TREX-DM:

a low background Micromegas-based TPC for low mass WIMP detection

F.J. Iguaz* & J.G. Garza, on behalf of TREX-DM group

11th Patras Workshop on Axions, WIMPs & WISPs – 24th June 2015

(*) iguaz@unizar.es

Work partially supported by Juan de la Cierva program

Outline

- Motivation for a low mass WIMPs Micromegas detector.
- TREX-DM: description & comissioning.
- Background model of TREX-DM in argon & neon-based gases.
- Conclusions and prospects.

Motivation: low mass WIMP detection

Dark Matter experiments focused on ~50-200 GeV WIMPs

- Heavy nuclei target.
- Large target masses.
- Low background levels:
 - Radiopurity control
 - Electron/nuclear recoil discrimination -> high threshold -> less sensitive to low WIMP masses.

What happens if mass <10 GeV?

- Energy threshold < 1 keV.
- Electron/nuclear recoil discrimination.
- Quenching factor at keV energies.
- DAMA/LIBRA signal is near these masses.

It is an amplification structure used as readout in a Time Projection Chamber.

- **Conversion region:** radiation create electrons, which drift to the readout.
- Amplification region: electrons pass through mesh holes due to a high field difference & are amplified. Electron & ion movement induce signals in both mesh & strips.

Three technologies:

- **Classical:** Mesh is mechanically fixed to the anode (CAST, ATLAS).
- **Bulk:** Mesh is bulked to the anode (COMPASS, T2K, CLAS-12, nTOF, MIMAC...)
- Microbulk: Anode & mesh built in one piece by chemical processing (CAST & nTOF).

Why a Micromegas TPC?

- Consolidated manufacture.
- Intrinsic radiopure (only kapton + copper).
- A low energy threshold (< **450 eV**) is feasible. •
- Topology information available.
- Radiopurity control techniques can be applied.
- Scaling up experience in CAST/IAXO & NEXT.

Challenges:

- Construction of large radiopure MM detectors.
- Background level: systematic radiopurity control.
- Sub-keV energy threshold for a large area.
- **Quenching factor** in gases: limited literature.

References:

- Manufacture: JINST 7 (2012) P04007.
- Radiopurity: Astr . Part. 34 (2011) 354.
- Discrimination power: JINST 8 (2013) C12042. .
- Energy threshold: JINST 9 (2014) P01001.
- Radiopurity control: JINST 8 (2013) C11012. •

10⁴

CAST-M18

at 1.5 bar

241Am+Al

(Ar/Ne)+5%iso

0.45

13.9

11.9

17.7

20.8

26

6.4 8.0

1.5

TREX-DM: a MM-TPC for low mass WIMPs

Goals

- A large Micromegas detector with a mass x100 larger than CAST.
- Optimization of the design for low energy threshold and low background level.
- NOT focused in directionality like MIMAC & DRIFT -> operation at high pressure.

Timeline:

- First version, not fully radiopure: 2012-15
 - Design, construction & comissioning.
 - Systematic measurement of the radiopurity of all components.
 - General characterization of bulk MM in argon & neon based mixtures.
 - Study of energy threshold with electronics chain & pressure.
 - Discrimination of x-rays vs muons by cluster properties.

• Radiopure version for a physics run: 2015-16.

- Installation of radiopure components: Micromegas detectors, flat cables, ...
- Surface cleaning of all components.
- Modification of the setup for a 10 cm thick lead shielding.
- Possible installation at LSC in 2016 for a physics run. Still in study.

TREXDM: main features.

F.J. Iguaz et al, 7th Large TPC Symposium, arXiv:1503.07085

- Two active volumes & a central cathode.
- Copper vessel: 6 cm thickness, 0.5 m diameter, 0.5 m length.
- Drift cage made of kapton & copper.
- 20 x 20 cm² bulk MM detectors, bulked at IRFU/Saclay workshop.
- AFTER-based electronics. Possible update to AGET (auto-trigger capabilities).
- 4 points/side of calibration for a ¹⁰⁹Cd source inside a plastic tube.

TREX-DM: Comissioning

Changes during 2015:

- HV filter for central cathode line to reduce noise level.
- New field cage to reduce border effects & a better HV isolation.
- Central copper cathode replaced by mylar one (better for α 's).
- Removed leaks >10⁻⁵ mbar l/sec, found at some feedthroughs and some o-rings. Outgassing rate = 4 x 10⁻⁴ mbar l/sec
- New DAQ to read both detectors at a rate of 45 Hz each side.

Pending issues:

- HV cables inside the vessel to be replaced by radiopure ones & a better plastic isolation.
- An automatic calibration system, essential for LSC run.
- A bake-out system to further reduce the outgassing rate.
- Grounding & noise level.
- Update for LSC (new flat cables & detector, ...).

Central cathode line

TREXDM: Comissioning.

Main results in Ar+2%iso:

- Detectors characterized for pressures up to 10 bar.
- Operation gain decreased from 3 x 10³ at 1.2 bar down to 5 x 10² at 10 bar.
- Energy threshold degraded from **1 to 6 keV**, using mesh signals. **Values should be better using strips.**
- Energy resolution at 22.1 keV degraded from 16% FWHM at 1 bar up to 26% FWHM at 10 bar.

Near-term changes:

- Noise issue: new mesh cables, electrical isolation from gas tubes, preamplifiers,...
- 2% isobutane may not be enough to absorb avalanche photons. 5% to be tested.

TREX-DM: commissioning and background model, F.J. Iguaz et al.

J.G. Garza et al., MPGD 2015

TREX-DM: a background model in Ar & Ne

- TREX-DM geometry implemented in Geant4.
- CAST simulation code addapted to TREX-DM. Minor changes in data flow (two-volumes, diffusion).
- Final data in AFTER-based format. Same analysis may be applied to real & simulation data.
- Small differences in signal response between simulation and real data. To be clarified in future.
- Results are scaled by the measured activities.
 - Ar+2%iC₄H₁₀ at 10 bar. **Mass = 300 gr**.
 - Ne+2%iC₄H₁₀ at 10 bar. **Mass = 160 gr**.

TREX-DM geometry

TREXDM analysis

- Extension of CAST analysis, used for axions events. Rol: 2-7 keV.
- Low energy x-rays/muon discrimination based on clusters' features -> ¹⁰⁹Cd (22.1 keV).
- Pending issue: z-dependency of cluster features.
- Signal efficiency: 80% (90% by fiducial area, 90% discrimination).

TREX-DM: background model in Ar & Ne

Component	Material	Back. level (keV ⁻¹ kg ⁻¹ day ⁻¹) Argon Neon		Reference	
Muons	-	0.019	0.026	LSC	G. Luzon, IDM 2008
Cosmogenics	³⁹ Ar	2.04	-	DarkSide	J. Xu et al, Astr. Part 66 (2015) 53
Vessel	Copper	< 0.33	< 0.37	EXO-200	D.S. Leonard et al., NIMA 591 (2008) 490
Connectors	Fujipoly	0.58	0.87	T-REX	Unpublished
Field cage	Teflon	1.0 x 10 ⁻³	1.2 x 10 ⁻³	EXO-200	D.S. Leonard
Cathode	Copper	< 0.020	< 0.022	EXO-200	D.S. Leonard
mM detectors	Cu-Ka	< 0.1	< 0.084	BiPo	Unpublished
TOTAL		3.09	1.38		Statistical error

- Preliminar results for argon & neon at 2-7 keV: 3.09 & 1.38 keV⁻¹ kg⁻¹ day⁻¹.
- Outer gamma flux, external shielding & neutrons not yet included.
- Main contributions: ³⁹Ar (for argon based), electrical connectors and vessel (limits).
- ³⁹Ar contribution will be 2 x 10² keV⁻¹ kg⁻¹ day⁻¹ if argon comes from surface sources.

TREX-DM: commissioning and background model, F.J. Iguaz et al.

%

TREX-DM: background model in Ar & Ne

- Preliminar results for argon & neon at 2-7 keV: 3.09 & 1.38 keV⁻¹ kg⁻¹ day⁻¹.
- Outer gamma flux, external shielding & neutrons not yet included.
- Main contributions: ³⁹Ar (for argon based), electrical connectors and vessel (limits).
- ³⁹Ar contribution will be 2 x 10² keV⁻¹ kg⁻¹ day⁻¹ if argon comes from surface sources.

TREX-DM: electron/neutron discrimination

- A neutron source (²⁵²Cf) has been simulated to verify if further background reduction could be reached by a neutron/electron discrimination.
- Neutrons show narrower cluster widths than x-rays but there is no clear separation between the two distributions.

TREX-DM: electron/neutron discrimination

- Preliminary background reduction: ~44% (3.09 -> 1.79).
- Effective for all components, except for Micromegas detectors (narrower clusters).

TREX-DM: prospects

Results by ¹⁰⁹Cd-based analysis:

- Argon @ 10 bar: 3.09 keV⁻¹ kg⁻¹ day⁻¹.
- Neon @ 10 bar: 1.38 keV⁻¹ kg⁻¹ day⁻¹.
- These values are mainly defined by the measured activities.
- Supossing a 0.4 keVee energy threshold & this background model is valid, TREX-DM could be sensitive to the regions defined by hints of positive WIMPs signals in a conservative scenario.

Key points for near-term future:

- Low energy threshold at high pressures.
- Quenching factor must be measured.

Conclusions

TREX-DM: a large Micromegas-based TPC for low WIMP masses.

• **Challenges:** low energy threshold for a large detector area at high pressure.

Comissioning

- Actual status: commissioning of a not fully radiopure setup.
 - Many components fixed in 2015 (field cage, filters, leaks..) Still some issues pending.
 - Detectors characterized in Ar+2% iso up to 10 bar.
 - A degradation observed in terms of operation gain, energy threshold & resolution.
 - An improvement expected by a better grounding or a higher quantity of quencher.
- **Near-term future**: update of several components for a fully radiopure setup, to be possibly installed at LSC during 2016.

Prospects:

- A first background model of TREX-DM in argon & neon-based gases has been created.
- Results are based on: Geant4 + simulation signal response + analysis + measurements.
- Background levels around **1-3 count keV⁻¹ kg⁻¹ day⁻¹** for a **80%** signal efficiency.
- Supossing a 0.4 keVee energy threshold, TREX-DM could be sensitive to the regions defined by hints of positive WIMPs signals in a conservative scenario.

Back-up slides

TREXDM in detail: the Micromegas detector

Samtec connectors

- 20 x 20 cm² bulk Micromegas: 432 X-strips & 432 Y-strips, 0.5 mm pitch, 128 μm gap.
- Strips signals extracted by 4 flat cables using 300-Samtec connectors. A small shielding included too: 1 cm copper + 1 cm lead.
- An interface card links a flat cable to the FEC. Any short-cut may be eliminated by a jumper.
- AFTER-based electronics. Possible update to AGET in next version, with autotrigger capabilities (lower energy threshold).

Many thanks to IRFU/SEDI-Micromegas workshop!!!

TREX-DM: commissioning and background model, F.J. Iguaz et al.

AFTER-based

X-ray cluster's topology

- CAST Microbulk micromegas. 50 μm gap.
- Electron beam at CAST Detector Laboratory.
- Fluorescence lines from 2.3 (gold) to 8.0 keV (copper) used to calculate the signal efficiency.
- Clusters are wider at low energies because most of the x-rays are absorbed in the first mms just after the window and suffer more diffusion.
- Cluster differences increase at low energies as more charge fluctuations between the XY planes.

J.G. Garza et al., JINST 8 (2013) C12042 F.J. Iguaz et al., PoS(TIPP2014)295

Argon-based at 1-10 bar

F.J. Iguaz et al., RD51 meeting, Fribourg May 2010

• Microbulk micromegas. 50 μm gap.

Xe-TMA at 1-10 bar

- Microbulk micromegas. 50 μm gap.
- ¹⁰⁹Cd source (22.1 keV x-rays).
- Best performance for 1.5-2.5% TMA.
- Maximum gain of 2x10³ (5 x 10²) at 1 (10) bar, i.e., x3 than in pure xenon.
- Energy resolution: 7.3 (9.6) % FWHM at 22.1 keV for 1 (10) bar, i.e., a factor 2 (3) better than in pure xenon.

S. Cebrian et al., JINST 8 (2013) P01012 D C Herrera et al, J. Phys.: Conf. Ser. 460 012012

Gain vs %TMA for a fixed amplification field

CF_4 at 0.1-2.4 bar

- Bulk micromegas. 128 µm gap.
- ⁵⁵Fe source (5.9 keV x-rays).

P. Jeanneret et al.,

NIM A 500 (2003) 133

Data-flow: validation.

- As a validation of the complete chain, an
 ²⁴¹Am calibration of M18 has been used.
- Gas: Ar+2%iC₄H₁₀ at 1.5 bar.
- **Pros:** many lines, energy dependece study.
- **Cons:** geometry of ²⁴¹Am not fully defined.
- Simulated the CAST-MM geometry implemented by A. Tomás & A. Rodríguez.
- Energy spectra quite similar. Big differences at high energy gammas (saturation?) and small ones at fluorescence lines.

Conclusions

- Cluster width's distributions are quite similar, except for the 8 keV line (too much copper at the bottom?). Main differences at low widths.
- Less charge fluctuations between planes for real data at energies < 15 keV. At higher energies, the simulated fluctuations are little.

Data-flow: validation.

TREX-DM: gas & electronics

- Gas properties
 - Ar+2%iC₄H₁₀ at 10 bar
 - Edrift = 100 V/cm/bar
 - Vdrift = 3.33 cm/µs
 - Transversal diffusion = $221 \,\mu m/cm^{0.5}$
 - Longitudinal diffusion = $134 \,\mu\text{m/cm}^{0.5}$
- Pixelization
 - Length = 0.5 mm
 - Sampling = 10 ns
 - Shaping time = 100 ns
 - Gain = 240 pF

Electron/neutron discrimination

- First studies: A. Tomas in CYGNUS 2007.
- The cluster width is the key parameter and is more efficient at low pressures.
- It sharply increases from electrons but remains constant for neutrons.

Ar + 5% iC4H10

500um pitch

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Medium cluster width (mm)

TREX-DM: commissioning and background model, F.J. Iguaz et al.

F.J. Iguaz, Phys. Proc. 37 (2012) 1079

MIMAC directionality in CF₄

J. Billard, F. Mayet, D. Santos, JCAP 04 (2012) 006

- The angular resolution & sense recognition depends on the energy and the drift distance.
- The sense recognition for recoil energies below 100 keV is unrealistic.
- Focus on axial directional detectors.

Fluorine recoil track

Measurement of quenching factor by MIMAC experiment

D. Santos et al., arXiv:0810.1137 O. Guillaudin et al., arXiv:1110.2042

- A complete R&D program to measure the quenching factor of energy recoils in different gas mixtures.
- Measured in 3 He & 4 He.
- Actual efforts focused on CF4.

