The Axion Dark Matter eXperiment

Gray Rybka University of Washington on behalf of the ADMX Collaboration

> *Patras 2015* Zaragoza, Spain June 2015

Science, Nov. 2013, 552 - 555

Axion Motivation

Gray Rybka - Patras 2015 - Zaragoza, Spain

Axion Parameter Space

Gray Rybka - Patras 2015 - Zaragoza, Spain

Axion Haloscope

You Want:

-Large Cavity Volume -High Magnetic Field -High Cavity Q

$$\frac{\partial \left(\mathbf{E}^2 / 2\right)}{\partial t} - \mathbf{E} \cdot \left(\nabla \times \mathbf{B}\right) = g_{a\gamma} \dot{a} \left(\mathbf{E} \cdot \mathbf{B}\right)$$

Dark Matter Axions will convert to photons in a magnetic field.

The measurement is enhanced if the photon's frequency corresponds to the cavity's resonant frequency.

See: Sikivie, Phys. Rev. Lett. 1983

You Don't Want: -High <u>Thermal Noise</u> -High <u>Amplifier Noise</u>

ADMX: Axion Dark Matter eXperiment

Science, Nov. 2013, 552 - 555

breaking July 11, 2014 Courtesv of NASA

US reveals its next generation of dark matter experiments

Together, the three experiments will search for a variety of types of dark matter particles.

By Kathryn Jepsen

f 🍑 🖗 🔚 😵 🖂

they will support in the r

Two US federal funding - Symmetry Maganzine

Collaboration: University of Washington IINIUniversity of Florida Yale UC Berkeley NRAO FNAI

ADMX Design

Insert extraction from magnet

ADMX Receiver

Gray Rybka - Patras 2015 - Zaragoza, Spain

Tuning

Mode Map Rod2 at 0.967

Rod 1 Encoder

Cavity with lid off, showing tuning rods

Field simulation of TM010 mode, no rods

Axion Search Cadence

Cavity resonant frequency is tuned by two movable rods

Power spectra are measured at each rod position

Axion signal would appear as a constant power excess

Most backgrounds do not persist

ADMX Expected Signal

Axion-Like Signal Calibration

Single Raw Power Spectrum (100 second integration)

Raw Spectrum with Artificially Generated Axion-Like Signal

Injection of Axion-Like signals into cavity allow us to calibrate our analysis

Gen 2 ADMX Program

Gen 2 ADMX Projected Sensitivity

at minimal couplings. We have a good chance at finding the axion.

Key Technology: Sub-Kelvin Cooling

Time to scan axion mass range a 2010 speed: ~100 years

Scan Speed
$$\frac{df}{dt} \propto \frac{1}{T_{noise}^2}$$

Want to run faster? Run colder!

Noise comes from amplifiers and physical temperature

$$T_{noise} = T_{amplifier} + T_{physical}$$

Key Technology: Quantum-limited Amplifiers

Gray Rybka - Patras 2015 - Zaragoza, Spain

ADMX Gen 2 Key technologies improve scan speed immensely

Dilution refrigerator under test. Currently being packed for shipment to to UW.

Another Gen 2 Improvement: Multimode Data Taking

Sensitivity $\propto E_z \cdot B_z$

TM₀₁₀ Tuning Range 400-900 MHz Relative Power 1.0 TM₀₂₀ Tuning Range 920-2,100 MHz Relative Power 0.41

Gray Rybka - Patras 2015 - Zaragoza, Spain

ADMX Recent Engineering Run

System exercised Summer/Fall 2014

Gray Rybka - Patras 2015 - Zaragoza, Spain

ADMX Recent Engineering Run

Summer/Fall 2015 Engineering Run @ 1K:

- Verified magnet functionality after move to Seattle
- Verified functionality of rebuilt experimental insert/cavity system
- Tested thermal performance of redesigned cryogenic system at 1K
- Tested in-situ noise measurement of SQUID amplifier

Same data taken used for graduate thesis (Lyapustin, 2015): Study of multimode tuning and sensitivity of new system

ADMX Gen 2 Status

Dilution Refrigerator Commissioning in progress at the University of Washington

All other subsystems are ready to go.

Gray Rybka - Patras 2015 - Zaragoza, Spain

ADMX Gen 2 Near Term Schedule

Summer/Fall 2015: Dilution Refrigerator Commissioning

Fall/Winter 2015: Data Taking Begins

Gray Rybka - Patras 2015 - Zaragoza, Spain

Expanding ADMX's Mass Range

Gray Rybka - Patras 2015 - Zaragoza, Spain

ADMX Higher Frequency Projects Underway

A subset of ideas being explored...

Open Resonators

Exotic Tuning

Re-entrant Cavities

Photonic Bandgap Cavities

Open Resonators

Open resonators with spatially varying magnetic fields or resonances distorted by dielectrics allow for coherent dark matter axion conversion over volumes larger than traditional resonators

Gray Rybka - Patras 2015 - Zaragoza, Spain

Open Resonators

Benchtop prototype results have been promising

Rybka et al. Phys. Rev. D 91, 011701(R) (2015)

Larger, cryogenic prototype design in progress

Active Resonators

- Axion field acts as a source term in Maxwell's equations, just like a current.
- In this view, weak axion to cavity coupling is an impedance mismatch issue.
- Feedback circuits are commonly used to actively match impedances .
- This effectively increases the Q of the resonator.

Study on implementing for ADMX underway.

Active Resonators

System can be demonstrated using weakly coupled antenna to simulate axion coupling

Active Resonators

SNR Enhancement with synthetically generated axion-like RF signal

Conclusions

to explore the classical dark matter axion window, starting this year.

ADMX will be definitive

if dark matter is made of QCD axions when we test a mass range we will see it, even at pessimistic couplings.

We are expanding our mass coverage

with the goal of exploring highest possible masses.

We are going to find axion dark matter

if it is out there.

Science, Nov. 2013, 552 - 555