low energy
- Update to fiducial volume definition (with CH₃T data)

Non-uniformity of electric field highly studied

Improved fit to calibration data for energy scales S1 (g1) and S2 (g2)

• Updated best-fit light collection and extraction efficiency

Update to Background Model

- More systematic use of sidebands
- Addition of "Wall Events" mis-reconstructed alphas
- Increased granularity in sources of background
- Improved rejection of noisy events ("bad area")

Improved statistical analysis method: **Profile Likelihood Ratio** with S1, log₁₀S2, r, z as input parameters, g1 and g2 as nuisance parameters

Because of PLR:

- no need of NR vs. ER discrimination
- larger fiducial volume range with an improved background

Background rate of 3.6 +/- 0.3 x 10⁻³ single scatters/(keV-kg-day) in lowenergy regime

- Kr at 3.5 ppt with RGA. PMT gamma-rays is the biggest background
- Cosmogenics from surface decayed away (^{131m}Xe, ^{129m}Xe)

Potential fiducial mass increase

... preprint coming really soon!

Improved Background Model understanding

Energy threshold reduced from 3 keVnr (previous Run 3) to 1.2 keVnr

 Guaranteed progress at very low masses

A taste of wider searches in LUX

LUX wide dark matter searches, beyond the WIMP spin-independent and spin-dependent interactions

Light O(1 GeV) vanilla WIMPs

not looking at the scintillation signal

Axion and Axion-like-particles

looking at electron recoil

SubGeV hidden-sector U(1)' models

not looking at at the scintillation signal and looking at electron recoil

Effective Filed Theory approach

new WIMP-Nucleon Interactions

The LUX Run 3 results hard cut-off at 3 keVnr (assuming LXe to be blind for energy deposit below that)

Now measurement of LXe ionisation down to 0.75 keV

Decreasing the cut-off to 1 keV provides access to a factor of 1000 (before detector effect) more signal at 6 GeV/ c^2

Using ionisation-only searches Detector "features" lead to difficulties.

Large detectors are harder to build than small detectors

P. Beltrame - University of Edinburgh

PATRAS 2015 - Zaragoza, 22 - 26 June 2015

In normal mode (S1 and S2), more handles for background identification and rejection: particle ID, or vertex position. This is not possible with ionisation-only.

Single electrons: all dual phase LXe DM experiments have observed single ebackground. Very difficult to model.

The electrons see a potential barrier at the surface and can get trapped there, to later "evaporate" off.

O2 impurities that have captured an electron can be ionised by a Xe scintillation photon.

A Xe scintillation photon (7 eV) can eject an electron from the surface of a metal (i.e. one of the electrodes).

Surface Background: 222F fuse into the air and get everywhere. It will then "plate out" once it decays. The 210Po daughter is problematic: low energy, heavy projectile, gives small ionisation and scintillation signals (for which we don't yet have measurements).

Why are we interested in axions?

Theory

- "Invisible" axions could be QCD axions solving the strong CPV problem
- ALPs (axion-like particles), introduced from extensions of the SM, could be dark matter particles

Experimental detection with xenon

- Axions and ALPs can couple with electrons (g_{Ae})
- Potential sources:
 - Axions come from the Sun
 - ALPs slowly move within our *Galaxy*

$$\sigma_{Ae} = \sigma_{pe}(E_A) \frac{g_{Ae}^2}{\beta_A 16\pi\alpha_{em}m_e^2} \left(1 - \frac{\beta_A^{2/3}}{3}\right)$$

Axio-electric effect

F. T. Avignone et al., Phys. Rev. D 35, 2752 (1987);
M. Pospelov et al., Nucl. Rev. D 78, 115012 (2008);
A. Derevianko et al., Phys. Rev. D 82, 065006 (2010)

Implemented in the LUX analysis.

Exploiting NEST and LUXSim software packages

Generating the variables for the Profile Likelihood statistical.

Solar axion evt density for gAe:1.5e-12, mA:0.0

Challenge: precise background model at lowest energy possible

Implemented in the LUX analysis.

Exploiting NEST and LUXSim software packages

Generating the variables for the Profile Likelihood statistical.

To be done: precise detector response and background model above 5 keVee

Re-analysis of original exposure underway. Results soon!

Dedicated DD and tritium papers in preparation,

Widening the DM searches, new analyses of the initial data set

- Spin-dependent neutron and proton
- Solar and galactic axion searches
- S2-only limit for low-mass
- Effective field theory scattering

Working on next, 300-day run. New type of analysis: blind, via salting. Pushing sensitivity down by factor of 4.

G2 WIMP experiment LUX-ZEPLIN coming (passed DOE CD-1 review)

LUX still strictest limit on WIMP-nucleon spin-independent interaction cross section across widest range of WIMP masses.

Thank you

P. Beltrame - University of Edinburgh

PATRAS 2015 - Zaragoza, 22 - 26 June 2015

'We' can now rejoice even in the falsification of a cherished theory, because even this is a scientific success.

> – Sir John Carew Eccles In K. R. Popper, Conjectures and Refutations.

But that is not enough...

Thank you

Backup slides

P. Beltrame - University of Edinburgh

Calibration data for Electron Recoil (ER) and Nuclear Recoil (NR) events

P. Beltrame - University of Edinburgh

Yields Measured in LUX Fiducial Volume

These observations teach us that multiple mechanisms contribute to single-electron background signals.

• The electrons see a potential barrier at the surface and can get trapped there, to later "evaporate" off.

• O₂ impurities that have captured an electron can be ionized by a Xe scintillation photon.

GXe

LXe

Event energy reconstruction

$$\frac{E}{W} = n_{\gamma} + n_{e} = \frac{S1}{g_{1}} + \frac{S2}{g_{2}} \qquad \langle n_{\gamma} \rangle = \frac{\langle S1 \rangle}{g_{1}}$$
$$\langle n_{e} \rangle = \frac{\langle S2 \rangle}{g_{2}}$$

For electronic recoils in xenon W = 13.7 eV

Measure S1 and S2; convert to photons and electrons with gains g1 and g2

/91\

12% efficiency for the detection of a primary scintillation photon

43% extraction, coupled with ~25 detected photons per single electron to make g_2

Event energy reconstruction

$$\frac{E}{W} = n_{\gamma} + n_{e} = \frac{S1}{g_{1}} + \frac{S2}{g_{2}} \qquad \langle n_{\gamma} \rangle = \frac{\langle S1 \rangle}{g_{1}} \qquad S1/E = \frac{n_{\gamma}}{(n_{\gamma} + n_{e})} \times \frac{g1}{W}$$
$$\langle n_{e} \rangle = \frac{\langle S2 \rangle}{g_{2}} \qquad S2/E = \frac{n_{e}}{(n_{\gamma} + n_{e})} \times \frac{g2}{W}$$

For electronic recoils in xenon W = 13.7 eV

Measure S1 and S2; convert to photons and electrons with gains g1 and g2

12% efficiency for the detection of a primary scintillation photon

43% extraction, coupled with ~25 detected photons per single electron to make g_2

 O_1 (the usual SI interaction) and O_{11} both produce an SI response, but the spectra have different slopes due to different q-dependence.

 O_5 and O_8 each produce both an LD and an SI response, again with different q-dependence.

For m_{WIMP} large, the EFT spectra stay relatively flat out to ~few hundred keV.

P. Beltrame - University of Edinburgh

Spin-dependent and LSD

The two types of SD response (transverse and longitudinal to the momentum transfer q) exhibit distinctly different behaviors.

Again the slope of the spectrum depends on the q-dependence of the operator.

 O_3 (green) is the only LSD operator. Its spectrum increases sharply to around 50 keV and does not begin to decrease until ~300 keV for heavy WIMPs.

P. Beltrame - University of Edinburgh

Constraints on Representative Operators

