Any Light Particle Search II

N. Bastidon, Institut für Experimentalphysik, Hamburg University for the ALPS II collaboration

Any Light Particle Search

Any Light Particle Search experiment looks for Weakly Interacting Sub-eV Particles also called WISPs.

- Axion → Possible solution for the smallness of the CP violation in QCD
 - → Hints from astrophysics observations

$$\begin{array}{ccc} \gamma & \text{WISP} & \gamma \\ \hline & & & & \\ \hline \end{array} \\ \hline & & & \\ \hline \end{array} \end{array}$$

Light shining through the wall experiment: Photon-mixing + Additional light boson → Re-appearance of photons behind the barrier

1064 nm laser → 1.17 eV photons 1 photon every few hours

$$\mathcal{P}_{\gamma \to a} = \frac{\omega}{4k_a} \left(g_{a\gamma} BL \right)^2 |F|^2 = \mathcal{P}_{a \to \gamma} \qquad k_a^2 = \omega^2 - m_a^2$$

ALPS I

(Source: B. Döbrich)

Ehret et al., New ALPS results on hidden-sector lightweights , PLB (2010)

Laser	532 nm
Optic setup	10 m production cavity
Magnet	9m, 5T HERA dipole
Detector	CCD Camera (PIXIS)

From ALPS I to ALPS II

ALPS II

parameter	scaling	ALPS I	ALPS IIc	sens. gain
BL (total)	$g_{a\gamma} \propto (BL)^{-1}$	22 Tm	468 Tm	21
PC built up ($P_{\text{laser,eff.}}$)	$g_{ m a\gamma} \propto eta_{ m PC}^{-1/4}$	1 (kW)	150 (kW)	3.5
rel. photon flux \dot{n}_{prod}	$g_{a\gamma} \propto \dot{n}_{ m prod}^{-1/4}$	1 (532 nm)	2 (1064 nm)	1.2
RC built up $\beta_{\rm RC}$	$g_{a\gamma} \propto eta_{ m RC}^{-1/4}$	1	40,000	14
detector eff. DE	$g_{\mathrm{a}\gamma} \propto D E^{-1/4}$	0.9	0.75	0.96
detector noise DC	$g_{\mathrm{a}\gamma} \propto D C^{1/8}$	$1.8 \cdot 10^{-3} s^{-1}$	$10^{-6} \mathrm{s}^{-1}$	2.6
combined				3082

$$S(g_{a\mu}) \propto \frac{1}{BL} (\frac{DC}{T})^{1/8} \cdot \left(\frac{1}{\eta \dot{N}_{Pr} \beta_{PC} \beta_{RC}}\right)^{1/4}$$

ALPS II Schedule

ALPS IIa - setup

LASER	35 W, 1064 nm (Class 4 laser)	
LASERTYPE	Master Oscillator Power Amplifier (MOPA)	
РВРС	5000	
PB RC	40000	
VACUUM	10 ⁻⁶ mbar	

Optics

Optical Layout for ALPS II

Auxiliary green beam obtained via second harmonic generation (KTP crystals) from the IR production. \rightarrow Test resonance of the RC.

QPD7

(ovlp.

DC)

Auto alignment

The PC and the RC needs to be in the same modal phase in order to reach the highest PB (aiming for 95% mode overlap).

M2 and M3 \rightarrow Fixed position M1 and M4 \rightarrow Piezo mount for compensation of ambient vibrations

Beam alignment towards cavities → Control beforehand the cavity

PB for production cavity

Power modulation transfer function from upstream to downstream of the production cavity

The PB of the production cavity is not sufficient (< 5000).

Possible sources: • Coating of the mirrors • Cleanliness of the mirrors • Alignment

Clipping in the vacuum system

Mirrors quality testing

• Optical loss of the high-reflectivity mirrors is a critical parameter.

• Use of a cavity ringdown technique to characterize them.

• Finesse values for each cavities are currently measured using this technique.

 $PB = \frac{F}{\pi}$

Reachable Power Build Up (PB) depends on the cavity finesse (F)

Results and outlook

Mirror 1	Mirror 2	Losses	Finesse
750 ppm	68 ppm	800 ± 30ppm	8600 ± 400
2 ppm	68 ppm	192 ± 30ppm	34000 ± 5000
68 ppm	68 ppm	213 ± 35ppm	30000 ± 5000

⇒ The mirrors are corresponding to the specs for small cavities and small laser beam radius.

All the mirrors are currently tested with a beam with a larger radius in order to enlarge the tested region on the surface of the mirrors.

Coupling of the beam

Setup

Latest results

The highest value is currently obtained for a lens with f= 35 mm (matching expectations).

The efficiency reached is lower than what was expected. The beam quality of the test laser is currently tested using a knife edge unit.

Detector

Technical challenges for the detector

 \Rightarrow Low energy (1.17 eV) and low rate (1 photon every few hours).

1) High efficiency
 2) Low dark count rate
 3) Long-term stability
 4) Good energy resolution
 5) Good time resolution

CCD in ALPS II

Von Seggern JE, *Constraining Weakly Interacting Slim Particles with a Massive Star and in the Laboratory*, Dissertation, Univ. Hamburg, 2014

Transition Edge Sensor

TES

Two channels module (3 cm * 3 cm)

Tungsten chip (25 x 25 μm , 20 nm)

Tc ≈ 140 mK

A.E. Lita, A.J. Miller, S.W. Nam, *Counting nearinfrared single photons with* 95 % *efficiency*, Opt Expres. 2008

TES: SQUID Microcalorimeter measuring the temperature difference ΔT of the absorber material.

NISTW-TES

Efficiency (1064 nm)	95 %
Dark current	$10^{-4} \mathrm{sec}^{-1}$
Long term stability	\checkmark
Good energy resolution	< 8%
Good time resolution	\checkmark

Photon absorption to signal output

TES environment in ALPS II

22

Single photon events

Detection efficiency

Adiabatic Demagnetization Refrigerator

Magnets for ALPS II c

Magnet

The power build up of the cavities depends highly on the aperture.

Hera magnets are bent → Small aperture (35 mm)

This aperture would allow us to have only 4+4 dipoles (10 + 10 forseen).

⇒ Straighten magnets

Magnet

Unbending of the magnets

Straightening force applied by pressure screw in the middle of the magnet (cold mass).

Deformation successful, yielding 90% of maximum aperture. Magnet still working perfectly, quench current even slightly increased.

Summary

- ALPS II experiment (DESY, Hamburg) follows the light-shining through the wall concept.
- ALPS II aims at an increase in sensitivity of 3000 compared to ALPS I, mainly by a regeneration cavity and more magnets.
- Basics of the optics setup have been demonstrated but the specifications are still to be reached.
- A tungsten Transition Edge Sensor operated below 100 mK has been successfully used to detect single-photons in the near-infrared.

ALPS II TDR: arXiv:1302.5647

Characterization, 1064 nm photon signals and background events of a tungsten TES detector for the ALPS experiment: arXiv:1502.07878v1

⇒ First ALPS II data taking in 2016.

Thank you for your attention !

