

Maryvonne De Jesus (for the Edelweiss Collaboration)



CINIS

## Edelweiss-III experiment: Status and First Data

AXION-WIMP 2015, 22 - 26 June 2015 University of Zaragoza, Spain









## Dark Matter Direct Detection Principle



$$E_{\rm R}^{\rm max} = E_{\chi} \frac{4m_{\chi}m_{\rm N}}{\left(m_{\chi} + m_{\rm N}\right)^2} \cos^2 \theta_A$$

 $\sim$  1 keV < E<sub>R</sub> <  $\sim$ 100 keV

$$\mathbf{R} \propto \frac{\rho_0 \sigma}{m_{\chi} m_{\mathrm{N}}} \left\langle v_{\chi} \right\rangle$$



• Expected rate < 1 interaction per kg per year

• **Recoil Spectrum** : exponential shape -> rather similar to most backgrounds

$$\frac{\mathrm{dR}}{\mathrm{dE}_{\mathrm{R}}} = \frac{R_0}{E_0 r} e^{(-E_R/E_0 r)}$$

- **Radioactive background** of most materials is much higher than event rate
- Requirements :
  - -> Low energy threshold
  - -> Shields and Material selection
  - -> Large detector mass
  - -> Underground Laboratory

2015-june-22 Zaragoza

## Modane Underground Laboratory

WIPP

Canfranc \ Kamioka

Soudan

**Boulby Mine** Gran Sasso

Homestake CI-Ar

10<sup>5</sup>

10



(Laboratoire Souterrain de Modane) Deepest underground Lab in Europe  $5 \,\mu/m^2/day$ ~10<sup>-6</sup> n/cm<sup>2</sup>/s (E>1MeV)



Germanium re

SHIN

http://www-lsm.in2p3.fr/

**Idelweiss** Collaboration

m

m

## EDELWEISS III set-up

•Clean Room (Class A: <10000 p/m3) with deradonized air suply (from 10 Bq/m<sup>3</sup>  $\rightarrow$   $\approx$  30 mBq/m<sup>3</sup>)

•Active muon veto : 97.7% geometric coverage

 $N^{\mu-n} = 0.6^{+0.7}_{-0.6}$  evts (90% CL, 3000kg.d)

•External PolyEthylen Shielding (n): 50 cm

•Externel Lead Shielding  $(\beta,\gamma)$  : 18 cm + 2cm Roman Lead



- Extra 15 cm Internal Roman Pb (1K)
- Material selection

#### New w/r to EDW-II

- Extra 10 cm PE shield below detectors
- NOSV Copper
- New Kapton cables and connectors: 1K-10mK (Steel) and 10mK-10mK (Cu)
- New electronics (FETs 100K and Digitization 300K)
- New Cryogenics to reduce microphonics







## **Edelweiss Germanium detectors**

#### Two measuring channels

•Heat (phonons) with NTD thermal sensors (Neutron Transmutation Doped sensor): Full thermalization of the phonons within the bulk of the detector and the sensor itself

 $E_{\rm recoil} \approx E_{\rm heat}$ 

•**Ionization yield** for particle identification,  $Q = E_{ion}/E_{recoil}$ :

Q = 1 for electron recoils  $Q \approx 0,3$  for nuclear recoils

Most backgrounds (e, ©) produce electron recoils

WIMPs and neutrons produce nuclear recoils





## **FID Ge-bolometers: Fully InterDigitized design**



Diameter: 7 cm

- ~ 820 g HP-Ge Crystals
- 2 Ge NTD
- F(ully) I(nter)D(igitized) Aluminium electrodes



## -> Vetoing surface events (~600 g fiducial mass)



## **RUN308 Status**

#### WIMP data-taking: July 2014 – April 2015

- 36 x 800 g detectors installed in cryostat
- 24 x 800 g detectors cabled
- -> more than 14 kg of fiducial mass in Ge
- Facility able to acquire 3000 kgd per 6 months





## **RUN308 Status:** Performance of the selected FID800



After 6 months of data taking: demonstration with a first data set

Improved performances at low energies (largely due to new electronics, i.e. improved baseline resolution)

Good  $\gamma$ /neutron discrimination

- $\cdot$  1 keVee in Ionization (4  $\sigma$  )
- 3 keVnr in Heat

# One detector with good baselines and low threshold

**Expect ~7 other detectors with similar performances** 

### **RUN308 Status:** First Low Mass WIMP search with EDW-III Data



## **RUN308 Status:** Low mass analysis ingredients:

## WIMP signal and bkg modeled within ROI

#### Wimp model :

Monte-Carlo simulations -> Wimp distribution  $R(M_{\chi_{...}} \sigma_{WN})$ 

MC events converted into 6 variables (4 ionisation and 2 heat)

#### Background models are data driven:

- Use regions w/o signal (sideband) to build the model
- Use calibrations (210Pb) as crosscheck

#### **Boosted Decision Tree (BDT) within ROI**

Combine the 6 variables (4 ionisation and 2 heat) for optimized Signal/Background discrimination

# -> one BDT per WIMP mass-> cut and efficiency on signal



## **RUN308 Status:** preliminary results



#### -> conservative limit: w/o background subtraction

- ★ limits in agreement with previous projections
- ★ already competitive results for small subset of available data Clearly room for progress

## **Summary and Outlook**

- Low energy WIMP mass analysis shows competitive results for small set of data
- Expect fast improvements in sensitivity:
  x10 more data of similar quality
  - Will decrease the analysis threshold
- High WIMP mass analysis ongoing
- Since June 8th Run309 started !!

#### R&D

- HEMT to lower ionization threshold
  (High Electron Mobility (field-effect) Transistor)
- **HV studies** (Neganov-Luke amplification)
  - reduction of Heat-Only events by x100
  - 100 eV (RMS) ion & heat
  - 350 kg-days



CEA Saclay (IRFU & IRAMIS) CSNSM Orsay (CNRS/IN2P3 & Paris Sud) IPNL Lyon (CNRS/IN2P3 & Univ. Lyon 1) Néel Grenoble (CNRS/INP) LPN Marcoussis (CNRS)

| KIT Karlsruhe (IKP, EKP, IPE)                |
|----------------------------------------------|
| IINR Dubna                                   |
| Oxford University<br>University of Sheffield |



# **Backup Slides**

### **Edelweiss-III: 36 new FID800 produced ...**



## **FID Ge-bolometers: Fully InterDigitized design**



## **EDW-III background budget**

•Gamma Background In the fiducial volume, the gamma rate in ROI (100keV-4MeV) is 235counts/(kgd), considering a fiducial exposure of about 380kgd

•fiducial volume, the gamma rate in ROI (20-200keV) is 70counts/(kgd), considering a

fiducial exposure of about 380kgd.

(best fit to the experimental spectrum requires additional scale factor to the contaminations assumed in simulations: 60Co(0.45) 40K(0.4) 238U(0.54) 232Th(0.9))

#### •Neutron Background

(SOURCES4A & GEANT4)

**Comparison by Material - Fiducial Energy** 



 $E_{th} > 10 \text{ keV}$ ; Second Hit>3 keV  $E_{th} > 20 \text{ keV}$ ; Second Hit>10 keV

| Number of<br>Ge detectors | kg∙d                                        | Total      | Single    | Total        | Single     |
|---------------------------|---------------------------------------------|------------|-----------|--------------|------------|
| 24<br>36                  | $\begin{array}{c} 5431 \\ 8147 \end{array}$ | 4.8<br>7.9 | 1.4 $2.2$ | $3.2 \\ 5.2$ | 1.1<br>1.7 |

Internal radiogenic neutrons limit total exposure :

Expected <1 bkg event starting 4500kgd ( $2.5x10^{-9}$  pb) to 12000kgd ( $10^{-9}$  pb)

#### First low-mass WIMP search with a subsample of Edelweiss-III data

- after 6 months of data taking: demonstration with a first data set
- one detector with good baselines and low threshold
  - expect ~7 other detectors with similar performance

|              | EDW-III subsample<br>(1 x FID800) | EDW-II<br>(4 x ID400) |
|--------------|-----------------------------------|-----------------------|
| exposure     | 35 kg.days                        | 113 kg.days           |
| threshold    | 3.6 keVnr                         | ≈ 5 keVnr             |
| FWHM ion fid | 0.54 keVee                        | 0.72 keVee*           |
| FWHM heat    | 0.33 keVee                        | 0.82 keVee*           |

\* best detector



| FWHM       | Edelweiss-II |               | Edelweiss-III |               | R&D HEMT |
|------------|--------------|---------------|---------------|---------------|----------|
| Ionization | 900 eV       | $\rightarrow$ | 600 eV        | $\rightarrow$ | 300 eV   |
| Heat       | 1.2 keV      | $\rightarrow$ | 1.0 keV       |               |          |