

Status of the ANAIS dark matter project at the Canfranc underground laboratory

Miguel Ángel Oliván on behalf of the ANAIS team

Universidad de Zaragoza Laboratorio Subterráneo de Canfranc

PATRAS Workshop 2015, Zaragoza

Outline

- ANAIS Experiment
- ANAIS-25
- ANAIS-37
- ANAIS status and prospects

Outline

ANAIS Experiment

- ANAIS-25
- ANAIS-37
- ANAIS status and prospects

ANAIS Experiment

Project for 3×3 matrix of NaI(TI) scintillators 12.5 kg each to look for Dark Matter (DM) annual modulation at Canfranc Underground Laboratory (LSC) $\alpha = 60\%$

Goal:

Confirmation of DAMA/LIBRA positive signal with same target and technique

Experimental requirements:

- Energy threshold < 2 keVee
- Background few counts/(keV kg day)

ANAIS Experiment

Long effort by the University of Zaragoza through the operation of different Nal detectors in Canfranc

- Using hexagonal, 10.7 kg NaI crystals from BICRON:
- Pioneer modulation analysis at Nal32 experiment M. L. Sarsa *et al., Phys. Lett. B* 386, 458 (1996) M. L. Sarsa *et al., Phys. Rev. D* 56, 185 (1997)
- First ANAIS prototypes
- Using a 9.6 kg Nal crystal from St. Gobain:
 ANAIS-0 prototype
- Bulk NaI(TI) scintillation low energy events selection with the ANAIS-0 module. C. Cuesta et al., *EPJ C 74 (2014) 3150*.
- Analysis of the 40K contamination in NaI(Tl) crystals from different providers in the frame of the ANAIS project. C. Cuesta et al., *Int. J. Mod. Phys.* A. 29 (2014) 1443010.
- Slow scintillation time constants in NaI(Tl) for different interacting particles. C. Cuesta et al., *Opt. Mat. 36 (2013) 316.*
- Background model for a NaI(TI) detector devoted to dark matter searches. S. Cebrián et al., *Astrop. Phys. (2012) 60.*

ANAIS Experiment

Long effort by the University of Zaragoza through the operation of different Nal detectors in Canfranc

- Using hexagonal, 10.7 kg NaI crystals from BICRON:
- Pioneer modulation analysis at Nal32 experiment M. L. Sarsa *et al., Phys. Lett. B* 386, 458 (1996) M. L. Sarsa *et al., Phys. Rev. D* 56, 185 (1997)
- First ANAIS prototypes
- Using a 9.6 kg Nal crystal from St. Gobain:
 ANAIS-0 prototype
- Bulk NaI(TI) scintillation low energy events selection with the ANAIS-0 module. C. Cuesta et al., *EPJ C 74 (2014) 3150*.
- Analysis of the 40K contamination in NaI(TI) crystals from different providers in the frame of the ANAIS project. C. Cuesta et al., *Int. J. Mod. Phys.*
- A. 29 (2014) 144
- Slow scintillatic Disregarded due to an unacceptable K content (hundreds of ppb)
- C. Cuesta et al.,
- Background me
 S. Cebrián et al.,

Search for cleaner material for detectors

ANAIS-25

Goals:

- Measure internal contamination ⁴⁰K and ²³⁸U and ²³²Th chains
- Determine light collection, fine tuning of DAQ, filtering and analysis protocols, general background assessment

Taking data at LSC: Dec 2012 - Mar 2015

Two Alpha Spectra modules:

- Clean starting NaI powder (< 90 ppb K)
- 12.5 kg, cylindrical
- Mylar window for low energy calibration
- PMT Ham (R12669SEL2 & R11065SEL)

PATRAS Workshop 2015, Zaragoza

ANAIS-25 – Light collection

Detector	PMT model	Phe⁻/keV	
DO	Ham R12669SEL2	16.13 ± 0.66	
D1	Ham R12669SEL2	15.19 ± 0.09	

Excellent light collection (~15 phe⁻/keV), better with high quantum efficiency PMTs (R12669SEL2)

(See "Light collection in the prototypes of the ANAIS mark matter project" poster for details)

Resolution improvement in all low energy calibration lines

ANAIS-25 – Threshold

PATRAS Workshop 2015, Zaragoza

ANAIS-25 – Background

Contribution from cosmogenic isotopes induced in NaI crystals:

Determined for the first time the cosmogenic production of some isotopes in Nal (I, Te, Na) J. Amaré et al, JCAP 02 (2015) 046

First month of data-taking 15 months later

PATRAS Workshop 2015, Zaragoza

ANAIS-25 – Background

Bulk Contamination:

ANAIS-25 – Background

Bulk Contamination:

⁴⁰ K	²³⁸ U	²¹⁰ Pb	²³² Th
1.25 mBq/kg (41 ppb K)	10 μBq/kg	3.15 mBq/kg	3 μBq/kg

- Radiopurity goals are fulfilled for ⁴⁰K and ²³²Th and ²³⁸U chains, but a ²¹⁰Pb contamination out-of-equilibrium is present in ANAIS-25 crystals.
- Origin of the ²¹⁰Pb contamination identified (crystal growing) and being solved by Alpha Spectra.
- New material prepared at Alpha Spectra using improved protocols: new detector under test → ANAIS-37

ANAIS-25 – Data analysis

2000

Energy(keV

Graph

4000 6000 8000 10000 12000

area

Calibration with ¹⁰⁹Cd and coincident lines (⁴⁰K and ²²Na): accurate calibration at 1keVee

> At 1 keV the trigger efficiency is larger than 80% (estimated with coincident events, ²²Na and ⁴⁰K)

Cuts for removing PMT events:

- Cut in the number of peaks in the 1) pulse (n>2 in each PMT)
- 2) Cut in temporal parameters of the pulse
- Cut in asymmetry in the light sharing 3)

ż

3

5 6 7

Energy (keV)

1.0

0.8

0.6

0.4

0.2

0.0

0 1

Cut Efficiency

Energy (keV)

Graph

€) 0.02

0.015 0.01

₩0.005

0.005

o.01 کھ

Trigger Efficiency

0.0 -

- D0 - D1

8

9 10

1

Cut efficiency at 1 keVee 20% Very fast increasing 1-2 keVee (calculated with ¹⁰⁹Cd events)

PRELIMINARY

ANAIS-25 – Data analysis

Background after applying the cuts, efficiency corrected:

- Working on more aggressive cuts to reduce background below 2 keVee
- Working on a *blank module* (without crystal) to study the PMT coincident events

ANAIS-25 – Background model

- Measured activity of external components (PMTs, copper, ...)
- Measured activity in Nal crystals (⁴⁰K, ²³⁸U, ²³²Th, ²¹⁰Pb)
- Cosmogenics J. Amaré et al, JCAP 02 (2015) 046
- ³H activity

Good agreement with filtered background, coincident and anticoincident spectra down to 3 keVee.

See "Background model for NaI(TI) detectors for the ANAIS dark matter project" poster for details

Outline

- ANAIS Experiment
- ANAIS-25
- ANAIS-37
- ANAIS status and prospects

ANAIS-37

New module by Alpha Spectra (D2)

Goals, check:

- ²¹⁰Pb reduction
- ⁴⁰K and ²³⁸U and ²³²Th chains
- Light collection

Taking data at LSC since March 2015

PATRAS Workshop 2015, Zaragoza

ANAIS-37 – Light Collection

New module by Alpha Spectra (D2) \sim 15 phe/keV

Detector	PMT model	Phe ⁻ /keV	
DO	Ham R12669SEL2	15.26 ± 0.10	
D1	Ham R12669SEL2	14.44 ± 0.09	
D2	Ham R12669SEL2	15.41 ± 0.05	

PATRAS Workshop 2015, Zaragoza

ANAIS-37 – Background

New detector (D2) background (Live Time: 23.7 days)

 Coincidence window at 1274 keV in D0 | D1 ²²Na coincident events as cross-check of the threshold

 Coincidence window at 1461 keV in D0 | D1 ⁴⁰K Potassium Content: 44 ± 4 ppb

Total alpha rate: 0.58 ± 0.01 mBq/kg
 ANAIS-25 alpha rate: 3.15 mBq/kg (factor 0.18)

ANAIS-37 – Background

Raw D2 background without filtering:

Very promising reduction under 20 keV and cosmogenics still decaying

²¹⁰Pb clear reduction with respect to ANAIS-25 modules

ANAIS-37 – Background model

Same ANAIS-25 contributions except:

- Less ²¹⁰Pb
- new detector \rightarrow

Cosmogenic isotopes still decaying

Good agreement with **raw** background down to 4 keVee

See "Background model for Nal(Tl) detectors for the ANAIS dark matter project" poster for details

Outline

- ANAIS Experiment
- ANAIS-25
- ANAIS-37
- ANAIS status and prospects

ANAIS – Sensitivity prospects

Detection limit at 90% C.L. with a critical limit at 90% C.L.

Contribution of 2.57 mBq/kg of ²¹⁰Pb subtracted to the background measured at ANAIS-25. Further improvement is expected in next modules, coincident background rejection not included.

PATRAS Workshop 2015, Zaragoza

- Acquisition of new 6 modules:
 - Start data taking with 4 modules January 2016, with final shielding
 - Start data taking with 9 modules (3×3 matrix, 112.5 kg) along 2016
- Ready to run:
 - Shielding available
 - Muon tagging system
 - Slow Control (temperatures, external Rn activity, N₂ flux, PMT voltage ...)
 - PMTs Ham R12669SEL2 under testing
 - Front-end modules available
 - DAQ software and analysis algorithms tested

- Improvement of filtering and selection protocols and efficiency estimation at low energy
- Simulation of 3×3 matrix and coincidence rejection factor
- Simulation of liquid scintillator veto

- Acquisition of new 6 modules
 - Start data taking with 4 modules January 2016, with final shielding
 - Start data taking with 9 modules (3×3 matrix, 112.5 kg) along 2016
- Ready to run:
 - Shielding available
 - Muon tagging system
 - Slow Control (temperatures, external Rn activity, N₂ flux, PMT voltage ...)
 - PMTs Ham R12669SEL2 under testing
 - Front-end modules available
 - DAQ software and analysis algorithms tested

- Improvement of filtering and selection protocols and efficiency estimation at low energy
- Simulation of 3×3 matrix and coincidence rejection factor
- Simulation of liquid scintillator veto

- Acquisition of new 6 modules
 - Start data taking with 4 modules January 2016, with final shielding
 - Start data taking with 9 modules (3×3 matrix, 112.5 kg) along 2016
- Ready to run:
 - Shielding available
 - Muon tagging system
 - Slow Control (temperatures, external Rn activity, N₂ flux, PMT voltage ...)
 - PMTs Ham R12669SEL2 under testing
 - Front-end modules available
 - DAQ software and analysis algorithms tested

- Improvement of filtering and selection protocols and efficiency estimation at low energy
- Simulation of 3×3 matrix and coincidence rejection factor
- Simulation of liquid scintillator veto

- Acquisition of new 6 modules
 - Start data taking with 4 modules January 2016, with final shielding
 - Start data taking with 9 modules (3×3 matrix, 112.5 kg) along 2016
- Ready to run:
 - Shielding available
 - Muon tagging system
 - Slow Control

(temperatures, external Rn activity, $\rm N_2$ flux, PMT voltage ...)

- PMTs Ham R12669SEL2 under testing
- Front-end modules available
- DAQ software and analysis algorithms tested
- Improvement of filtering and selection protocols and efficiency estimation at low energy
- Simulation of 3×3 matrix and coincidence rejection factor
- Simulation of liquid scintillator veto

- Acquisition of new 6 modules
 - Start data taking with 4 modules January 2016, with final shielding
 - Start data taking with 9 modules (3×3 matrix, 112.5 kg) along 2016
- Ready to run:
 - Shielding available
 - Muon tagging system
 - Slow Control (temperatures, external Rn activity, N₂ flux, PMT voltage ...)
 - PMTs Ham R12669SEL2 under testing
 - Front-end modules available
 - DAQ software and analysis algorithms tested
- Improvement of filtering and selection protocols and efficiency estimation at low energy
- Simulation of 3×3 matrix and coincidence rejection factor
- Simulation of liquid scintillator veto

- Acquisition of new 6 modules
 - Start data taking with 4 modules January 2016, with final shielding
 - Start data taking with 9 modules (3×3 matrix, 112.5 kg) along 2016
- Ready to run:
 - Shielding available
 - Muon tagging system
 - Slow Control (temperatures, external Rn activity, N₂ flux, PMT voltage ...)
 - PMTs Ham R12669SEL2 under testing
 - Front-end modules available
 - DAQ software and analysis algorithms tested
- Improvement of filtering and selection protocols and efficiency estimation at low energy
- Simulation of 3×3 matrix and coincidence rejection factor
- Simulation of liquid scintillator veto

- Acquisition of new 6 modules
 - Start data taking with 4 modules January 2016, with final shielding
 - Start data taking with 9 modules (3×3 matrix, 112.5 kg) along 2016
- Ready to run:
 - Shielding available
 - Muon tagging system
 - Slow Control (temperatures, external Rn activity, N₂ flux, PMT voltage ...)
 - PMTs Ham R12669SEL2 under testing
 - Front-end modules available
 - **DAQ software** and analysis algorithms tested
- Improvement of filtering and selection protocols and efficiency estimation at low energy
- Simulation of 3×3 matrix and coincidence rejection factor
- Simulation of liquid scintillator veto

DAO Linux PC

Monitor System

DAQ Program

e-mai

Internet

Server

Zaragoza

TRIGGER L IOREGO (

- Acquisition of new 6 modules
 - Start data taking with 4 modules January 2016, with final shielding
 - Start data taking with 9 modules (3×3 matrix, 112.5 kg) along 2016
- Ready to run:
 - Shielding available
 - Muon tagging system
 - Slow Control (temperatures, external Rn activity, N₂ flux, PMT voltage ...)
 - PMTs Ham R12669SEL2 under testing
 - Front-end modules available
 - DAQ software and analysis algorithms tested

- Improvement of filtering and selection protocols and efficiency estimation at low energy
- Simulation of 3×3 matrix and coincidence rejection factor
- Simulation of liquid scintillator veto

- Acquisition of new 6 modules
 - Start data taking with 4 modules January 2016, with final shielding
 - Start data taking with 9 modules (3×3 matrix, 112.5 kg) along 2016
- Ready to run:
 - Shielding available
 - Muon tagging system
 - Slow Control (temperatures, external Rn activity, N₂ flux, PMT voltage ...)
 - PMTs Ham R12669SEL2 under testing
 - Front-end modules available
 - DAQ software and analysis algorithms tested
- Improvement of filtering and selection protocols and efficiency estimation at low energy
- Simulation of 3×3 matrix and coincidence rejection factor
- Simulation of liquid scintillator veto

- Acquisition of new 6 modules
 - Start data taking with 4 modules January 2016, with final shielding
 - Start data taking with 9 modules (3×3 matrix, 112.5 kg) along 2016
- Ready to run:
 - Shielding available
 - Muon tagging system
 - Slow Control (temperatures, external Rn activity, N₂ flux, PMT voltage ...)
 - PMTs Ham R12669SEL2 under testing
 - Front-end modules available
 - DAQ software and analysis algorithms tested

- Improvement of filtering and selection protocols and efficiency estimation at low energy
- Simulation of 3×3 matrix and coincidence rejection factor
- Simulation of liquid scintillator veto

- Acquisition of new 6 modules
 - Start data taking with 4 modules January 2016, with final shielding
 - Start data taking with 9 modules (3×3 matrix, 112.5 kg) along 2016
- Ready to run:
 - Shielding available
 - Muon tagging system
 - Slow Control (temperatures, external Rn activity, N₂ flux, PMT voltage ...)
 - PMTs Ham R12669SEL2 under testing
 - Front-end modules available
 - DAQ software and analysis algorithms tested
- Improvement of filtering and selection protocols and efficiency estimation at low energy
- Simulation of 3×3 matrix and coincidence rejection factor
- Simulation of liquid scintillator veto

Summary

- The ANAIS experiment, intended to confirm the DAMA/LIBRA annual modulation positive signal, is under development at the Canfranc Underground Laboratory
 - 112.5 kg (3×3 crystal matrix) of NaI could be taking data along 2016
 - Shielding, electronic front-end, DAQ and software, slow control ready for the full experiment
- Good quality NaI detectors from Alpha Spectra have been fully characterized:
 - Outstanding light collection improving energy resolution and with 1 keVee energy threshold at reach
 - K content at the level of 40 ppb, ²¹⁰Pb reduction 0.6 mBq/kg (reduced by a factor 5, further improvement is expected in next prototypes)
- Background measured in ANAIS-25 and ANAIS-37 set-ups is well understood down to 3 keVee
- Long-living cosmogenic isotopes ²²Na and ³H are relevant in the region of interest
- Good sensitivity prospects for exploring the DAMA/LIBRA signal (even under very conservative assumptions) already achieved

Status of the ANAIS dark matter project at the Canfranc underground laboratory

Miguel Ángel Oliván on behalf of the ANAIS team

Universidad de Zaragoza Laboratorio subterráneo de Canfranc

PATRAS Workshop 2015, Zaragoza

ANAIS – Blank module

• A "detector" without crystal in order to characterize PMT events

ANAIS-25 – Background model PRELIMINARY

✓ Hypothesis: ³H contribution

An activity of 0.2 mBq/kg of ³H in the Nal crystals significantly improves the agreement with data

Data for ³H in Nal:

 DAMA/LIBRA: A<0.09 mBq/kg R. Bernabei et al., NIMA 592 (2008) 297 •Calculated production rate: R=31.1 kg⁻¹ d⁻¹ D. M. Mei et al, Astropart. Phys. 31, 417-420 (2009).

For a production rate of 50 kg⁻¹d⁻¹ an exposure of 1.9 y to the neutron flux at Grand Junction, Colorado, would produce the required ³H activity in ANAIS-25 crystals

ANAIS-25 – Data analysis

p20s:ene0 {pu==3 && ene0<10 && ene0>0 && p20s>-1 && p20s<1.5}

8

Description of the cuts used to remove PMT events

- Cut in the number of peaks in the pulse (n>2 in each PMT)
- Cut in temporal parameters of the pulse: p1s, p2s

p20s

0.5

-0.5

3) Cut in asymmetry in the light sharing

10²

ANAIS – Muon vs. Fast events

ANAIS – Muon tagging

Muon event tagging by threshold and shape based on ADC values (fully compatible with digitized waveform)

Face Plastic	Measured rate	Measured rate	Faces	
	Plastic	$(\mu \times m^{-2} \times s^{-1}) \times 10^{-3}$	$(\mu \times m^{-2} \times s^{-1}) \times 10^{-3}$	Top-No:
			(/	Top-Sou
South	#1	5.27 ± 0.10	5.43 ± 0.07	Top-Ea
	#2	5.53 ± 0.10		Top-We
West $ \begin{array}{c} \#3\\ \#4 \end{array} $	#3	4.88 ± 0.10	4.75 ± 0.07	North-Sc
	#4	4.61 ± 0.10		Fact W
East	#5	4.53 ± 0.10	4.54 ± 0.07	East-W
	#6	4.54 ± 0.10		North-E
North #7 #8	#7	5.05 ± 0.10	4.91 ± 0.07	North-W
	# • // 9	4.77 ± 0.10		South-E
	#0	4.77 ± 0.10		South-W
Тор	#9	7.23 ± 0.12	7.36 ± 0.07	
	#10	7.54 ± 0.12		Table
	#11	7.32 ± 0.12		

able 4.4: Faces coincident rate

Table 4.3: Muon detection rate

ANAIS – Slow Control

- Slow control
 - External Rn
 - Temperatures
 - Environment
 - Frontend
 - Inside the shielding
 - $-N_2$ flux
 - HV Power supply voltage & current

AS1K – Alpha contamination

1 kg Alpha Spectra grown crystal, encapsulated at UZ to test at LSC for α contamination .

α rate, determined by PSA. Compatible with broken chain at ²¹⁰Pb and contamination at crystal growing.

Alpha Spectra has updated the purification and growing methods → A new crystal available soon to test radiopurity

PATRAS Workshop 2015, Zaragoza

ANAIS – Low energy calibration 12 keV line

ANAIS – Prospects

Detection limit at 90% C.L. with a critical limit at 90% C.L.

Computed using Cebrian, S., et al. "Sensitivity plots for WIMP direct detection using the annual modulation signature." Astroparticle Physics 14.4 (2001): 339-350.

PATRAS Workshop 2015, Zaragoza