Hiding Missing Energy in Missing Energy (based on JHEP 1504 (2015) 088 [arXiv:1312.4965]) collaborated with Daniele S.M. Alves and Neal Weiner

Jia Liu

MITP, Johannes Gutenberg University Mainz

Physics at the LHC and beyond, 2015 September-October, DESY

Supersymmetry

- What is supersymmetry?
 - An extended space-time symmetry
 - Relation between Boson and Fermion
- What can supersymmetry do?
 - Higgs hierarchy problem: quantum correction cancel between particle and sparticle
 - $\bullet\,$ Gauge coupling unification at high energy: Strong + EW
 - Dark matter: e.g. neutralino
- predictions from supersymmetry
 - partners for every SM particles

Supersymmetry at LHC

- Sparticle hunt at LHC
 - typical strategy: Missing energy plus jets, leptons, ...

from ATLAS 1110.0282

Current status of sparticle hunt

- 7, 8 TeV results
 - $\tilde{t} \text{ mass} \gtrsim 700 \text{ GeV}$

from ATLAS and CMS

Jia Liu (JGU Mainz)

Current status of sparticle hunt

- 7, 8 TeV results
 - \tilde{g} mass \gtrsim 700 GeV

from ATLAS and CMS

Jia Liu (JGU Mainz)

Current status of sparticle hunt

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: July 2015

	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫£ dt[fb	Mass limit	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	Reference
Inclusive Searches	$\begin{array}{l} \text{MSUGRACMSSM}\\ \frac{3}{qq_1}, \frac{3}{q_1-q_1^{q_1^{q_1^{q_1^{q_1^{q_1^{q_1^{q_1^{$	$\begin{array}{c} 0\text{-}3\ e,\mu/1\text{-}2\ \tau \\ 0\\ \text{mono-jet}\\ 2\ e,\mu\ (\text{off}\ Z)\\ 0\\ 0\\ 0\text{-}1\ e,\mu\\ 2\ e,\mu\\ 1\text{-}2\ e,\mu\\ 1\text{-}2\ r + 0\text{-}1\ (2\ r \\ \gamma\\ \gamma\\ 2\ e,\mu\ (Z)\\ 0 \end{array}$	2-10 jets/3 2-6 jets 1-3 jets 2 jets 2-6 jets 2-6 jets 0-3 jets 0-2 jets - 1 <i>b</i> 2 jets 2 jets 2 jets 2 jets 0-2 jets 2 jets 2 jets 0-3 jets 0-2 jets 2 jets 2 jets 0-3 jets 0-2 jets 2 jets 2 jets 0-3 jets 0-2 jets 2 jets 2 jets 0-2 jets 2 jets 2 jets 0-2 jets 2 jets 2 jets 0-2 jets 2 jet	 b Yes Yes 	20.3 20.3 20.3 20.3 20 20 20 20.3 20.3 2	100-440 GeV 559 GeV 780 GeV 780 GeV 780 GeV 780 GeV 411 _{Scalar} 555 GeV	1.33 TeV 1.26 TeV 1.32 TeV 1.32 TeV 1.29 TeV 1.3 TeV 1.25 TeV	13.76% m(),m(2) m(1),1%(20% m(1),1%(20%),m(2*1ga,2) m(1),10.06% m(1),10.06% m(1),10.06% m(1),10.06% m(1),10.06% m(1),10.06(m(1),m(2)) m(1),10.06% m(1),10.06(m(1),m(2)) m(1),10.06% m(1),10.06% m(1),10.06% m(1),10.06%\\ m(1),10.06% m(1),10.06%\m(1)	1507.05525 1405.7875 1507.05525 1503.03290 1405.7875 1507.05525 1507.05525 1407.0663 1507.05493 1507.05493 1507.05493 1503.03290 1502.01518
3 rd gen. § med.	$\begin{array}{c} \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \tilde{b} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{\chi}_{1}^{1} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \tilde{t} \tilde{\chi}_{1}^{1} \end{array}$	0 0 0-1 e, µ 0-1 e, µ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	1. 2. 2.	1.25 TeV .1 TeV 1.34 TeV 1.3 TeV	m(t ² ₁)<400 GeV m(t ² ₁)<350 GeV m(t ² ₁)<400 GeV m(t ² ₁)<300 GeV	1407.0600 1308.1841 1407.0600 1407.0600
3 ^{nf} gen. squarks direct production	$ \begin{array}{l} \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b\tilde{k}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b\tilde{k}_{1}^{0} \\ \tilde{i}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow b\tilde{k}_{1}^{0} \\ \tilde{i}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow b\tilde{k}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow Wb\tilde{k}_{1}^{0} \text{ or } \tilde{k}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow Wb\tilde{k}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1} \\ \tilde{t}_{2}\tilde{t}_{2} \rightarrow \tilde{t}_{1} + Z \end{array} $	0 2 e, µ (SS) 1-2 e, µ 0-2 e, µ (Z) 2 e, µ (Z) 3 e, µ (Z)	2 b 0-3 b 1-2 b 0-2 jets/1-2 tono-jet/c-t 1 b 1 b	Yes Yes b Yes ag Yes Yes Yes	20.1 20.3 1.7/20.3 20.3 20.3 20.3 20.3 20.3	100.620 GeV 275-440 GeV 90-191 GeV 230-460 GeV 90-240 GeV 210-700 GeV 150-580 GeV 290-600 GeV		$\begin{array}{c} m(\tilde{t}_{1}^{2}) < 30 \; \text{GeV} \\ m(\tilde{t}_{1}^{2}) + 2 \; m(\tilde{t}_{1}^{2}) \\ m(\tilde{t}_{1}^{2}) = 2 \; m(\tilde{t}_{1}^{2}), m(\tilde{t}_{1}^{2}) = 55 \; \text{GeV} \\ m(\tilde{t}_{1}^{2}) + 1 \; \text{GeV} \\ m(\tilde{t}_{1}^{2}) + 1 \; \text{GeV} \\ m(\tilde{t}_{1}^{2}) + 150 \; \text{GeV} \\ m(\tilde{t}_{1}^{2}) - 150 \; \text{GeV} \\ m(\tilde{t}_{1}^{2}) - 2300 \; \text{GeV} \\ \end{array}$	1308.2631 1404.2500 1209.2102, 1407.0583 1506.08616 1407.0608 1403.5222 1403.5222
EW direct	$ \begin{split} \tilde{t}_{L,R} \tilde{t}_{L,R}, \tilde{t} \rightarrow \tilde{t}_{1}^{R} \\ \tilde{x}_{1}^{L} \tilde{x}_{1}^{L}, \tilde{x}_{1}^{L} \rightarrow \tilde{t}_{2} (\tilde{v}) \\ \tilde{x}_{1}^{L} \tilde{x}_{1}^{L}, \tilde{x}_{1}^{L} \rightarrow \tilde{\tau}_{1} (\tau) \\ \tilde{x}_{1}^{L} \tilde{x}_{1}^{L}, \tilde{x}_{1}^{L} \rightarrow \tilde{\tau}_{1} (\tau) \\ \tilde{x}_{1}^{L} \tilde{x}_{2}^{L} \rightarrow W \tilde{t}_{2} (\tilde{t} \tilde{v}), \tilde{t} \tilde{t}_{1} \tilde{t} (\tilde{v} v) \\ \tilde{x}_{1}^{L} \tilde{x}_{2}^{L} \rightarrow W \tilde{t}_{2} \tilde{t} \tilde{t}_{1}^{L} \\ \tilde{x}_{1}^{L} \tilde{x}_{2}^{L} \rightarrow W \tilde{t}_{1} \tilde{t} \tilde{t}_{1} \\ \tilde{x}_{2}^{L} \tilde{x}_{2}^{L} \rightarrow W \tilde{t} \tilde{t} \tilde{t} \tilde{t}_{1} \\ \tilde{x}_{2}^{L} \tilde{x}_{2}^{L} \rightarrow \tilde{t} \tilde{t} \tilde{t} \\ \tilde{t} (\tilde{v} v) \\ t$	$2 e, \mu$ $2 e, \mu$ 2τ $3 e, \mu$ $2 \cdot 3 e, \mu$ $\tau / \gamma \gamma e, \mu, \gamma$ $4 e, \mu$ $1 e, \mu + \gamma$	0 0 0-2 jets 0-2 b 0 -	Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	90-325 GeV 140-8455 GeV 100-350 GeV 700 GeV		$\begin{split} m(\tilde{t}_{1}^{2}) = O GeV \\ m(\tilde{t}_{1}^{2}) = O GeV , m(\tilde{t}, \tilde{t}) = O S(m(\tilde{t}_{1}^{2}) + m(\tilde{t}_{1}^{2})) \\ m(\tilde{t}_{1}^{2}) = O GeV , m(\tilde{t}, \tilde{t}) = O S(m(\tilde{t}_{1}^{2}) + m(\tilde{t}_{1}^{2})) \\ m(\tilde{t}_{1}^{2}) = m(\tilde{t}_{1}^{2}) - m(\tilde{t}_{1}^{2}) - m(\tilde{t}_{1}^{2}) + m(\tilde{t}_{1}^{2}) \\ m(\tilde{t}_{1}^{2}) = m(\tilde{t}_{1}^{2}) , m(\tilde{t}_{1}^{2}) - Suppose decoupled \\ m(\tilde{t}_{1}^{2}) = m(\tilde{t}_{1}^{2}) , m(\tilde{t}_{1}^{2}) - Suppose decoupled \\ m(\tilde{t}_{1}^{2}) = m(\tilde{t}_{1}^{2}) - M(\tilde{t}_{1}^{2}) - Suppose decoupled \\ m(\tilde{t}_{2}^{2}) = m(\tilde{t}_{1}^{2}) - M(\tilde{t}_{1}^{2}) - Suppose decoupled \\ m(\tilde{t}_{2}^{2}) = m(\tilde{t}_{1}^{2}) - M(\tilde{t}_{1}^{2}) - Suppose decoupled \\ m(\tilde{t}_{2}^{2}) = m(\tilde{t}_{1}^{2}) - M(\tilde{t}_{1}^{2}) - Suppose decoupled \\ m(\tilde{t}_{2}^{2}) = m(\tilde{t}_{1}^{2}) - M(\tilde{t}_{1}^{2}) - Suppose decoupled \\ m(\tilde{t}_{2}^{2}) = m(\tilde{t}_{1}^{2}) - M(\tilde{t}_{2}^{2}) - Suppose decoupled \\ m(\tilde{t}_{2}^{2}) = m(\tilde{t}_{1}^{2}) - M(\tilde{t}_{2}^{2}) - Suppose decoupled \\ m(\tilde{t}_{2}^{2}) = m(\tilde{t}_{1}^{2}) - M(\tilde{t}_{2}^{2}) - Suppose decoupled \\ m(\tilde{t}_{2}^{2}) = M(\tilde{t}_{2}^{2}) - Suppose decoupled \\ m(\tilde{t}_{2}^{2}) = M(\tilde{t}_{2}^{2}) - M(\tilde{t}_{2}^{2}) - Suppose decoupled \\ m(\tilde{t}_{2}^{2}) = M(\tilde{t}_{2}^{2}) - M(\tilde{t}_{2}^{2}) - Suppose decoupled \\ m(\tilde{t}_{2}^{2}) = M(\tilde{t}_{2}^{2}) - Suppose decoupled \\ m(\tilde{t}_{2}^{2}) = M(\tilde{t}_{2}^{2}) - M(\tilde{t}_{2}^{2}) - Suppose decoupled \\ m(\tilde{t}_{2}^{2}) = M(\tilde{t}_{2}^{2}) - M(\tilde{t}_{2}^{2}) - Suppose decoupled \\ m(\tilde{t}_{2}^{2}) = M(\tilde{t}_{2}^{2}) - Suppose decoupled \\ m(\tilde{t}_{2}^{2}) = M(\tilde{t}_{2}^{2}) - Suppose decoupled \\ m(\tilde{t}_{2}^{2}) = M(\tilde{t}_{2}^{2}) - Suppose decoupled \\ m(\tilde{t}_{2}^{2}) - Suppose decoupled \\ m(\tilde{t}_{2}^{2}) = M(\tilde{t}_{2}^{2}) - Suppose decoupled \\ m(\tilde{t}_{2}^{2}) = M(\tilde{t}_{2}^{2}) - Suppose decoupled \\ m(\tilde{t}_{2}^{2}) - Suppose decoupled \\ m(\tilde{t}_{2}^{2}) - M(\tilde{t}_{2}) - Suppose decoupled \\ m(\tilde{t}_{2}^{2}) - Suppose decoupled \\ m($	1403.5294 1400.5294 1407.0350 1402.7029 1403.5294, 1402.7029 1501.07110 1405.5086 1507.05493
Long-lived particles	Direct $\tilde{\chi}_1^+\tilde{\chi}_1^-$ prod., long-lived \tilde{x}_1 Direct $\tilde{\chi}_1^+\tilde{\chi}_1^-$ prod., long-lived \tilde{x}_1 Stable, stopped \tilde{g} R-hadron Stable \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{c}, \tilde{\mu}) + \tau$ GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$ $\tilde{g}\tilde{g}, \tilde{\chi}_1^0 \rightarrow c\gamma (qx)(\mu \mu \nu$ GGM $\tilde{g}\tilde{g}, \tilde{\chi}_1^0 \rightarrow Z \tilde{G}$		1 jet 	Yes Yes - Yes - Yes -	20.3 18.4 27.9 19.1 19.1 20.3 20.3 20.3	270 GeV 482 GeV 832 GeV 537 GeV 435 GeV 1.0 T	1.27 TeV FeV FeV	m({?})-m(?])-160 MeV, r(?])=0.2 ns m(?])-m(?])-160 MeV, r(?])-16 ns m(?])-m(?)-100 GeV, 10 µs-r(?)-100 s 10-tan9=50 2-r(1?])-23 ns, BF38 model 7-cr(1?])-2740 mm, m(?)=1.3 TeV 6-cr(1?])-240 mm, m(?)=1.1 TeV	1310.3675 1506.05332 1310.6584 1411.6795 1411.6795 1409.5542 1504.05162 1504.05162
RPV	LFV $pp \rightarrow \tilde{v}_r + X, \tilde{v}_r \rightarrow q\mu/e\tau/\mu \eta$ Bilinear RPV CMSSM $\tilde{x}_1^{+}\tilde{x}_1, \tilde{x}_1^{+} \rightarrow W_1^{+}, \tilde{x}_1^{-} \rightarrow eev_{\mu}, q\mu$ $\tilde{x}_1^{+}\tilde{x}_1, \tilde{x}_1^{+} \rightarrow W_1^{+}, \tilde{y}_1^{+} \rightarrow eev_{\mu}, q\mu$ $\tilde{g}_2, \tilde{g} \rightarrow qq$ $\tilde{g}_2, \tilde{g} \rightarrow q\tilde{g}_1, \tilde{\chi}_1^{-} \rightarrow qqq$ $\tilde{g}_2, \tilde{g} \rightarrow q\tilde{g}_1, \tilde{\chi}_1^{-} \rightarrow bs$ Lip Line (JCL)	$e_{\mu,e\tau,\mu\tau}$ $2 e_{,\mu}$ (SS) $i_{e} 4 e_{,\mu}$ $3 e_{,\mu+\tau}$ 0 $2 e_{,\mu}$ (SS) Mainz	0-3 b 6-7 jets 6-7 jets 0-3 b	Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3	; ≥ 750 GeV 1 450 GeV 917 GeV 570 GeV 850 GeV 850 GeV	1 1.35 TeV	.7 TeV x ² ₁₁₁ =0.11, λ ₁₁₂₁₁₃₁₂₁₃₀ =0.07 m(k ² ₁)=m(k ² ₁), c ₁₁₂₁ ×10 m(k ² ₁)=0.22:m(k ² ₁), λ ₁₁₃₁ ×0 BR(η-BR(H))=BR(η-B	1503.04430 1404.2500 1405.5086 1405.5086 1502.05686 1502.05686 1502.05686 1404.250

ATLAS Preliminary $\sqrt{s} = 7, 8 \text{ TeV}$

6 / 14 October, 2015

Sparticle summary

- LHC 7 (8) TeV results
 - light flavor squarks: $ilde{q}$ mass \gtrsim 800 GeV
 - gluino: \widetilde{g} mass $\gtrsim 1300$ GeV
 - 3rd generation: \tilde{t}, \tilde{b} mass \gtrsim 700, (600) GeV
- Can sparticle be lighter than constraints?
 - Yes, they could be hide in missing energy
 - "double invisible" in the decay

- the impact of "double invisible" in the decay
 - larger $\sum |\not\!\!\!|_{\mathcal{T}}|$ but smaller $\sum \vec{\not\!\!\!|}_{\mathcal{T}}$
 - *reduced* missing energy $\sum \not\in_T$ by canceling
 - *reduced* visible energy $H_T = \sum_j p_T^j$

"double invisible" significantly reduces the experiment sensitivity

• light flavor squark \tilde{q} in "double invisible" scenario

• constraint $\sim 500~GeV$

recast CMS-PAS-SUS-13-012

- 3rd generation squark \tilde{t} , \tilde{b} in "double invisible" scenario
 - constraints significantly weakened

recast ATLAS 1308:2631, CMS 1308:1586

• gluino \tilde{g} in "double invisible" scenario

• constraints significantly weakened

• recast ATLAS 1405.7875, CMS 1402.4770

- novel kinetic variable e.g. M_{T2} ?
 - sensitivity is still weakened
 - less energy in visible

 M_{T2} distribution (m_a = 300 GeV)

"double invisible" model realization

• $\tilde{q} \rightarrow q \tilde{\chi}^* \rightarrow q \tilde{\sigma} \sigma$

- LSP $\tilde{\sigma}$ carries some additional charge or parity, that appear in pair. e.g. sneutrino $\tilde{\nu}$
- $m_{\tilde{q}} < m_{\tilde{\chi}}$ through Dirac gauginos setup (P.J.Fox, A.E.Nelson, N.Weiner)
- but slepton mass can be lower than squark.

$$\Gamma_{\tilde{q}\to q\ell\tilde{\ell}}\ll\Gamma_{\tilde{q}\to q\sigma\tilde{\sigma}}.$$

Superpotential

•
$$W = \frac{1}{M_{med}} W_Y^{\alpha} W_{\alpha}' S + y S \sigma \bar{\sigma} + m \sigma \bar{\sigma}$$

- $W_{\alpha}(y,\theta,\theta^{\dagger}) \equiv \lambda_{\alpha} + \theta_{\alpha}D + i/2(\sigma^{\mu}\bar{\sigma}^{\nu}\theta)_{\alpha}F_{\mu\nu} + i\theta\theta(\sigma^{\mu}\partial_{\mu}\lambda^{\dagger})_{\alpha}$
- $\langle W'_lpha
 angle = heta D$ an effective D-term spurion, could from hidden U(1)'
- S mixed with bino, mediating coupling to $\bar{\sigma}\sigma$

Summary

- "double invisible" reduces LHC sensitivity
 - $\tilde{q}, \tilde{g}, \tilde{b}, \tilde{t}$ constraints are weakened
 - sleptons are similar
 - smaller cut threshold on $\not\!\!\!E_T$, p_T and H_T are helpful

Thanks for your time!